A Closer Look At: Cupping

Among Olympic athletes you may have noticed something different in recent years – spots. Big red spots. Elite athletes from a variety of different sports have been spotted with – well- spots. But where are these markings coming from?

Michael Phelps, Alex Naddour, and Natalie Coughlin are a few of many athletes who have utilized cupping, an ancient therapeutic technique that has given them their spots.

Michael Phelps, male US swimmer, 2016 Rio Olympics

Cupping is a practice used in traditional medicine in which suction is created using a glass, bamboo, plastic, or ceramic cup. Negative pressure is generated within the cup and used to lift the skin and surrounding tissues. There are over ten different types of cupping therapy, each utilized to treat a variety of ailments. Most broadly cupping can be categorized in to wet cupping, where incisions are made on an indiviudal prior to applying negative pressure via cup, and dry cupping, where no incisions are made. However, treatments can be further classified by their power of suction, method of suction, and material inside the cup [1].

Since 3500 BC cupping has been practiced across several cultures. The earliest references to cupping therapy are found in the Ebers Papyrus, one of the oldest and most important medical papyri of ancient Egypt dating back 1550 BC. However, this form of therapy has not just been exclusively used by the Egyptians, rather it has been used across many cultures for thousands of years. In ancient Macedonia, cupping therapy was used to treat diseases and health disorders. Ancient Arab practitioners utilized cupping therapy to treat hypertension, polycythemia, headache and migraine, and drug intoxication. Hippocrates advocated cupping therapy as a treatment for many ailments in his treatise Guide to Clinical Treatment. Greek and Roman practitioners regularly used wet and dry cupping to treat a variety of diseases. To this day, Cupping therapy acts as one of the cornerstones of traditional Chinese medicine [2].

Today, athletes utilize cupping to decrease recovery time between training sessions, improve range of motion, alleviate inflammation, and reduce pain [3,4,5].

Research suggests that cupping may alleviate pain in individuals. A 2012 pilot study was conducted to assess the effects of a single wet cupping session on pain. Fifty individuals suffering from non-specific chronic neck pain were selected to receive a single wet cupping therapy session. Relative pain levels were measured through participant questioners and mechanical sensory and pain threshold values. Measures taken directly before therapy sessions and three days after treatment and were compared to assess changes in pain levels. Participants reported a statistically significant reduction in pain three days after treatment; however, because measures in reduction of pain are directly correlated with patient reporting, findings may be based on placebo effect or patient bias making it difficult to draw significant conclusions from this study [6].

Several systematic reviews (SR) assessing the impact of cupping on pain relief suggest there may be a positive correlation between the treatment and pain reduction. Several published randomized clinical trials including cupping interventions have been associated with a reduction in pain; however, these studies are limited by size and potential bias, and share a poor study design. Many studies are limited in longevity, participant sample size, and lack of a sufficient placebo for cupping therapy making it difficult to draw significant conclusions regarding the impact of cupping on pain relief [7,8,9,10].

Little is known about the mechanism of action of cupping. Several theories look to explain the pain relief experienced by individuals, including the following two:

  • The Pain Gate Theory: Chronic pain is influenced by altering pain signaling at the nociceptor level. Through stimulating pain via cupping, the frequency of nociceptor impulses will be increased, leading to the closure of pain gates and inevitably pain reduction.
  • Diffuse Noxious Inhibitory Controls: “Cupping therapy may produce an analgesic effect via nerves that are sensitive to mechanical stimulation. This mechanism is similar to acupuncture in that it activates A∂ and C nerve fibers which are linked to the DNICs system, a pain modulation pathway which has been described as ‘pain inhibits pain’ phenomenon”[9]

The potential mechanisms by which cupping may alleviate pain are not well understood, and certainly require validation by scientific studies. However, in addition to participant pain relief, reported effects of cupping also include increased blood flow to the skin [11] and a reduction in inflammation [12]. These physiological impacts may also influence pain relief experienced in clinical trial participants; however, further research is required to draw any conclusions about the mechanisms by which cupping works to potentially reduce pain.

Although it is difficult to draw significant conclusions relating cupping therapy with pain relief, research study participants, athletes, and thousands of other people claim cupping has helped reduce their pain. Cupping has been practiced for over 5000 years across a number of cultures and has alleviated the pain of many. It’s long history of helping indiviudals enduring pain and illness gives it promise as an effective treatment method. Bottom line- whether it directly facilitates pain relief or acts as a placebo – cupping has helped alleviate pain for thousands of years and can be beneficial.

Questions to consider

  • Cupping therapy – placebo or effective? Does it matter?
  • Measures of patient pain have been qualitative in many clinical trials, is an effective way to evaluate the impact of treatment? Are there any other ways to measure pain that may be more effective?
  • Recently cupping has become more commonly seen in popular culture – featured in films such as The Karate Kid and The Gua Sha Treatment and publicly displaced on the bodies of Olympic athletes: what impact does the integration of this traditional treatment in popular culture have on public perception?


[1] Aboushanab, T.S., AlSanad, S. (2018). Cupping Therapy: An Overview from a Modern Medicine Perspective. Journal of Acupuncture and Meridian Studies, 11(3), 83-87.

[2] Qureshi, N. A., Ali, G. I., Abushanab, T. S., El-Olemy, A. T., Alqaed, M. S., El-Subai, I. S., & Al-Bedah, A. M. (2017). History of cupping ( Hijama ): A narrative review of literature. Journal of Integrative Medicine,15(3), 172-181. doi:10.1016/s2095-4964(17)60339-x

[3]How Cupping Therapy Benefits Athletes. (2018, August 31). Retrieved from https://www.communityacupuncture.org/2018/05/01/how-cupping-therapy-benefits-athletes

[4] Is cupping therapy effective among athletes?. (2018, January 13). Retrieved from https://medicalxpress.com/news/2018-02-cupping-therapy-effective-athletes.html

[5] What is Cupping Therapy? (Or Why Do Athletes Have Red Spots?). (2019, January 29). Retrieved from https://wellnessmama.com/129773/cupping-therapy/

[6] Lauche, R., Cramer, H.,Hohmann, C., Choi, K.E., Rampp, T., Saha, F.J, Musial, F., Langhorst, J., Dobos, G. (2011). The Effect of Traditional Cupping on Pain and Mechanical Thresholds in Patients with Chronic Nonspecific Neck Pain: A Randomised Controlled Pilot Study. Evidence-Based Complementary and Alternative Medicine, 2012. doi:10.1155/2012/429718

[7] Kim, J.I., Lee, M.S., Lee, D.H., Boddy, K, Ernst, E. (2011) Cupping for Treating Pain: A Systematic Review. Evidence-Based Complementary and Alternative Medicine, 2012.

[8] Kwon, Y.D., Cho, H.J. (2007). Systematic Review of Cupping Including Bloodclotting Therapy for Musculoskeletal Diseases in Korea. Korean Journal of Oriental Physiology and Pathology, 21(3), 789-793.

[9]Al-Bedah, A.M.N., Ibrahim, S.E., Qureshi, N.A., Aboushanab, T.A., Ali, G.I.M., El-Olemy, A.T., Khalil, A.A.H, Khalil, M.K.M., Alqaed, M.S. (2018). The medical perspective of cupping therapy: Effects and mechanisms of action. Journal of Traditional and Complement Medicine, 1-8.

[10] Mehta, P., Dhapte, V. (2015) Cupping therapy: A prudent remedy for a plethora of medical ailments. Journal of Traditional and Complementary Medicine, 5(3), 127-134. 

[11] Liu, W., Piao, S.A., Meng, X.W., Wei, L.H. (2013). Effects of cupping on blood flow under skin of back in healthy human. World Journal of Acupuncture, 23(3), 50-52.

[12] Lin, M.L., Lin, C.W., Hsieh, Y.A., Wu, H.C.,Shih, Y.S., Su, C.T., Chiu, I.T., Wu, J.H. (2014). Evaluating the effectiveness of low level laser and cupping on low back pain by checking the plasma cortisol level. 2014 IEEE International Symposium on Bioelectronics and Bioinformatics.

Cupping Therapy: Is it Worth the Bruises?

By Daniel Owens and Jeremy Grunden

Cupping is form of alternative medicine that is said to help with pain, inflammation and blood flow. All of this can lead to better well-being and relaxation as it acts as a form of deep tissue massage. While not that popular, you may have seen it being used during the Rio Summer Olympic games in 2016. Many athletes, such as Michael Phelps, were seen with large purple spots along their body. This is the result of cupping therapy. Cupping is usually put into two categories; wet and dry. Dry cupping involves the suction of the skin into the cup. Wet cupping has one extra step in which an incision is made, and blood is drawn from the suctioned area. While Olympic athletes seem convinced, is there any scientific data to support cupping as a valid therapy for recovery and rehabilitation?

First, we will look into rehabilitation. A study from Evidence-Based Complementary and Alternative Medicine attempted to prove the efficacy of cupping therapy for treating chronic neck and shoulder pain. The three things that they were looking for was skin surface temperature, blood pressure, and pain intensity. They had a cupping and a control group and found cupping to be statistically significant in raising the skin surface temperature and lowering the pain intensity (Figure 1). The conclusion was that cupping causes vasodilation and can increase blood circulation and is therefore an effective therapy for chronic neck and shoulder pain. These results are not without some cause for concern. First off the sample size was relatively small and similar. Also the increase in skin surface temperature is to be expected, however the pain intensity could be attributed to a number of things. Pain tolerance between patients is different and the decrease in pain intensity of the cupping group could be a result of the placebo effect.

One case study looked into utilizing cupping therapy as a means of treatment for vascular thoracic outlet syndrome. Vascular thoracic outlet syndrome is when blood vessels and nerves near the collarbone are compressed. This restricts blood flow and can lead to pain and numbness along the shoulder and down to the fingers. The case study focused on a collegiate baseball pitcher who had been diagnosed with the disease. The pitcher was put on a program that included cupping therapy on alternating days combined with certain range of motion exercises. The patient began to pitch again and noted no swelling, increased range of motion and significantly less pain. All of this would suggest that the cupping therapy was effective in treating this ailment. However, some issues with the case study is that they did not continue to follow up with the patient after the 3 week period and the sudden improved health could be attributed to a number of different factors. The authors do admit that more research and testing must be conducted to fully understand the efficacy of cupping therapy.

In regards to recovery, a study was done by a team of Greek researchers to find how cupping therapy compares to other treatments in the combating of myofascial pain syndrome. Myofascial pain syndrome is caused by painful spots in the fascia surrounding the skeletal muscle due to repetitive injury, training overload, and muscular overuse. Cupping was done to 20 amateur soccer athletes once a week for three weeks, and their pain pressure threshold (PPT) and visual analogue scale (VAS) was taken before and after the treatment sessions. An increase in PPT and a decrease in VAS was observed in the athletes after cupping. These changes suggest that cupping does have an effect on the body. It’s stated in the article that researchers believe cupping causes hyperemia and local stretching, which is similar to what the first study concluded.

These results show that cupping seems to improve recovery, however other recovery techniques appear to be more effective. Cupping saw the smallest change in the pre and post values. Additionally, it’s always important to consider each participant’s pain tolerance varies. This helps to explain why the standard deviation was ~1.5 for all values in table one.

Compiling all of the evidence, it seems cupping does have an effect on rehabilitation and recovery. Cupping causes vasodilation and hyperemia. This increase in blood circulation and dilation of the blood vessels helps to combat illness that are caused by constricted/compressed blood vessels, like vascular thoracic outlet syndrome. According to the third article though, cupping may not be the most effective recovery solution. When considering the cost of each treatment method, availability, and preference, cupping may not always be the best solution for recovery.

Questions to Consider:


  1. When would cupping therapy be ideal to use?
  2. How is cupping therapy better than other therapies?
  3. Can cupping therapy be combined with other techniques to boost its performance?

Further Readings/References:

Ahmadi, Alireza, et al. “The Efficacy of Wet-Cupping in the Treatment of Tension and Migraine Headache.” The American Journal of Chinese Medicine, vol. 36, no. 01, 2008, pp. 37–44., doi:10.1142/s0192415x08005564.

Bridgett, Rhianna, et al. “Effects of Cupping Therapy in Amateur and Professional Athletes: Systematic Review of Randomized Controlled Trials.” The Journal of Alternative and Complementary Medicine, vol. 24, no. 3, 2018, pp. 208–219., doi:10.1089/acm.2017.0191.

Jun, Wu. “Experimental Study on Treatment of Chronic Soft Tissue Injuries with Fire-Needle Therapy.” Chinese Acupuncture & Moxibustion, 2002, doi: R245.316.

“Fire Cupping-2.” Flickr, www.flickr.com/photos/psit/4827714792.

Platelet Rich Plasma Therapy — Out of Pocket Cost for Peace of Mind?

/WebMaterial/ShowPic/860386Since its first clinical efficacy introduction in 1987, Platelet Rich Plasma (PRP) therapy has had its share of support and skepticism as a method to promote tissue repair and regeneration. Through centrifugation, the plasma becomes five to ten times more concentrated with platelets, growth hormones, and plasma proteins such as fibrin and fibronectin.  PRP is typically injected into areas of trauma to stimulate the body stages of wound healing. This type of therapy is widely associated with the treatments of musculoskeletal injuries. Additionally, PRP therapy can be used in cardiovascular treatments such as heart surgery and angiogenesis, as well as dermatology treatments such as acne scars, contour defects, androgenic alopecia, wound ulcers and striae distensae. Different types of growth factors in PRP have been categorized into their subgroups and associating functions depending on characteristics of platelet-derived, vascular-endothelial, insulin-like, transforming, hepatocyte, fibroblast and epidermal; however, PRP mechanisms of actions are not completely understood by the scientific community. In other words, there is not enough evidence to completely support the efficacy and uses of PRP for clinical treatments.

/WebMaterial/ShowPic/860388Even in the early introduction of PRP, the serum was utilized in a progressive way through the use of injections directly into the trauma site of a patient.  A study in 1998 called “Platelet Rich Plasma, Growth Factor Enhancement for Bone Grafts”, was intriguing in the amount of efforts taken to observe PRP effects. In this study, a bone graft harvester along  and ElectroMedics 500 gradient density separator is used to extract the platelets from the plasma. One group of the subjects received the cancellous cellular marrow grafts without PRP, while the other group received grafts with PRP added during the bone-milling process and applied topically after replacement of the defect. The bone grafts were allowed to sit and consolidate for 6 months, with panoramic X-ray observation every two months. Looking specifically at the growth factors PDGF and TGF-b (platelet-derived and transforming, respectively), the bone grafts treated with the PRP showed a 338% increase of platelet count. At 2,4 and 6 months respectively, the PRP treated grafts had 2.16, 1.88, and 1.62 times more platelets than the control group, with a p value for each comparison being .001 showing statistical significance. Does this mean that PRP will absolutely enhance growth factors?  Identifying only 2 of the many growth factors is an oversimplification of human physiology. Even though PDGF and TGF-b are not the only ones with properties of angiogenesis, vascularization, mitogenic, and osteogenesis, the insight of this study still illustrates the significant of PRP in recovery.

On the contrary, studies also showing no correlation between PRP and growth factor activation. In a study by Earl G. Freymiller called “Investigation of Platelet-Rich Plasma in Rabbit Cranial Defects: A Pilot Study,” 15 rabbits received 4 equal defects 8 mm in diameter on their cranium.  The sample group was then given grafts of autogenous bone, PRP injection, grafts of autogenous bone with PRP, and no treatment as control. Observation occurred at 1, 2 and 4 month intervals with 5 rabbits per interval. The results show Bone with PRP has higher percentage bone area recovery than Bone group; however, no statistical significant can be observed (p<0.02) radiographically or histomorphometrically.  Does this mean that PRP has no effect on the rat cranium? An important note is the size of this study The sample size and cranium defects were relatively small. Furthermore among the 4 groups, no statistical differences can be observed in bone density at the 4 months interval. This question the precision of measuring technologies and methods. A reasonable conclusion could be PRP does not adversely affect the process of bone recovery or the study is not precise and therefore inconclusive. 

Given some context, these two studies have merit that does not necessarily contradict each others.  Overall, PRP has been shown to be effective in cosmetics and treatment of chronic tendon injuries but lack scientific proofs in treatments of acute ligament, muscle, and fractures injuries.  Though the scientific community has a understanding of PRP components, the lack of understanding in its holistic mechanism of action brings forth doubt in the clinical setting. This controversy remains prevalent because of its clinical and financial constigents.  In the academic community, Healio posted Orthopaedics Today 2018 containing issues of the demands for PRP definition, comprehensive description, healing mechanisms, and functional outcome. To normal society, PRP efficacy recognition is so limited that few to no insurance plans and workers’ compensation would provide even partial reimbursement.  PRP therapy is currently a luxury for the peace of mind, why else would you spend $600 on something that might not work?

Questions to Consider:

Is Platelet Rich Plasma the same as blood doping and to what extent should it be regulated?

If PRP is effective in all form of wound recovery, what proofs are needed before it can be recognized as part of insurance claim?


[1] Alves, Rubina, and Ramon Grimalt. “A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification.” Skin Appendage Disorders, Karger Publishers, 6 July 2017, doi.org/10.1159/000477353.

[2] Arshdeep, Kumaran M S. Platelet-rich plasma in dermatology: Boon or a bane?. Indian J Dermatol Venereol Leprol 2014;80:5-14

[3] Marx, Robert Lee DDS. Platelet- rich Plasma Growth factor enhancement for bone grafts. Oral and Maxillofacial Surgery 1998

[4] Aghaloo, Tara L DDS. Investigation of platelet-rich plasma in rabbit cranial defects: A pilot study. Journal of Oral and Maxillofacial Surgery 2002