What’s the Scoop on Cupping?

My first exposure to cupping was seeing the perfectly circular bruises on Michel Phelp’s during the 2016 Summer Olympics. Since then, I have come across it many times in the University of Delaware athletic training room seeing athletes performing exercises with cups suctioned to their back. I have even tried it myself a couple of times to see what the hype was about and if I felt a difference using this type of recovery method. 

Figure 1. Michael Phelps swimming with visible cupping markers (bruises) on his shoulders. 

Now if you haven’t heard about cupping you may be wondering: what is cupping? Cupping is the application of plastic, glass, bamboo, or ceramics cups [1] to the skin via suction. The suction can either be created naturally by heating up the inside of the cup using a flame and allowing it to cool on the skin creating negative pressure and lifting/stretching the skin up. The other way to get this pressure is to use a suction device.[1] There are also two types of cupping, similar to needling; there are both wet and dry methods. Dry cupping is exactly the procedure I described above while wet cupping is when small cuts are made on the skin before the cup is applied and blood is drawn out. [1] The original idea behind this technique was that it was regulating Qi in the body. More recently, people claim that it promotes blood flow and therefore has a positive effect on the healing process, reducing soreness and pain. There are still many who find cupping bizarre and disgusting due to the often dark bruising and the odd look of the skin suctioned into cups. In particular, a Forbes article by Steven Salzberg goes as describes it as “someone giving you a massive hickey, and then doing another dozen or so all over your back, or legs, or wherever ” [2]. So by now, you should have a pretty clear image that while there are many advocates and cupping has been gaining interest (especially if professional athletes on the world stage have used it), there are still many skeptics and people who say it is harmful. Let’s see exactly what the research says about cupping. Is it beneficial? Harmful?


An article published in The Journal of Alternative and Complementary Medicine by a group of Australian and German researchers performed a systematic meta-analysis of clinical trials evaluating the effects of cupping on athletes. [3] They found 11 valid (according to their criteria) trials with a combined total of 498 participants from China, the United States, Greece, Iran, and the United Arab Emirates. Participants received cupping 1 to 20 times in daily or weekly intervals either alone or in combination with another procedure, like acupuncture.[3] The study found no conclusive results however. Even though there were improvements to the participant’s perception of pain, an increased range of motion, and lower levels of creatine kinase, there were large variations between symptom intensity and recovery measures, and other metrics.[3] There are also some limitations to this study. One of the main concerns is the reliability of the data. The researchers report an unclear or high risk of bias in many of the trials and they also mention that none of the trials reported safety. 


Another study published in 2016 in the Journal of Novel Physiotherapies evaluated the effects of various soft tissue mobilization techniques, including cupping, on active myofascial trigger-points in 20 amateur soccer players.[4] Athletes received cupping once a week for three weeks. They found that all techniques used, including cupping, improved pain pressure threshold and pain sensitivity significantly. [4] The researchers concluded that more research must be done to fully be able to draw a conclusion. Some limitations of the study were the small sample size (n = 20) and that the study was limited to only amateur soccer players. Other studies, including the previously mentioned study viewed multiple different sports instead of one. This also provided a much larger sample size compared to this study.  


Overall, there appears to be no definite answer, at least at this time, on if cupping helps promote healing and reduce pain and muscle soreness. For some, it appears to be beneficial in relieving pain but due to a limited number of studies and the questionable accuracy of others, there is no conclusive data for or against cupping. As the first-mentioned study by Bridgett et. al stated, “ No explicit recommendation for or against the use of cupping for athletes can be made. More studies are necessary for conclusive judgment on the efficacy and safety of cupping in athletes.” [3].




[1] NCCIH. “Cupping.” November 2018. Retrieved from: https://www.nccih.nih.gov/health/cupping

[2] Steven Salzberg. “ The Ridiculous and Possibly Harmful Practice of Cupping”.  May 2019. Retrieved from: https://www.forbes.com/sites/stevensalzberg/2019/05/13/the-ridiculous-and-possibly-harmful-practice-of-cupping/#57ce2d2331f3

[3] Rhianna Bridgett, Petra Klose, Rob Duffield, Suni Mydock, and Romy Lauche.The Journal of Alternative and Complementary Medicine.Mar 2018. 208-219.http://doi.org/10.1089/acm.2017.0191

[4] Fousekis, Konstantinos et al. “The Effectiveness of Instrument-assisted Soft Tissue Mobilization Technique(Ergoné Technique), Cupping and Ischaemic Pressure Techniques in the Treatment of Amateur AthletesàMyofascial Trigger Points.” (2016).


Questions to Consider:

  1. Have you ever gotten cupping done? If yes, what are your thoughts? Did you find it beneficial? If no, was there a reason why?
  2. How do you think studies looking at cupping should compare its effects for the most accurate evaluation? Should they compare across different sports because the benefits should not be sport dependent or within one sport to get a better comparison?

Enough (N)SAID about Ibuprofen & Soreness

If I’m being honest here, it’s been a while since I’ve had a solid gym routine. But this semester I’ve been going pretty regularly, and let me tell you, I’ve felt the burn. My muscles have felt pretty sore in the 2-3 days following my workouts, so I’ve had to turn to ibuprofen a few times to relieve the pain. But even after taking ibuprofen in the morning, I’ve felt sore again by the end of the day. This got me thinking: how effective is ibuprofen at reducing muscle soreness?

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly served over-the-counter at pharmacies. Some common forms you may recognize include aspirin and ibuprofen (Motrin, Advil). NSAIDs are taken for many reasons; they reduce pain and inflammation, lower fevers, and reduce clotting action.[1,2] The typical dosage for adults who are looking to reduce mild-moderate pain is 400 mg every 4-6 hours. For adults who have pain caused by osteoarthritis, the typical prescribed dose is 1200 mg.[3] However, despite their pain reducing use, NSAIDs could yield negative side effects such as increased risk in developing nausea, stomach pains, or an ulcer.[1]

The mechanism of NSAIDs when it comes to reducing pain and inflammation is known and understood. After intense workouts, prostaglandins are produced by muscle cells. They aid in the healing process of muscle, but this often leads to inflammation, pain, and fever. Enzymes called cyclooxygenases (COX-1, COX-2) produce the prostaglandins that promote inflammation, pain, and fever. The goal of NSAIDs is to inhibit COX-1 and COX-2 from producing prostaglandins, thus decreasing the pain. However, the COX-1 enzyme is responsible for creating prostaglandins that protect the stomach lining and support platelet aggregation, so the inhibition of the enzyme is what could lead to stomach ulcers and the promotion of bleeding.[1,2,4] The science behind NSAIDs seems promising, but clinical research may prove otherwise.

Athletes commonly take NSAIDs after performing physical activity because they claim the drugs reduce pain and decrease recovery time. But here is the issue: only very few studies have been able to support this claim. Some studies have reported results that do indicate a beneficial effect, by stating NSAIDs used prophylactically mitigate exercise-induced inflammation, circulating creatine kinase levels, and muscle soreness.[5] On the other hand, these claims made by athletes lack scientific support. NSAIDs are known to treat inflammation, but many histological studies have proven that most overuse injuries are caused by tissue degeneration and not inflammation. Also, NSAIDs temporarily “mask” the pain caused by tissue degeneration or soreness. This does not ensure that muscles or tissues are actively getting healthier; it only hides the pain from the athlete. [5] Clearly, there are many different opinions about the use of NSAIDs, specifically ibuprofen, in the sports medicine field. Let’s take a look at what the “research says” about it. 

A study at the University of Saskatchewan was conducted to determine the effects of ibuprofen on muscle hypertrophy, strength, and soreness during resistance training. Participants (12 males, 6 females) trained their left and right biceps for six weeks, alternating arms on each day. The training program called for concentric curls at 70% of RM and eccentric curls at 100% of 1 RM. Every day after their training, they either received a 400 mg dose of ibuprofen or a placebo. On training days, each participant was asked to rate their soreness on a scale from 0-9. For both the placebo and ibuprofen, the participants reported soreness during the first week and that soreness decreased throughout the program to the point where participants felt no soreness in either arm during the final week. The researchers concluded that ibuprofen was not effective in reducing perceived soreness during the training. However, the researchers do not reflect on the limitations of their own study.  They had a small and uneven sample size when it came to gender and there could have been discrepancies and residual effects that came along with taking ibuprofen inconsistently. Additionally, they seemed pretty convinced by their findings, but maybe the dose they chose was not strong enough to show any reduction in soreness in a long term study.[6]

On the other hand, another study drew opposite conclusions. Researchers in Greece conducted a study to determine the effects of ibuprofen on delayed onset muscle soreness (DOMS) and muscular performance. Participants (14 men, 5 women) who have not done strength training in the last 6 months performed eccentric leg curls at 100% RM. Nine (9) subjects were given a 400 mg dose of ibuprofen every 8 hours for 48 hours after exercise, while the remaining 10 subjects received a placebo. The subjects rated their amount of soreness on a scale of 1-10 prior to exercising, 24 hours after exercising and 48 hours after exercising.  The results showed that muscle soreness was significantly lower for the ibuprofen group at both 24 hours and 48 hours after exercising. Similar to the previous study, the researchers did not evaluate the limitations of their study. The number of participants and number of each gender were low and uneven, respectively. Also, the soreness results were not discussed much in the conclusion of the paper. The researchers did not support why the soreness decreased with scientific evidence, which is what they did for the other the parameters they were testing for.[7]

Clearly, both studies came to different conclusions. However, both studies were conducted for different amounts of time, contained different exercises, and with subjects of different athletic abilities. There have been plenty of studies conducted to determine how effective ibuprofen is at reducing soreness, but each study contradicts the next. 

Overall, many studies show that ibuprofen is a short term solution to hiding muscle soreness, but it may not be effective long term. Though, I’m still going to keep on using it to treat my soreness.

Questions to consider:

  • Do you take NSAIDs to reduce your soreness after working out? How effective do you find them to be?
  • Do you think there’s a better way to measure soreness and how ibuprofen affects our muscles?
  • Do you think the length of the study has any correlation with the effectiveness of ibuprofen?


  1. (n.d.) Nonsteroidal Anti-inflammatory Drugs (NSAIDs). Retrieved from  https://www.medicinenet.com/nonsteroidal_antiinflammatory_drugs/article.htm#what_are_nsaids_and_how_do_they_work
  2. Tscholl, M., et al (2016). A sensible approach to the use of NSAIDs in sports medicine . Swiss Sports & Exercise Medicine , 65(2), 15–20.
  3. (n.d.) Ibuprofen (Oral Route). Retrieved from https://www.mayoclinic.org/drugs-supplements/ibuprofen-oral-route/proper-use/drg-20070602 
  4. (n.d.) What Are NSAIDs? Retrieve from https://orthoinfo.aaos.org/en/treatment/what-are-nsaids/
  5. Stuart J. Warden (2010) Prophylactic Use of NSAIDs by Athletes: A Risk/Benefit Assessment, The Physician and Sportsmedicine, 38:1, 132-138, DOI: 10.3810/ psm.2010.04.1770
  6. Krentz , J. (2008). The effects of ibuprofen on muscle hypertrophy, strength, and soreness during resistance training. Applied Physiology Nutrition and Metabolism , 33(3), 470–475. doi: 10.1139/H08-019

Delayed Onset Muscle Soreness: What We Know and What We Don’t (Emphasis on Don’t)

Ever get that feeling two days after a tough run, or a ride that you knew was just a few miles too long, or your first leg day in months (come on, we’re all guilty of that), where you begin to question whether you will ever walk the same again? Walking down the stairs feels like torture, and your quads feel like they get angrier at you with every step you take? Muscle soreness, more specifically delayed onset muscle soreness (DOMS) is common in athletes of all levels of expertise. It occurs after performing a training activity that is unfamiliar. This could be activities than an athlete has not performed in a few months, activities they’ve never performed before, or even simply an intensity level or duration of exercise that they don’t normally reach, despite performing that exercise regularly. These unfamiliar activities, also known as eccentric training, are known to induce severe muscle soreness characterized by increasing intensity of symptoms beginning as late as 24-48 hours after exercise and lasting for days. The underlying physiological mechanism causing DOMS is still unknown and highly disputed, but at least six hypothesized theories for this mechanism have been proposed: lactic acid, muscle spasm, connective tissue damage, muscle damage, inflammation, and enzyme efflux theories [1]. Currently, there exist therapies that have been experimentally shown to decrease DOMS prevalence, including various hydrotherapies [2] and foam rolling [3], but more effective preventative therapies could probably be developed if the underlying physiological mechanism was identified. In order to better understand this phenomenon and the unfortunate encounters I’m sure we’ve all had with it, we are going to look into some of those proposed mechanisms and try to get some insight on how it works (or doesn’t).

Lactic acid is easy to blame for exercise-related muscle pain because of its high production rates during exercise and its perceived role in muscle fatigue and soreness (which is often highly exaggerated). While lactic acid is a common byproduct of exercise, its role in the development of DOMS is likely insignificant. A study performed in 1983 measuring blood lactic acid concentration before and during two different 45-minute treadmill exercises, one on a level surface and one at a 10% decline, found that DOMS was not prevalent in level-surface runners, even though lactic acid concentration was significantly increased. Conversely, downhill runners saw no significant increases in lactic acid concentrations but experienced significant DOMS [4]. There was clearly no relationship between presence of lactic acid and development of DOMS, and the two in fact appeared to be mutually exclusive, so let’s move on to another of the previously mentioned theories.

The inflammation theory initially seems to have a bit more validity, as the similarities between the acute inflammation response, a response to various types of injury including muscle damage, and DOMS are striking. Both phenomena can be characterized by pain, swelling, and loss of function at the area of interest. The time lines seem to match up as well, as both have been reported to increase in severity for about 48 hours and show signs of healing at 72 hours. The issue with this theory though, is the lack of physiological evidence, which is arguably the most important kind. Studies investigating the relationship between DOMS onset and inflammatory biomarkers, like white blood cells and neutrophils, have often failed to find significant results, leading us to believe that inflammation does not cause DOMS [5]. Another drawback of the inflammation theory is the ineffectiveness of anti-inflammatory drugs in preventing DOMS-related pain. A study done using an anti-inflammatory drug and placebo on athletes undergoing eccentric bicycle exercise found no changes in subjective soreness between drug and placebo groups, suggesting that inflammation is not the source of DOMS pain [6]. We won’t completely remove inflammation from the picture though, as it may play more of a role than it appears.

While inflammation itself is likely not the cause of DOMS pain, inflammatory-related processes may not be completely innocent. Bradykinin, an inflammatory mediator, is believed to play a role in DOMS after a study done in 2010 by Murase et al [7]. This study used a previously established rat model of DOMS to show that injecting a B2 (but not B1) bradykinin receptor antagonist 30 minutes before exercise completely prevented DOMS in those rats. The antagonistic effects of the drug used, HOE 140, only last about an hour in the body, and they found that when injecting it 30 minutes after exercise, it had no effect in preventing DOMS. The results can be seen below.

This suggests that bradykinin released during exercise plays a direct role in the development of DOMS, and that preventing that bradykinin from interacting with the B2 receptor prevents DOMS. The role of bradykinin and the B2 receptor in the development of DOMS is not well understood, but it seems like a step in the right direction to me.

There is too much research out there on DOMS to cover in one lowly blog post. I wanted to debunk the lactic acid theory as lactic acid is often a scapegoat for exercise-related pain that is likely sourced elsewhere. While inflammation and DOMS have many similarities that may lead some to believe that there is a causal relationship there, that is also likely not the case. However, there is definitely evidence of some sort of relationship between the two. Further research into the physiological pathway that leads to DOMS is definitely needed to make any conclusive statements on the issue, and the bradykinin B2 receptor pathway is probably a good place to start. But until then, you’re just going to have to suck it up next time you feel like your quads will never work again two days after your new leg routine. Many have been there and survived before. You will too.


Questions to consider:

What distinguishes DOMS from standard muscle soreness?

Think about any times you may have experienced DOMS- what were you doing and why do you think it led to DOMS?

How could you determine the presence of DOMS in animal models when it cannot be subjectively reported? (Hint: check reference 7 for ideas)

How could preventative therapies for DOMS promote better health and wellness?



[1] Cheung, K., Hume, P. A., & Maxwell, L. (February 01, 2003). Delayed Onset Muscle Soreness: Treatment Strategies and Performance Factors. Sports Medicine, 33, 2, 145-164.

[2] Vaile, J., Halson, S., Gill, N., & Dawson, B. (March 01, 2008). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European Journal of Applied Physiology, 102, 4, 447-455.

[3] Pearcey, G. E., Bradbury-Squires, D. J., Kawamoto, J. E., Drinkwater, E. J., Behm, D. G., & Button, D. C. (January 01, 2015). Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. Journal of Athletic Training, 50, 1, 5-13.

[4] Schwane, J. A., Watrous, B. G., Johnson, S. R., & Armstrong, R. B. (January 01, 1983). Is Lactic Acid Related to Delayed-Onset Muscle Soreness?. The Physician and Sportsmedicine, 11, 3, 124-31.

[5] Smith, L. L. (January 01, 1991). Acute inflammation: the underlying mechanism in delayed onset muscle soreness?. Medicine and Science in Sports and Exercise, 23, 5, 542-51.

[6] Kuipers, H., Keizer, H. A., Verstappen, F. T., & Costill, D. L. (January 01, 1985). Influence of a prostaglandin-inhibiting drug on muscle soreness after eccentric work. International Journal of Sports Medicine, 6, 6, 336-9.

[7] Murase, S., Terazawa, E., Queme, F., Ota, H., Matsuda, T., Hirate, K., Kozaki, Y., … Mizumura, K. (January 01, 2010). Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 30, 10, 3752-61.

Epsom Salts: The Inconvenient Truth

Do you suffer from insomnia, muscle cramps, delayed-onset muscles soreness? If so, then your physical or massage therapist may recommend Epsom salt without even knowing why. In its multitude of benefits, Epsom salts are said to improve sleep, reduce inflammation, improve muscles cramps, wound healing and much more. Epsom comes from the name of the English town that the mineral compound, magnesium sulfate, was first discovered. It was extracted by boiling water from a bitter saline spring that people would soak in for great health benefits. The medicinal properties are said to be established by a chemist Nehemiah Grew in 1695, who acquired a royal patent for exclusive manufacturing rights. Today, Epsom salts are a main ingredient in most bath salts and soaks and can be found at almost any pharmacy or bath specialty stores. Before you go take a soak, what does the science say?

Figure one is a molecular model of magnesium sulfate

Well the inconvenient truth is that there is little to no research on the effects of bathing in an Epsom salt bath. There are endless blogs out there with endless claims about the health benefits of Epsom with nothing to back it up. For example, there’s a claim that it’s good for people who are magnesium deficient, but there’s no evidence the magnesium is absorbed through the skin. After searching for articles for magnesium sulfate, bath salts, Epsom salts, I have found not a single article that even investigates Epsom salt baths. The closest thing I found was a patent for methods of different bath soaks, which just boil down to saying put salt in warm water and soak for 15 minutes. Other bloggers seem to have the same problem when trying to find the proof, (in the references below is a link to another similar article.)
I did however find articles about other medical uses for magnesium sulfate. In the study from Maternal-Fetal Medicine Units Network, they wanted to test if magnesium sulfate could help prevent cerebral palsy in preterm babies. 2241 women at imminent risk for delivery between 24 and 31 weeks of gestation, were randomized into experimental (magnesium sulfate) and placebo (control) groups. Each group receive magnesium sulfate, administered intravenously as a 6-g bolus followed by a constant infusion of 2 g per hour, or matching placebo. After a follow up analysis, the rate of the primary outcome was not significantly different in the magnesium sulfate group and the placebo group. However, in a secondary analysis, moderate or severe cerebral palsy occurred significantly less frequently in the magnesium sulfate group. The risk of death did not differ significantly between the groups.

In my references, there is also another article about using magnesium sulfate to treat polymorphic ventricular tachycardia. Long story short is there is no evidence to support the claims people make about Epsom salt baths. I’m surprised there isn’t any actual science considering a folk remedy that been around for hundreds of years. We can only go by What other people say. I can see some merit to the muscle relaxation benefit because magnesium sulfate can be used as a laxative and magnesium chloride is a common ingredient in rescue inhalers, in both cases it relaxes muscles. But again, there is no research on it. The best thing to do is try it and see if it works for you.


Questions to consider

Do you use Epsom salt? If so, Why?

Do you feel it helps?

Any thoughts why there is no research?



Dwight J. Rouse, M.D., Deborah G. Hirtz, M.D., for the Eunice Kennedy Shriver NICHD Maternal–Fetal Medicine Units Network*

N Engl J Med 2008; 359:895-905 August 28, 2008 DOI: 10.1056/NEJMoa0801187


Treatment of torsade de pointes with magnesium sulfate.

D Tzivoni, S Banai, C Schuger, J Benhorin, A Keren, S Gottlieb and S Stern

Circulation. 1988;77:392-397, originally published February 1, 1988