Cover Crop Decisions for Vegetable Growers I: Basic Considerations & Winter Killed Cover Crops

Gordon Johnson, Extension Vegetable & Fruit Specialist; gcjohn@udel.edu

With cover crop season coming up, vegetable growers will have decisions to make on what cover crops to plant and how best to grow and use them. The following is the first in a series revisiting this topic.

Cover crop acreage has been growing in the region, largely due to nutrient management efforts and cost share programs. In the last 2 years, there has been an emphasis on growing cover crops for soil health benefits and programs are underway from NRCS and Conservation Districts to increase cover crop plantings for soil improvement.

Nutrient management goals and soil health goals are not necessarily the same. In nutrient management based cover crop programs, the goals are to have crops that can take up residual nitrogen and also provide cover to reduce erosion losses. Non-legumes predominate, with most of the acres planted in small grains such as rye with some recent use of radishes (Maryland programs are non-legume based while Delaware conservation district programs allow for the use of legumes). No fertilizer can be used with cover crops in these programs. In this case the answer to the question above is that a cover is being grown. While there will be soil health benefits, they are not maximized.

In contrast, when soil improvement is the primary goal, the cover crops are grown as crops. You are growing plants to maximize the benefits they provide. To increase organic matter and improve soil health the main goal is to produce maximum biomass above ground and below ground. A secondary goal would be to provide different types of organic matter (such as with cover crop mixtures) to support a diverse soil microbial environment.

In other cases the goals will be different. With leguminous cover crops a goal may be to maximize the amount of nitrogen fixed. With soil compaction reducing crops such as radishes, the goal is to maximize the amount of “biodrilling” – the amount of tap roots being produced. With biofumigant crops, the goal is to maximize the production of fumigant-like chemicals the crops produce. With mulch based systems, the goal is to maximize above ground biomass.

What these soil improvement and specific use goals have in common is the need to treat the cover crop as a crop in order to optimize plant growth. This includes seeding at the proper rate to achieve optimal stands, planting at the right time, using seeding methods to get maximum seed germination and plant survival, having sufficient fertility to support good plant growth, providing water during dry periods, managing pests (insects, diseases, weeds), and inoculating legumes. If cover crop mixtures are being used, the ratios of seeds being planted must be considered to have the best balance of plants in the final stand.

The best cover crop stands are obtained with a drill or seeder that places the seed at the proper depth, at the proper seeding rate, with good soil to seed contact. Fertilization and liming programs should be used to support season-long growth – fertilizers and other soil amendments will be necessary in most cases. Nitrogen will need to be added for non-legumes.

When the crop is terminated is also key. The cover crops should be allowed to grow to the stage that maximizes the benefits they have to offer before killing the crops. Allowing a winter cover to grow for an extra week in the spring can make a large difference in the amount of biomass produced.

Cover crops that put on significant growth in the fall and then die during the winter can be very useful tools for vegetable cropping systems. These winter killed cover crops add organic matter, recycle nutrients, improve soil health, and allow for earlier spring vegetable planting.

Winter killed cover crops that are late summer and fall planted include spring oats, several mustard species, and forage and oilseed radish. Earlier planted summer annuals (millets; sorghums, sudangrasses, and hybrids; annual legumes such as sun hemp or forage soybeans; buckwheat and many others) can also be used as winter killed species. Timing of planting will vary according to the species being used and winter killed species selection will depend on when fields will be available for seeding. Summer annuals should be planted in late July or during August for use in a winter killed system to obtain sufficient growth.

Spring oats and mustard species can be planted from late August through September. For best effect, forage and oilseed radishes should be planted before the middle of September. Spring oats, radishes and mustards are not suited for October or later planting because they will not produce adequate fall growth.

All of the winter killed non-legumes mentioned above will benefit from the addition of 30-60 lbs of nitrogen.

The following are several options for using winter killed species with vegetables:

1) Compaction mitigation for spring planted vegetables. Where there are compacted fields, the use of forage radishes has worked very well as a winter killed cover crop by “biodrilling”. The extremely large taproot penetrates deep into the soil, and after winterkilling, will leave a large hole where future crop roots can grow. Oilseed radish also provides considerable “biodrilling”. Winter killed radishes works well with spring planted crops such as spinach, peas, early sweet corn, and early snap beans. One issue with radishes is that in mild winters they may not fully winter kill.

2) Early planted vegetables. A wide range of early planted vegetables may benefit from winter killed cover crops. For example, peas no-till planted or planted using limited vertical tillage after a winter killed cover crop of forage radish, oilseed radish, or winter killed mustard have performed better than those planted after conventional tillage. Early sweet corn also has potential in these systems as do a wide range of spring vegetables including spinach, potatoes, and cabbage. Winter killed radishes and mustards also have the advantage of outcompeting winter annual weeds leaving relatively weed free fields and also in recycling nutrients from the soil so that they are available in the spring for early crops (decomposition has already occurred).

3) Mixed systems with windbreaks for plasticulture. By planting planned plasticulture bed areas with winter killed cover crops and areas in-between with cereal rye you can gain the benefits of these soil improving cover crops and eliminate the need make tillage strips early in the spring. The winter killed areas can be tilled just prior to laying plastic.

4) Bio-strip till. By drilling one row of forage or oilseed radish and other adjacent rows with rye or other small grains, you can create a biodrilled strip that winter kills and that can be no-till planted into the spring without the need for strip-till implements. This opens up dozens of options for strip tilling (seed or transplanted) spring vegetables.