Broomsedge indicates a larger problem

Not all weeds are created equal in terms of their impact on forage quality and pasture productivity. Broomsedge (Andropogon virginicus), a native warm-season perennial grass, is a weed with few, if any, positive attributes other than it slaps you in the face to say soil pH and fertility are likely waning.

Known as an indicator plant, broomsedge most often fills voids left bare by more desirable pasture species. Usually, a soil test of these pastures will reveal either a very low soil pH and/or deficient phosphorus levels.

It’s also possible that a low soil pH is inhibiting phosphorus uptake.

“Cattle will only eat broomsedge for a short time in early spring,” says Dirk Philipp, a forage research scientist with the University of Arkansas. “As such, maintaining adequate phosphorus fertility, soil pH, and having a good pasture management plan is needed to keep broomsedge at bay. The avoidance of overgrazing will help to eliminate or minimize broomsedge issues.”

Philipp also notes that allelopathic chemicals in broomsedge prevent other plants from germinating around them. This enhances its ability to compete with desirable forage species.

Preventing broomsedge from establishing is easier than trying to control it once it does appear. Other than spot spraying with glyphosate, which will also kill other desirable species, there are no good chemical options for broomsedge control.

Researching varieties pays dividends

While it may still be winter, the time to start thinking about spring planting is now. A part of that thinking and planning process is choosing adapted and high-performance forage varieties.

In The Ohio State University (OSU) Ohio Beef Cattle Letter, OSU Agriculture and Natural Resources Educator Christine Gelley discusses what to keep in mind when selecting future forage genetics for your farm or ranch.

Know the difference

Let’s begin with a quick review about the differences between species, varieties, and cultivars.

In plant terms, a species is a plant that is distinctly different from other plants in features and characteristics, meaning that other plants of the same species will share similar characteristics. For example, think red clover versus ladino clover; both are clovers, but two distinctly different species.

A variety is a variation of a plant characteristic that still falls within the range of characteristics of a species. “Think of varieties as species variations that occur in nature without human interaction,” Gelley explains.

While varieties are naturally occurring, humans select for cultivars. These cultivars often bear a trade name that is marketed by the seed company. In spite of the difference between a variety and a cultivar, it remains a common practice for a cultivar to be referred to as a variety.

“By the time you are ready to shop for seed, have your species selected and a few potential cultivars on your list of acceptable choices,” Gelley advises.

Regional requirements

To narrow down your choices even further, look at results of regionally conducted forage variety tests. “If you are farming in Ohio and shopping based on variety performance trials conducted in Tennessee, you may end up unsatisfied with your results,” Gelley explains.

Pay attention to variables in the trial, including total rainfall, soil and air temperatures, soil type, fertilizer and pesticide applications, and the number of years evaluated. Trials that were conducted over the span of several years are typically more trustworthy.

Also consider who is conducting the trials. Many land-grant universities conduct forage trials and are unbiased. Performance trials by seed companies can be reliable, but keep in mind that they are trying to get you to buy their product instead of a competitor’s.

Know the supplier

Once you have a short list of varieties that will fit your farm and needs, shop with a reputable supplier. They should have clean facilities, knowledgeable staff, and good customer service.

“Contact the seed dealer with your cultivar list and have a conversation about what you are looking for and what they can offer,” Gelley recommends. She also advises looking at the seed tags and comparing production dates, germination rates, and the percentage of pure live seed.

“For your best chance at success, do your research before you shop, rather than settling for whatever is in stock at the local co-op,” Gelley says.

Keep records

After selecting, purchasing, and planting your cultivar, keep note of observations you make throughout the year. This includes seeding date, planting rate and depth, weather conditions, germination success or failure, weed pressure, and animal preference.

Perform your own experiment

“If you can’t decide between one cultivar and another, get more than one and start your own on-farm research project,” Gelley suggests.

Plant the cultivars in the same location under similar conditions. As you go through their production cycle, apply the same inputs and harvest the same way all while taking notes and making observations. The results may surprise you.


Be a Good Hay Shopper

When shopping for a new truck, you don’t buy just because the salesman says it’s a good deal. Most shoppers do their research, looking at body style, fuel mileage, towing capabilities, included options and a vehicle history. Shopping for hay should also be carefully researched because making the correct purchase can drastically affect your bottom line. Have you ever met a person that can tell you the value of a truck just by looking at the exterior? Or someone that can tell the quality of hay based on a physical evaluation alone? While a physical evaluation can help us determine several characteristics about the hay, it cannot tell us nutrient content or other potential problems, like nitrates. The only way to know the quality of the hay is by having a forage test done. Knowing the nutritional value of the hay not only helps determine if supplementation is needed, but also will save you money and hopefully avoid any headaches.

Nutrient/Energy Requirement

Knowing what quality of hay you need to purchase all begins with understanding the nutrient requirements for your livestock. Nutrient requirement is the amount of nutrient an animal needs to perform a specific task, or their energy requirement. This is determined by weight, sex, age, growth rate and stage of production. From this we can break down that animal into four nutrient priorities:

  1. Maintenance
  2. Growth
  3. Lactation
  4. Reproduction

The largest shift in nutritional requirement is the transition from pregnant to lactation. Animals fed differently from their nutritional requirements will either lose or gain excess weight. Something else to remember is that the energy requirement for livestock increases during the winter, 1% for every degree under 32°F. Your county extension agent can help you determine your livestock’s nutrient needs.

Forage Testing

A forage analysis is the only way to assess the quality of the hay. The quality of the forage is focused on the value of each pound versus the total of pounds consumed. There is a physical limit to how much livestock can consume. Digestibility is the ability of the livestock to extract the nutrients from the hay. The primary nutrient found in hay are protein, carbs, sugars, pectins and fiber. When purchasing hay, ask for the forage test results. If a forage test has not been performed on the hay, it something you can do yourself through your extension office. For more details on how to take a good hay sample refer to Ray Hicks’s article in this edition of the newsletter.

Reading the Results

After you receive your forage report, there are some numbers that you want to focus on. Always look at the dry matter levels, not as sampled. The dry matter level is best for comparing forages, ration balance and economic value. Most producers go straight for the protein content, but this is Crude Protein and based on nitrogen levels in the sample. So a sample that is high in nitrates can have a high Crude Protein. Protein is important, but many times is overemphasized. The Total Digestible Nutrients (TDN) is a measurement of digestible energy. This allows you to compare
forages of the same species and compare them to the needs of the livestock. The Relative Forage Quality (RFQ) predicts the energy base based on fiber quality and intake. RFQ allows for comparisons across forage species. We have also been able to link ranges of RFQ to meet the energy requirements for livestock at different stages. This does not mean that a RFQ at that range will automatically provide all the nutrients needed, but provides us with an approximation if the forage will provide a cost-efficient base.

Nitrates are also important to look at. Nitrates over 4,500 ppm need to be fed at restricted rates. As the nitrate levels increase, so does the restrictions on feed until 18,000 ppm when it is considered lethal.

Storage

Another factor that effects forage quality is storage. Hay bales should be stored to protect from rainfall and weathering. Loss from storage can range from 20%-45%. Before hay is stored it should be properly cured. Round bales should be allowed to dry to 15% moisture and square to 18%. Improper curing of hay can result in fires. The best way for hay to be stored is in a hay shed, but if bales have to be stored outside its best they are orientated north/south, the bales are dense and they are elevated. Net wrapping also distributes moisture better than bales wrapped in twine.

Buy by Weight

Finally yet importantly, consider the weight of a hay bale. Whether you are buying square bales or round, consider buying by weight instead of by bale. Humans are not good at estimating the weight of a bale and usually overestimate the weight. So if you can put some bales on a scale and get a good estimate of the lot weight, see if the producer will sale by weight. It will save you some money in the long run.

Summary

  1. Consider your livestock nutrient requirements
  2. Forage Test
  3. Read and understand results
  4. Compare your forage options
  5. How was the hay stored
  6. Buy by weight (if possible)

Prevent and Prepare For Barn Fires

Although you cannot completely eliminate the risk that there could be a fire in your barn, there are some steps you can take to reduce the risk and be more prepared. ( PORK )

Have you ever considered what you would do if you had a barn fire? How would you protect your animals and all the other assets you have in your barn? What could you have done to prevent it? The thought of a fire is very scary. Although you cannot completely eliminate the risk that there could be a fire in your barn, there are some steps you can take to reduce the risk and be more prepared.

Tips for reducing the risk of a barn fire

Contact your local fire department to have them do a “checkup” of your barn and offer more recommendations for your individual situation. The University of Kentucky’s “Preventing Barn Fire: Tips for Horse Owners” recommends the following steps in reducing your chances of having a barn fire.

  • No smoking! Bedding and hay can easily be ignited by a person smoking in or around the barn. Enforce a strict no smoking policy in your barn. Post signs inside and outside your barn.
  • Place a fire extinguisher next to each exit, utility box and at roughly 30-40-foot intervals in your barn. Inspect and recharge each extinguisher every year, and use a ABC (general purpose) extinguisher.
  • Clean off cobwebs and pick up loose bailer twine. By making sure your barn is clutter-free, you are helping eliminate ways for fire to spread.
  • Electrical devices need to be professionally installed and encased in conduit. Pay attention during winter months to water tank heaters and heated buckets—they continue to generate heat even if there is no water present, which can cause the plastic to melt and a fire to ignite bedding and hay. If you are using electrical cords, make sure that they are professional grade, inspected often and are not overloaded. Keep lights caged and only use lights that are designed for barn use.
  • If possible, keep hay and bedding stored away from a barn housing animals. If you only have one barn, like many of us, make sure hay has properly cured before storing it in the barn. Check the internal temperature of curing hay by poking a thermometer into the middle of the bale. If the temperature reaches 150 degrees, the hay should be monitored. If it reaches 175 degrees, contact the fire department.
  • Keep tractors, fuel, other petroleum products and machinery away from the barn. Clear any grass, hay, leaves or other combustible materials from equipment before storage.

Tips for being prepared in case there is a barn fire

Mentally prepare yourself so that you can act calmly and safely in the case of a fire. Remember that human safety is the top priority—ensure your own safety and the safety of others before taking care of animals. The University of Kentucky’s “Preventing Barn Fire: Tips for Horse Owners” recommends the following steps for preparing yourself and being ready if a fire does occur in your barn.

  • Identify and designate a safe place for your animals to go if you can get them out of the barn safely. This location should be away from the fire and allows fire crews enough room to do their jobs.
  • Handling equipment such as halters, leads, etc. should be quickly accessible. Consider the materials these items are made of. Remember that plastic and nylon will melt in heat.
  • Talk about the plan with members of your family and any employees you might have so they can also be prepared in an emergency.
  • Mark gates, pens or stalls with reflective tape or glow-in-the dark paint. This will make it easier to see where you are going in the dark.
  • If you are removing animals, start closest to the exit first and handle animals one at a time or by groups if they are herd animals. Always maintain control of the animals to help reduce their stress, which can prevent other injury risks.

If there is a fire, call 911 and get people out of the barn. Only get animals out if you can do so without risking human safety. Follow the directions from the fire department or 911 dispatcher.

No one ever wants to think about the risk of a fire, but it is best to be fully prepared so that you can react fast and appropriately.

Potentials for Plant and Other Toxicities in Cattle

While Johnsongrass is a good quality forage, it can be challenging to control in pastures where the perennial, warm-season grass is not desired. Prussic acid production under stress can pose a risk to livestock when grazing Johnsongrass, especially during prolonged droughts or after a frost.
( Dirk Philipp, University of Arkansas )

Fortunately, there has been plenty of rain this year. However, heading into late summer and fall are times of the year to watch out for plant toxicity in cattle.  In some cases, plants can become more toxic during drought and heat stress.  In addition, there is the increased potential for cattle to ingest toxic plants due to lack of other feedstuffs.  There may also be more access to toxic plants.  With droughts come increased weed infestation of pastures, hay and crop fields.   Penned cattle may also be in corrals or drawn to low lying areas that are still green, both of which are where toxic plants are likely to grow.  Differentiating “good” vs. “bad” plants is a learned behavior, so toxicity is more likely in young animals and animals moved to a new location.  A grazing management and supplemental feeding plan is essential to minimize problems.  Veterinarians and producers should be familiar with which plants can cause problems in their area, and try to avoid them.  The following discussion covers some of the plants and situations to watch for during drought situations.  There may be plants that grow some regions that are not covered.

Stressed plants more readily accumulate nitrates and prussic acid (cyanide).  Drought stress can cause both pasture forages and weeds to accumulate toxic amounts of nitrates.  Recently fertilized pastures are also at higher risk.  Plants that have accumulated nitrates remain toxic after baling or ensiling.  Test forages for nitrates to prevent poisoning.  Prussic acid accumulates most often in sorghums, sudans and Johnsongrasses, but these plants can accumulate nitrates also.  There is no test for prussic acid, but it dissipates when plants are baled or ensiled, so harvested forages are safe.  Cattle poisoned by nitrates or prussic acid are usually found dead, so prevention of these toxicities is critical.   Cattle with nitrate toxicity have methemoglobinemia (brown blood) and cattle with prussic acid toxicity have cyanohemoglobinemia (bright, cherry red blood).  Nitrate and prussic acid both interfere with oxygen carrying capacity in the blood, so pregnant cattle surviving these poisonings often abort.

Two of the most toxic plants found in croplands and pastures are coffeeweed and sickle pod.  Cattle will generally not graze the green plant unless other forages are scarce.  However, they will readily eat the seedpods that are dry after a frost.  The plant remains toxic when harvested in hay/balage/silage.   Coffeeweed and sicklepod are toxic to muscles and cause weakness, diarrhea, dark urine, and inability to rise.  There is no specific treatment or antidote, and once animals are down, they rarely recover.

Pigweed or carelessweed is very common in areas where cattle congregate.  Cattle will readily eat the young plants, but avoid the older plants unless forced to eat them.  A common pigweed poisoning is when cattle are penned where pigweed is the predominant plant and no alternative hay or feed is provided.  Red root pigweed is more toxic than spiny root pigweed, but is less common.  Pigweed can accumulate nitrates, so sudden death is the most common outcome.  It also contains oxalates, so renal failure can also occur.

Black nightshade is common in croplands, and like pigweed, in often in high traffic areas.   The green fruit is most toxic, so cattle should not have access to nightshade during this stage, and nightshade remains toxic in harvested forages.  Nightshade is toxic to the nervous and gastrointestinal systems, and causes weakness, depression, diarrhea, and muscle trembling among other signs.  Bullnettle and horsenettle are in the same plant family as nightshade.  They are also toxic, although less so, and are usually avoided by livestock unless other forages are not available.

Blue-green algae blooms in ponds can also occur in hot weather.  They are most common in ponds with high organic matter, such as ponds where cattle are allowed to wade, or where fertilizer runoff occurs.  The blue-green algae accumulates along pond edges, especially in windy conditions, and exposes cattle when they drink.  Both the live and dead algae are toxic.  The toxins can affect the neurologic system causing convulsions and death, sometimes right next to the source.  They can also affect the liver, causing a delayed syndrome of weight loss, and photosensitization (skin peeling in sparsely haired or white haired areas).

Perilla mint causes acute bovine pulmonary edema and emphysema (ABPE), usually in late summer.  It grows in most of the central and eastern United States and is common in partial shade in sparsely wooded areas, and around barns and corrals.   There is no treatment, so prevention is critical.

Cattle with access to wooded areas may eat bracken fern.  Cattle must eat roughly their body weight over time before toxicity occurs, but may do this in situations where other forage is not available. Braken fern toxicosis causes aplastic anemia.  Fever, anemia, hematuria, and secondary infections are some of the most common signs.

As summer moves into fall, the potential for acorn toxicosis increases.  Cattle have to eat large amounts usually to become sick, but those that are in poor body condition and hungry are more likely to do so.  Clinical signs include constipation or dark, foul-smelling diarrhea, dark nasal discharge, depression, weakness and weight loss.

The lack of summer forages and the need for supplemental feeding during a drought can increase the likelihood of feeding “accidents” and toxicities.  Producers may be tempted to feed cattle pruning’s of ornamental plants, many of which are highly toxic.  Grain overload is also a potential problem if access to concentrate feeds are not controlled.  Salt toxicity can occur if hungry cattle are allowed free access to high salt containing “hotmixes”.  Even though these are meant to limit intake, initial intake can be high enough to cause toxicity in starved or salt deprived cattle.  Feeding byproduct feeds, candy, bread, screenings, etc. may also be more common, all of which have the potential to cause problems.  Producers may also be tempted to feed moldy hay or feed, which can lead to toxicity problems.

With careful planning, plant toxicities can be avoided. If you have questions on toxic plants and how to identify/avoid them, please contact your local veterinarian or Extension agent. If you have further questions please feel free to contact me at, lstrick5@utk.edu, or 865-974-3538.

First Cutting in Alfalfa: Why Cutting Management is Important?

First cutting is the most important and critical of the alfalfa growing season. A late start of this growing season will determine multiple things during this year’s production. It is important to know that the success of the entire production will be based in determining a proper date to cut for highest yield and quality. As rule of thumb, forage quality varies with the environment and cutting management. If you are forced to delay the first cutting due to environmental conditions (rain or even drought), keep in mind that this could have negative consequences with a slower regrowth and perhaps a reduction in future yield production.

First cutting tends to have low quality if it is cut late during the growing season. Generally, during pre-bloom or bud stage the stems are highly digestible with high quality forage. Second and third cuttings still very important for production, however if there is a need to wait to harvest beyond the bud stage then the more the quality would suffer because of lower proportion of leaf and stem ratio. Below are some guidelines in plant height and harvest maturity in alfalfa. Producers should take this into consideration for future management and cutting strategies.

Table 1. Plant height and harvest maturity in alfalfa.

Cutting Schedule Plant Height (inches) Maturity Stage
First Cutting 32 Late vegetative to early bud
Second Cutting 23 Late bud to early flower
Third Cutting 19 Early to late flower
Fourth Cutting 16 Late flower

Source: Professor Marisol Berti; North Dakota State University for Midwest Forage Association (Forage Focus; May 2018).

Summary

Each growing season brings new challenges. It is important to plan ahead and be ready to make the best decisions. Oftentimes, compromising forage quality to avoid plant stress is one way to harvest a little later than expected. It all varies depending on climate and other factors such as: stand health, age of the stand, history of winter injury and winter kill, previous cutting management, soil tests, insect and disease problems.

Hay Moisture Levels

With the limited opportunities and short windows many have had to make hay so far this year, some hay may have been made at higher moisture levels than we would like. Moisture levels have a direct effect on hay quality. What we have found to be a consistent number in the literature is 20% moisture maximum. To be more specific:

    1. Small squares to be 20% or less,
    2. Large round, 18% or less and
    3. Large squares, 16%

Hay baled at 20% moisture or higher has a high probability of developing mold, which will decrease the quality of hay by decreasing both protein and total nonstructural carbohydrates (TNC) AKA energy! The mold will also make the hay less palatable to livestock and could potentially be toxic, especially for horses. Even hay baled between 15%-20% moisture will experience what is known as “sweating.” Sweating, in regard to hay bales, refers to microbial respiration, which will create heat and result in dry matter (DM) loss. A good rule of thumb is that you should expect a 1% DM loss per 1% decrease of moisture after baling. As an example, hay baled at 20% moisture that is stored and dried down to 12%; will result in 8% DM loss.

What happens if we bale hay and the moisture content is too high? Bad things. If lucky, maybe the hay will only mold, but if it is too moist and starts heating, it could catch fire. If the hay heats to 100-120 degrees F, it will be fine; if it goes above that, monitor daily. Once it gets to 140 degrees F, consider tearing down the stack. At 150-160 degrees F, call the fire department, and once it gets to 160 degrees F, there will be smoldering pockets and hot spots, and gases will ignite hay when exposed to air (source: Washington State University Extension, Steve Fransen and Ned Zaugg).

It can be a double edged sword in regards to losing quality by not baling, or losing quality by baling with moisture levels that are too high. Therefore, our recommendation to ensure adequate livestock nutrition this winter is to have a forage analysis done on the hay baled this year. Once you have those results, develop a corresponding supplemental feed program, if necessary, based on the nutritional requirements of your livestock.

The two short videos below by Clif Little and Rory Lewandowski will answer questions regarding forage testing, and subsequently interpreting the results of the test(s).

To bloom or not to bloom?

By Kassidy Buse

A common recommendation of agronomists is to let one alfalfa cutting reach bloom each year.

Ev Thomas, retired agronomist from the Miner Research Institute in Chazy, N.Y., says otherwise in The William H Miner Agricultural Research Institute Farm Report.

“For many years, I’ve said that in managing alfalfa for dairy cows, you should never see an alfalfa blossom, from seeding to plowdown,” says Thomas.

Thomas also notes there’s room for difference of opinion due to no research supporting either opinion.

But, if one cutting is to bloom, which cutting should it be?

The first cut of alfalfa-grass typically contains the most grass. Grass, even the late-maturing species, is close to heading when alfalfa is in the late bud stage.

The second cut is exposed to long, hot June days that result in highly lignified, fine stems. A Miner Institute trial found that the stem quality of bud-stage second-cut alfalfa was no better than full-bloom first-cut alfalfa.

The third cut can be influenced by prior harvest management. If it was a late second cutting, the third cut was growing during midsummer heat. This cut would also have highly lignified stems.

The fourth cut often takes a long time to bloom, if it makes it there. A killing frost might arrive first.

For any cutting, the more grass in the stand, the lower the forage quality if alfalfa is left to bloom.

“The objective of letting alfalfa bloom is to improve root reserves, and therefore extend stand life,” says Thomas. “We need to balance the impact of delayed harvest on plant health with the economics of feeding alfalfa of lower quality that is needed by today’s high-producing dairy cows,” Thomas adds.

How alfalfa and alfalfa-grass is managed depends on if the goal in mind is long stand life or high milk production potential.

Avoid Barn Fires, Let Hay Dry All The Way

Not only can wet hay catch fire, but it can mold. Hartschuh says bale temperatures of 120° to 130° F often results in mold growth and makes the protein less available to animals. ( Farm Journal )

Farmers across the country have either finished putting up their first cutting of hay, or they are in the process of doing just that. While it can be easy to get in a rush, avoid barn fires by ensuring your hay is dry enough before you bale it.

“When [hay] is baled at moistures over 20% mesophilic bacteria release heat causing temperatures to rise between 130°F and 140°F. If bacteria die and bales cool, you are in the clear, but if thermophilic bacteria take over temperatures can raise to over 175°F,” according to Jason Hartschuh a guest contributor to Ohio State University Extension’s Ag Safety Program.

Most wet bales catch fire within six weeks of baling, Hartschuh says. Here are some things to consider when determining if your hay is at risk of fire. Did the field dry evenly? Were moisture levels kept at or below 20%? If moisture was higher than that, was a hay preservative used?

If you are concerned that your hay is a fire risk, monitor it twice a day for the first six weeks or until low temperatures stabilize, he says. Temperatures should be taken from the center of the stack or “down about 8 feet in large stacks.”

Not only can wet hay catch fire, but it can mold. Hartschuh says bale temperatures of 120° to 130° F often results in mold growth and makes the protein less available to animals.

“While those temperatures are not high enough to cause hay fires, the concern is if the mold growth continues and pushes temperatures upward into the danger zone,” he says.

According to research from OSU, if the temperature in the hay continues to rise, reaching temperatures of 160° to 170° F, then there is cause for alarm.

“At those elevated temperatures, other chemical reactions begin to occur that elevate the temperature much higher, resulting in spontaneous combustion of the hay in a relatively short period of time,” Hartschuh says. “If the hay temperature is 175° F or higher, call the fire department immediately, because fire is imminent or present in the stack.”

 

Critical Temperatures and Actions to Take

The team from OSU extension recommends monitoring the following temperatures and taking appropriate action.

125° – No Action Needed

150° – Hay is entering the danger zone. Check twice daily. Disassemble stacked hay bales to promote air circulation to cool the hay outside.

160° – Hay has reached the danger zone. Check hay temperature every couple of hours.  Disassemble stacked hay to promote air circulation to cool hay have fire department present while unstacking from here on.

175° – Hot pockets are likely. Alert fire service to possible hay fire incident. Close barns tightly to eliminate oxygen.

190° – With the assistance of the fire service, remove hot hay. Be aware the bales may burst into flames.

200°+ – With the assistance of the fire service, remove hot hay. Most likely, a fire will occur. Keep tractors wet and fire hose lines charged in the barn and along the route of where bales are to be stacked.

 

Cutting Height in Hay Fields: How Low Can You Go?

The second consequence for mowing too close to the ground is increased ash content of the forage. All forage has a natural ash content of approximately 6%. However, mowing too closely with disk mowers can add soil to the crop, and increase the ash content by as much as 10-12% (18% ash content in total analysis). If we all had table-top smooth fields, it would also be much easier to make a closer cut across all fields. However, things such as groundhog holes and the unevenness of fields can add to increased ash content of our harvested forage.

So, the million dollar question is how low can you go? The best answer is…it depends! The first question I always ask is – is it a solid stand or a mixed stand? If you have grasses involved, you must keep cutting height higher than a pure stand of legume, if you want to keep the grass in the stand. Keep in mind these are minimum recommendations; it’s okay to mow higher than the numbers below. Here are my minimum cutting height recommendations:

Alfalfa or Clover

  • 2” minimum. Some literature shows a cutting height of 1” will not reduce stand longevity, but remember the increased ash content issue. Also, keep in mind that frequent cutting at early maturity will continue to deplete carbohydrate reserves. One cutting of alfalfa should be allowed to reach the bloom stage each year.

Cool Season Grasses (Orchardgrass, Timothy)

  • 4”during the establishment year
  • 3” minimum during production years. This is where we see most of our stand longevity issues. Frequent cutting of cool season grasses at a low height will continue to deplete energy reserves.

Mixed stands

  • You must manage for the predominant species. Do you have a grass stand with some alfalfa, or an alfalfa stand with some grass?
  • Alfalfa with some grass: 2.5” minimum
  • Grass with some alfalfa: 3” minimum (if you want to keep the grass sta