ENGINEERING’S EMILY DAY EARNS NSF CAREER AWARD

Emily Day is using tiny particles to make a big impact.

Developing nanoscale materials to outsmart cancerous tumors

Emily Day, an assistant professor of biomedical engineering at the University of Delaware, has received a National Science Foundation (NSF) Career award to engineer membrane-wrapped nanoparticles for targeted ribonucleic acid (RNA) delivery to breast cancer cells. The grant, which is expected to total $500,000, will start on May 1, 2018 and last until April 30, 2023. Day studies how nanoparticles, which measure about one-thousandth the width of a human hair, can be used in cancer treatment. For example, she is known for her previous research on the use of gold nanoparticles for heat-based treatment of cancer and for gene regulation of cancer. For this project, Day is making novel nanoparticles containing special ribonucleic acid (RNA) molecules.

Read UDaily article

PROGRAMMING DNA TO DELIVER CANCER DRUGS

Wilfred Chen (left) and Rebecca P. Chen are developing new biomolecular tools to address key global health problems.

Engineers control cellular proteins with biological computing

DNA has an important job—it tells your cells which proteins to make. Now, a research team at the University of Delaware has developed technology to program strands of DNA into switches that turn proteins on and off. UD’s Wilfred Chen Group describes their results in a paper published Monday, March 12 in the journal Nature Chemistry. This technology could lead to the development of new cancer therapies and other drugs.

Read UDaily article

MANUFACTURING USA HEADQUARTERS

NIMBLE (National Institute for Innovation in Manufacturing Biopharmaceuticals) announcement and tour of the facilities of DBI (Delaware Biotechnology Institute), Friday, December 16th, 2016 with Chris Coons, Tom Carper, John Carney, Willie May-NIST Director and Under Secretary of Commerce and Penny Pritzker-Secretary of Commerce.

Secretary of Commerce Penny Pritzker announces the National Institute for Innovation in Manufacturing Biopharmaceuticals.

Secretary of Commerce Penny Pritzker visited the University of Delaware today, where she announced a new institute to advance U.S. leadership in pharmaceutical manufacturing. The Newark-based National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) will be the 11th Manufacturing USA Institute. Biopharmaceuticals are prescription drugs made with living cells. Most drugs are chemistry-based and far easier to produce. The biopharmaceutical category includes vaccines, cancer drugs and drugs to treat autoimmune diseases, as well as emerging drugs for cell and gene therapies. The institute will focus on bringing safe drugs to market faster and on developing workforce training. The biopharmaceutical field has a negative unemployment rate, with more jobs available than there are qualified workers. A team of more than 150 companies, educational institutions, nonprofits and state governments will operate NIIMBL under a newly formed nonprofit. Expected total investment from all stakeholders totals $250 million, including $70 million of federal investment. The University of Delaware will handle administrative duties for the institute in partnership with the Commerce Department’s National Institute of Standards and Technology (NIST).

Read UDaily article

STOPPING CANCER RECURRENCE

April Kloxin (standing) and doctoral student Lisa Sawicki study samples in UD’s Colburn Lab.

April Kloxin (standing) and doctoral student Lisa Sawicki study samples in UD’s Colburn Lab.

Susan G. Komen Grant to Support Research on Breast Cancer Recurrence

Although early detection and better treatments have resulted in more women with breast cancer surviving past the five-year mark, 20 percent of disease-free patients will experience a recurrence anywhere from five to 25 years later at a metastatic site — most often in the bone marrow or the lungs. And their chances of surviving this secondary cancer are lower because it is often quite advanced before it is detected. “There’s a significant clinical need to understand the mechanism of late cancer recurrence to determine disease markers and improve treatment strategies,” says the University of Delaware’s April Kloxin. “It has been hypothesized that late recurrences originate from tumor cells that disseminate to these other tissues in the body where they become dormant and are later re-activated.” Kloxin recently received a $450,000 grant from Susan G. Komen aimed at developing a better understanding of this dormancy and reactivation process so that ultimately recurrence can be prevented. “While estrogen receptor positive tumors typically have better initial outcomes, late recurrences are a concern,” she says. “If we can understand the mechanisms that drive the switch from dormancy to growth of this type of cancer, we can identify predictive biomarkers that may indicate which women are at risk and lay the foundation for the development of more effective treatment.” Kloxin’s team plans first to create materials that mimic various metastatic sites and then identify key signaling pathways in cancer dormancy within these 3-D microenvironments. Second, they will focus on determining what regulates re-activation of the cancer cells within this cultured system. Finally, they will establish commonalities of dormancy or activation of patient-derived tumor cells in the culture model. “This last goal is where we’re really excited about our collaboration with the Helen F. Graham Cancer Center and Research Institute in the Christiana Care Health System,” Kloxin says. “Evaluating cells from actual patients will provide us with the heterogeneity of real cases and enable us to compare our findings with the traditional markers observed by clinicians.” Read more…