What’s the Scoop on Cupping?

My first exposure to cupping was seeing the perfectly circular bruises on Michel Phelp’s during the 2016 Summer Olympics. Since then, I have come across it many times in the University of Delaware athletic training room seeing athletes performing exercises with cups suctioned to their back. I have even tried it myself a couple of times to see what the hype was about and if I felt a difference using this type of recovery method. 

Figure 1. Michael Phelps swimming with visible cupping markers (bruises) on his shoulders. 

Now if you haven’t heard about cupping you may be wondering: what is cupping? Cupping is the application of plastic, glass, bamboo, or ceramics cups [1] to the skin via suction. The suction can either be created naturally by heating up the inside of the cup using a flame and allowing it to cool on the skin creating negative pressure and lifting/stretching the skin up. The other way to get this pressure is to use a suction device.[1] There are also two types of cupping, similar to needling; there are both wet and dry methods. Dry cupping is exactly the procedure I described above while wet cupping is when small cuts are made on the skin before the cup is applied and blood is drawn out. [1] The original idea behind this technique was that it was regulating Qi in the body. More recently, people claim that it promotes blood flow and therefore has a positive effect on the healing process, reducing soreness and pain. There are still many who find cupping bizarre and disgusting due to the often dark bruising and the odd look of the skin suctioned into cups. In particular, a Forbes article by Steven Salzberg goes as describes it as “someone giving you a massive hickey, and then doing another dozen or so all over your back, or legs, or wherever ” [2]. So by now, you should have a pretty clear image that while there are many advocates and cupping has been gaining interest (especially if professional athletes on the world stage have used it), there are still many skeptics and people who say it is harmful. Let’s see exactly what the research says about cupping. Is it beneficial? Harmful?

 

An article published in The Journal of Alternative and Complementary Medicine by a group of Australian and German researchers performed a systematic meta-analysis of clinical trials evaluating the effects of cupping on athletes. [3] They found 11 valid (according to their criteria) trials with a combined total of 498 participants from China, the United States, Greece, Iran, and the United Arab Emirates. Participants received cupping 1 to 20 times in daily or weekly intervals either alone or in combination with another procedure, like acupuncture.[3] The study found no conclusive results however. Even though there were improvements to the participant’s perception of pain, an increased range of motion, and lower levels of creatine kinase, there were large variations between symptom intensity and recovery measures, and other metrics.[3] There are also some limitations to this study. One of the main concerns is the reliability of the data. The researchers report an unclear or high risk of bias in many of the trials and they also mention that none of the trials reported safety. 

 

Another study published in 2016 in the Journal of Novel Physiotherapies evaluated the effects of various soft tissue mobilization techniques, including cupping, on active myofascial trigger-points in 20 amateur soccer players.[4] Athletes received cupping once a week for three weeks. They found that all techniques used, including cupping, improved pain pressure threshold and pain sensitivity significantly. [4] The researchers concluded that more research must be done to fully be able to draw a conclusion. Some limitations of the study were the small sample size (n = 20) and that the study was limited to only amateur soccer players. Other studies, including the previously mentioned study viewed multiple different sports instead of one. This also provided a much larger sample size compared to this study.  

 

Overall, there appears to be no definite answer, at least at this time, on if cupping helps promote healing and reduce pain and muscle soreness. For some, it appears to be beneficial in relieving pain but due to a limited number of studies and the questionable accuracy of others, there is no conclusive data for or against cupping. As the first-mentioned study by Bridgett et. al stated, “ No explicit recommendation for or against the use of cupping for athletes can be made. More studies are necessary for conclusive judgment on the efficacy and safety of cupping in athletes.” [3].

 

 

References:

[1] NCCIH. “Cupping.” November 2018. Retrieved from: https://www.nccih.nih.gov/health/cupping

[2] Steven Salzberg. “ The Ridiculous and Possibly Harmful Practice of Cupping”.  May 2019. Retrieved from: https://www.forbes.com/sites/stevensalzberg/2019/05/13/the-ridiculous-and-possibly-harmful-practice-of-cupping/#57ce2d2331f3

[3] Rhianna Bridgett, Petra Klose, Rob Duffield, Suni Mydock, and Romy Lauche.The Journal of Alternative and Complementary Medicine.Mar 2018. 208-219.http://doi.org/10.1089/acm.2017.0191

[4] Fousekis, Konstantinos et al. “The Effectiveness of Instrument-assisted Soft Tissue Mobilization Technique(Ergoné Technique), Cupping and Ischaemic Pressure Techniques in the Treatment of Amateur AthletesàMyofascial Trigger Points.” (2016).

 

Questions to Consider:

  1. Have you ever gotten cupping done? If yes, what are your thoughts? Did you find it beneficial? If no, was there a reason why?
  2. How do you think studies looking at cupping should compare its effects for the most accurate evaluation? Should they compare across different sports because the benefits should not be sport dependent or within one sport to get a better comparison?

Holding Your Stretch is Holding You Back

By: Juliana Gullotta and Laura Sturgill

If you’ve participated in any athletic event, you know that one of the first things you do is to start stretching before any activity takes place. Coaches and trainers emphasize that stretching should occur on a regular basic, and become part of an individual’s workout routine. These stretches are usually static stretches (holding a stretch for 20-30 seconds). The intent of prescribing stretching before exercise, is based on the assumption that by stretching you enhance performance, prevent injuries, and increase flexibility. However, several studies, including one from the Journal of Applied Physiology, Nutrition, and Metabolism, have shown that stretching before exercise can actually do more harm than good, and increase your risk of injury.

Results from study Conducted by the University of Nevada comparing the effects of static, ballistic, and no stretching (control) on muscle power. Asterisk signifies statistically significant.

While stretching before exercise does activate the muscles and increase blood flow to the areas as a “warm up”, it can be potentially very detrimental to an athlete’s workout. This conclusion is especially pertinent when the sport in question requires maximal force production. In a study conducted at the University of Nevada, researchers determined that leg muscles generate less force after static stretching than if they did not stretch at all. When muscles are subject to the strain of static stretching, they remain in a weakened state, thereby temporarily reducing the force that it can produce. The researchers evaluated two types of stretching, ballistic (bouncing) and static (control is no stretching). After stretching for 3 sets of 30 seconds, subjects performed a vertical jump on a force plate. Power values were compared for each of the conditions (Figure 1). From this graph it is clear to see a significant difference in the power values observed in the control group and static group. The decrease in power after stretching could inhibit a good muscle building workout. For sports that require maximum power (ex. football), static stretching should be limited before activity.

Static stretching intervals should last for no more than 60 seconds, or moderate reduction in maximal muscle performance may be observed. In a study conducted by Behm et. al. the effects of static stretching on power-speed and strength tasks were compared. One of the main components of this study involved investigating the relationship between time spent holding a stretch and subsequent performance in a physical activity. In order to perform these tests, two groups of healthy and active adults were randomly assigned, with one group holding their static stretch for less than 60 seconds and the other for a period of time greater than 60 seconds. On average there was a mean reduction of muscle performance for both test groups, but the group that held the stretch for a longer period of time experienced significantly higher reduction rates in performance. For the individuals that held the stretch for less than 60 seconds, a mean reduction of 1.1% was observed and categorized by the researchers as a small reduction in performance. However, a moderate reduction of 4.6% was noted in the population that held the stretch for longer than 60 seconds, indicating that there is a dose-response relationship between stretching and maximal muscle performance.

To investigate this relationship further, two types of physical activity were studied. Power-speed tasks were given to both groups and the results supported the notion that on average static stretching, especially when held at higher intervals, impaired muscle performance in the test subjects. While only a small mean reduction rate of 1.3% was observed for this type of exercise, this change could be extremely detrimental to an athlete’s performance where maximal speed is critical (i.e. sprinters). Power tasks were also completed, and the negative effects of static stretching on performance became more apparent. On average there was a 4.6% reduction in an individual’s maximum muscle performance, with a higher instance of 5.1% reduction when the activities were completed after a period of stretching lasting longer than 60 seconds. In another study also conducted by Behm et. al, these findings were not only supported by additional trials, but also expanded upon to look at the long term effects of stretching on overall performance. In his initial study that looked at power and speed tasks, maximal muscle performance was calculated minutes after the the stretching was complete. The second study, however, observed the prolonged effects that static stretching would have on an athlete, and concluded that even 2 hours after the last set of static stretching, instances of decreased performance existed.

The results from these studies suggest that time spent holding a stretch and subsequent muscle performance have an inverse relationship. For this reason more and more coaches and athletes are looking to implement a different approach to their warm up routine.

Straight leg march can be used as a dynamic stretch alternative to the static sit-and-reach stretch. Courtesy of the New York Times

Dynamic stretching (Figure 2) is simply the act of stretching your muscles while moving, and it is an effective method to get your blood flowing and increase your power, flexibility, and range of motion prior to working out. This type of stretching is unique in that the activities performed have the ability to target specific muscles necessary for the task at hand. In other words, different forms of dynamic stretching would be used for a sprinter and a volleyball player because each sport requires a different amount and variety of muscle activity. Dynamic stretching allows athletes to engage their bodies’ muscles in a way that static stretching cannot, thereby quickly earning its place as a replacement to static stretching in many pre-workout routines.

While the value of traditional static stretching before exercise may be an outdated concept, the benefit of increased flexibility in athletes should not be ignored. For this reason post workout stretching is recommended as a “cool down”. If necessary, short duration, lasting less than 30 seconds, low intensity static stretches could be implemented before activity to get blood flowing to muscles and reduce stiffness, but this does not offer the best possible results. The ideal warm-up routine for athletes to minimize risk of injury and maximize performance should include aerobic activity, dynamic stretching, and sport specific dynamic exercises.

Questions to consider:

How would the stretching routine you made for football players differ from that of a sprinter?

There is a lot of information about how bad form or technique during exercise can cause injury, should there be attention called to the potential adverse effects of stretching improperly?

References

Samuel, M. N., Holcomb, W. R., Guadagnoli, M. A., Rubley, M. D., & Wallmann, H. (January 01, 2008). Acute effects of static and ballistic stretching on measures of strength and power. Journal of Strength and Conditioning Research, 22, 5, 1422-8. 

Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (January 01, 2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Applied Physiology, Nutrition, and Metabolism =, 41, 1, 1-11.

Shrier, I. (October 01, 1999). Stretching Before Exercise Does Not Reduce the Risk of Local Muscle Injury. Clinical Journal of Sport Medicine, 9, 4, 221-227.

Behm, D. G., & Chaouachi, A. (November 01, 2011). A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology, 111, 11, 2633-2651.

Shrier, I. (January 01, 2000). Stretching before exercise: an evidence based approach. British Journal of Sports Medicine, 34, 5, 324-325.

Herbert, R. D., & Gabriel, M. (January 01, 2002). Effects of stretching before and after exercising on muscle soreness and risk of injury: systematic review. Bmj (clinical Research Ed.), 325, 7362.)

Reynolds, Gretchen. (2008) Stretching: The Truth. The New York Times. Retrieved from: http://www.nytimes.com/2008/11/02/sports/playmagazine/112pewarm.html

Reynolds, Gretchen. (2016) The Right Way to Stretch. The New York Times. Retrieved from: https://well.blogs.nytimes.com/2016/01/21/stretching-back-to-the-past/