Fusarium Head Blight Management

Alyssa Koehler, Extension Field Crops Pathologist; akoehler@udel.edu

Figure 1. Corn stubble with Fusarium sporulation that can contribute to FHB in wheat.

Figure 1. Corn stubble with Fusarium sporulation that can contribute to FHB in wheat.

Fusarium Head Blight (FHB), caused by the fungus Fusarium, is typically the most important disease of small grains in our region. Fusarium species that cause FHB can infect both corn and small grains. Walking through fields with corn stubble, you may see orange growth on old debris (Figure 1). Since much of our small grain acreage is planted into corn fodder, FHB inoculum is maintained over winter. Wet spring conditions favor fungal sporulation that can lead to infected wheat or barley heads. As the fungus grows on corn fodder or other debris, spores are released that are then rain dispersed or moved through air currents. As the grain crop is flowering, spores land on the head or anthers, colonize these tissues, and move into the grain. Once inside the grain, water and nutrient movement is disrupted which results in the bleached florets we associate with FHB (Figure 2). Shriveled and wilted “tombstone” or “scabby” kernels can reduce yield and result in grain contaminated with mycotoxins (Figure 3). Deoxynivalenol (DON), also referred to as vomitoxin, is a health hazard to humans and animals. Wheat heads colonized later in development may not show dramatic symptoms but can still have elevated DON.

Figure 2. Wheat heads showing bleached florets from FHB.

Figure 2. Wheat heads showing bleached florets from FHB.

It has been an interesting winter with a lot of moisture. Overall, growth is behind where we were this time last year, but we can begin to plan for in-season FHB management decisions that will occur as we approach heading. The Fusarium Risk Assessment Tool (www.wheatscab.psu.edu) is a forecasting model that uses current and predicted weather forecasts to predict FHB risk. Historically about 70% accurate, this tool aids in assessing FHB risk as wheat approaches flowering and fungicide application decisions are made. The pathogen that causes FHB infects through the flower and rainfall 7 to 10 days prior to flowering favors spore production and increases risk of infection. Optimal wheat fungicide application is at early flowering (10.5.1) to about 5 days after. A well-timed fungicide application can help to reduce disease severity and DON levels. It is important to remember that fungicides help to reduce disease levels and DON (traditionally around 50% reduction on a susceptible variety), but they do not eliminate all FHB or DON. To try to maximize the efficacy of fungicides, it is important to apply at the correct timing. Fungicides for FHB are most effective when applied during flowering in wheat and at head emergence in barley. Although new products like Miravis Ace can be applied earlier, it is still best to wait for main tillers to be at 10.5.1 or a few days beyond so that secondary tillers have a greater chance of being at 10.3-10.5.1. If you spray too early, heads that have not emerged will not be protected by the fungicide application. When wheat heads begin to flower, look for yellow anthers in the middle of the wheat head. When at least 50% of main stems are flowering, you will want to initiate fungicide applications. As the flowering period continues, anthers will emerge from the top and then the bottom of the wheat heads. Anthers can stay attached after flowering, but usually become a pale white (Figure 4). Triazole (FRAC group 3) fungicides that are effective on FHB include Caramba (metconazole), Proline (prothioconazole), and Prosaro (prothioconazole + tebuconazole). Miravis Ace (propiconazole + pydiflumetofen) offers a triazole + SDHI, FRAC group 7. As a reminder, fungicides containing strobilurins (QoI’s, FRAC 11) should not be used past heading because these fungicides can result in elevated levels of DON. Flat fan nozzles pointed 90° down are great at covering foliage, but they do not provide good coverage on heads, which is the target for FHB management. Nozzles that are angled forward 30-45° down from horizontal (30 degrees is better than 45) or dual nozzles angled both forward and backward give better contact with the head and increase fungicide efficacy. For ground sprays, fungicides should be applied in at least 10 gallons of water per acre.

Figure 3. Healthy kernels (left) White, shriveled, scabby kernels from FHB (right).

Figure 3. Healthy kernels (left) White, shriveled, scabby kernels from FHB (right).

 

Thinking beyond this season, an integrated approach can improve management of FHB and help to keep DON levels low. In your field rotation plan, avoiding planting small grains into corn residue will help to reduce the amount of initial inoculum in your field. If you have soybean fields that can be harvested early enough for a timely wheat planting, this rotation helps to break up Fusarium inoculum. In addition to rotation considerations, seed selection is another important piece of FHB management in wheat. There is no complete host resistance against FHB, but you can select wheat varieties with partial resistance. The University of Maryland sets up a misted nursery to compare FHB index and DON levels across local wheat varieties to aid in variety selection decisions. We will notify when results become available later this summer. Unfortunately, barley does not have any resistance to FHB.

 

Figure 4. From left to right Feekes 10.3, Anthesis, Feekes 10.5.1 (yellow anthers beginning flowering), 4 days after anthesis (white anthers post flowering).

Figure 4. From left to right Feekes 10.3, Anthesis, Feekes 10.5.1 (yellow anthers beginning flowering), 4 days after anthesis (white anthers post flowering).