Freezes, Frost and Frost/Freeze Protection

Gordon Johnson, Extension Vegetable & Fruit Specialist; gcjohn@udel.edu

Fruits and fruit flowers are damaged by temperatures below 28°F and by frost. Temperatures in Delaware reached 21°F or lower on April 6. Another freeze is predicted for Saturday, April 9. The term freeze means that temperatures dropped below 32°F. Frost is the formation of ice crystals on crops and occurs when the dew point is near or below freezing. You can have a freeze without frost and a frost without a freeze. Both are damaging to plant tissue.

Frost and freeze protection methods vary with fruits and the type of freeze expected. Advective freezes occur with freezing temperatures and high winds. This is the most difficult to protect against. For strawberries, two layers of floating row covers may be the most effective strategy for advective freezes. Double covers have been shown to be more effective than single heavy covers in this case. Irrigation along with double covers can provide even more protection if done properly.

Radiational freezes occur on cold, still nights. In this case cold air is near the ground and warmer air is above. Wind machines and helicopters have been successfully used to stir the air and raise the temperatures in orchards in this case. Row covers in strawberries will protect against radiational freezes too.

Irrigation has also been successfully used for frost protection but it has to be done properly. How irrigation works is that as ice forms on plants heat is released. The key is to keep ice formation occurring through the night and continue through melt in the morning. Remember that initially, until ice starts forming, there will actually be evaporative cooling of the plant. The latent heat of fusion (water freezing) will release heat (approximately 144 BTUs/lb of water), whereas evaporative cooling will absorb heat from the plant (absorbing approximately 1,044 BTUs/lb of water) and lower plant temperatures. Therefore, irrigation must start well above critical temperatures. Also, the volume of water needed needs to be matched with the expected temperature drop and wind speed. In addition, uniformity of water application is critical. This is difficult to do in high wind situations.