Xpert Network – Does this DEM look right?

Karen Tomko, Samuel Khuvis, Evan Danish, Xinyu Liu Ohio Supercomptuer Center

Email me: ktomko@osc.edu

Collaborators: MJ Noh, Ian Howat, OSU BPCRC

What is a DEM?

- Digital Elevation Model
- 2D image representation of terrain, where pixel value represents elevation

Project summary:

A collaboration between PGC at UMN, NCSA, OSU and OSC to produce high-resolution DEMs of the entire Earth.

For more on the EarthDEM project see: https://www.pgc.umn.edu/news/blue-waters-extended-to-produce-global-topography/

DEM image

Shaded relief image

Images from https://www.pgc.umn.edu/data/elevation/

The SETSM Software

- The Surface Extraction from TIN-based Searchspace Minimization (SETSM) software is a fully automatic algorithm for deriving Digital Terrain Models (DTM) from pairs of satellite imagery.
- SETSM homepage: https://mjremotesensing.wordpress.com/setsm/
- ~40,000 lines of C/C++ code
- Dependencies: libtiff, libgeotiff, proj, GDAL
- Inputs and outputs
 - Input:
 - stereo image pair
 - default.txt for default command line arguments
 - Output:
 - <name>_dem.tif the resulting DEM
 - <name>_meta.txt meta data for the DEM
 - <name>_matchtag.tif gridpoints with matched solutions
 - Some text files with debug information and some scratch files

Project Challenges

- Software is under development
- Many data dependent code paths
- Numerical sensitivities
- Complex output
- Runtimes vary, but non-trivial for suite of tests
- No right answer for comparison

Does the DEM look right?

SETSM version 4.3.0

SETSM version 4.2.2

Test Space

- Degrees of freedom
 - Systems
 - Development systems at OSU and OSC
 - Production system(s) at NCSA, NASA, ...
 - Compilers
 - Intel, Gnu, Cray
 - Inputs
 - Image pair
 - DEM resolution: 8M, 4M, ...
 - Other parameters
 - Software versions
- Performance aspects
 - Runtime
 - Memory requirements

Approach

- Not one test
 - Quick check one "tile" of one image
 - Suite(s) of image pairs
 - 6 image pairs varied terrain (Greenland, Nepal, ..)
 - 10 image pairs from Antarctica
- Automation
 - Reduce testing errors
 - Spend less time launching and monitoring jobs
 - Data management
- Quantify and Visualize differences
 - Statistics and image differences
- Truth data
 - Compare with Lidar data

Image difference SETSM and Lidar reference

Scripts and Tools

- Stand alone python scripts
 - Submission
 - Unique working directories
 - Template submission scripts
 - Sweeps e.g. different compilers, test cases, code commits
 - Option to run with performance monitoring tools
 - Analysis of results
 - Post processing (hillshade images, performance statistics, ...)
 - Compare 2 DEMs (both from SETSM or SETSM vs LIDAR)
 - Complex script with dependencies on GDAL and Matlab
- Reframe
 - Test framework from CSCS, see: https://github.com/eth-cscs/reframe
 - Python based tool for software testing for HPC systems
 - Use with SETSM has continuous integration approach
 - Integrate with local gitlab instance, compare two branches
 - Shared analysis script with standalone scripts

Example Statistics

Summary

- Extensive testing has helped increase software stability
- Ongoing development to get closer to a pass fail test
 - E.g. Masking of edges or areas with poor image quality
- Maintenance of test scripts
 - Non-trivial code base for the scripts themselves
 - More than 2000 lines of code

