Tag Archives: precision agriculture

Understanding Today’s Agriculture, AGRI130 Field Trip #3- Hoober Equipment

On October 12, 2019, Mr. Dave WARRY led the class on a tour of Hoober Equipment.  Getting off to a slightly late start, the tour began with a brief outline and background of the business and the employees in the particular branch we visited.

Mr. WARRY began by introducing himself, saying he began working with Precision Agriculture at Hoober’s in 2005.  He followed this up, by stating how unusual it is to remain in the business so long, saying people usual spend about 18months in the industry.  He says this is due to many factors, but he says there are many potential sources of frustration doing the job, such a people calling at all hours, people forgetting how to use the equipment from season to season, and the vast amount of patience required to deal with a flustered farmer who can’t move their product because of broken and malfunctioning machinery whilst waiting on repairs.  Mr. WARRY graduated from Penn State after majoring in Agricultural Systems Management and technology, but after college he went to work on a farm for four years, an experience he viewed equally valuable as college.  Agricultural Systems Management was not his first choice however- initially he was studying pre-vet, but saw it as, ‘a lot of work’, only switching his major after taking an Introduction to Agriculture course where the Advisor for Agricultural Systems Management (ASM).

Mr. WARRY said that Hoober’s works with Mr. James ADKINS and his irrigation technology, but each employee specializes in different equipment.

Next, we were introduced to Mr. Charlie IRVIN, who’s been with Hoober’s for a similarly long stretch time, doing service installs and working as the shops tractor and shop repairman for 12.5years.

Hoober’s itself is a family business established in 1941 and has 9 locations throughout PA, MD, DE, and VA.  The third generation, Mr. Bud HOOBER is gradually being succeeded by the next generation.  Hoober’s values a strong skill set over any degree.  They are looking for employees with personality, ‘common sense’, ambition, accountability, and self-motivation.  There are opportunities to receive on-the-job training as well as being sent around the country. Mr. WARRY did say that they struggled to find interested potential recruits.  He advocates the work with electronics because it offers employees a chance to learn and advance, and is often easier on an aging body than, ‘turning a wrench’ and working solely on mechanics.

Part of the work done at Hoober’s includes troubleshooting, which according to Mr. WARRY, takes very little time, and is done with charts and by computer.  Other ventures include a technology field lab and class tours like ours.

Hoober’s deals in agricultural, lawn&garden equipment, and construction equipment with automated technology.  Much of Hoober’s competition strives to sell programing tools for whatever technology they’re promoting- Hoober’s programming works across brands, for any equipment they carry.  The Tractor Supply Co., while very close by, is not a source of competition, as they only sell small parts- like hitches & chains- and animal feed- products that compliment what Hoober’s sells.

Automated steering is one of the most popular feature and it is used to prevent operator fatigue that often sets in a different points of a farmers 18hour day- the technology will keep the equipment running straight down the rows of a field, working at peak efficiency. Heated cabs, stereos, heated seats, and raised seating are among some of the modern-day features in the latest pieces of automated machinery.  When the computerized technology was tested against a conventional, non-autonomous piece of equipment, the drivers were required to take eight hour time-outs, operating only 30minutes at a time, according to test regulations set by the Occupational Safety and Health Administration (OSHA).

The equipment Hoober’s carries is expensive.  Some of that expense is simply due to the brand name. Mr. WARRY told use that John Deere is always expensive, even when purchasing the brands signature yellow and green paint.  He cautioned us that John Deere equipment purchased at stores like Lowes & Home Depot is cheaper than buying directly from a company dealership, and that those cheaper pieces of equipment are often made of cheaper materials that will not last as long.  Other brands we saw included Cub Cadet and CASE among others.  Regardless of the brand, when purchasing a $400, 000 tractor vs. a $1, 000 lawnmower, the cost of repairs can quickly exceed the original price.

A stop in the back office revealed multiple shelves packed with service manuals- some as much as 50 years old, and still used regularly.  Though the floor might have been pressure-washed before we arrive, the 25-year-old building is due for an update, with new lighting and shrubbery planned for the interior and exterior, respectively.  Even with the desire to do some, ‘sprucing up’, Mr. WARRY said one of the best upgrades to the building, was the addition of AC, which made the working environment much more pleasant.

In the shop and ‘Combine Productivity Clinic’ massive repair jobs are underway on equally massive piece of machinery.  Brand new tractors shipped to the Port of Delaware arrived with damage received in-transit- required $100, 000-worth of repairs incurred from a rough sea journey.

The expense is understandable when the sheer power of the equipment is compared with that of a ‘standard’ tractor- the first machine we looked at, with 20, 000lbs/ft of torque, a 50, 000gal load of manure, and capable of pulling 70, 000lbs all together, was still able to reach up to 42mph, when a factory-quality tractor may only go 38-40mph.  That said, the machine would have significantly less horsepower running with natural gas.  Mr. WARRY projects methane from digested animal waste and electric battery technology with hydrogen fuel cells will be the way of the future.

Even with some of the mechanics shortcoming, the data for agronomy and electronics is still making great strides.  Automated dairies that record the amount of milk gathered and don’t require farms to manually latch each pump to a cows udder. Center pivot irrigation systems can be calibrated to the unique needs of different cultivars or even different varieties like corn.  Every three days, satellite images come in with up to 3ft(1m.) resolution, 30-40ft wide in infrared, near infrared, and color- data that allows farmers to almost distinguish individual plants.  In addition to the aerial views supplies by satellites, drones- currently in-vogue for scouting real estate- are now being used to evaluate irrigation, weeds, and nutrient application.  Mr. WARRY assures us that drone don’t replace agronomists- people are still needed to use the information they provide- drones just help farmers know where to look and address problems.

Hoober’s own connectivity network includes way stations all the way out to Ohio, with 1-1.5in. horizontal and vertical GPS accuracy, allowing its autonomous software to autocorrect and re-calculate paths with great precision.

One of the machines we spent a great deal of time going over was the Quadtrac. This particular machine had been stuck in the Delaware River/ocean, submerged with water well over the cab.  While Mr. WARRY repeatedly reminded us this piece of equipment was not, in fact, a submarine, he did tout it’s capacity to do a large amount of work- more than a bulldozer and dump truck combined.  Initially running after being fished out of the drink, the saltwater burnt the Quadtrac’s starters and batteries.  When fully operation, the powerhouse machine can travel 24mph on it’s treads with horse power ranging from 470hp up to 620hp, making it a go-to for beach reclamation and recovery, pushing sand on the dunes.  They are favored by the Delaware Dept. of natural Resources and Environmental Control(DNREC). The Quadtrac cost about $480, 000, but will cost the customer $1mil for repairs and having ht mechanics re-tuned.

Certain costs of repairs can be mitigated if the customer chooses the right features and tools for the job and puts the proper care and maintenance into his/her equipment.  With the Quadtrac, the Rubber-on-rubber treads generates heat, so dirt and sand are a good lubricant for those moving parts.  If a customer decides to upgrade to chrome over steel, this upgrade can prevent significant wear that would usually occur in just 2-3years.  1 (relatively) small chrome part, can cost $8, 000.

Using all this precision machinery, it can cost a farmer over $1mil just to complete a harvest.  Hoober ‘s provides expertise & technical support- for a $120, 000 service fee.

Look up!
Head out

Next, after a brief safety-scare- while standing in the ‘Combine Clinic’ where the mere tires of the machinery dwarfed us, workers were servicing a machine off to the side, over our heads- we headed out of the shop to allow those employees to work.  Our next stop was a small field of grass where we would be able to drive three pieces of equipment- but not before learning a bit about them. A brief discussion before the highly anticipated interactive portion of the trip- almost like grace before a meal…

First there was the Sprayer– a 120ft. Class 4 vehicle costing around $430, 000.  It’s great width prevents greater damage to small grain crops like soybeans that aren’t planted in rows.  Equipped with 72 nozzles, each is powered by it’s own computer.  The droplets sizes emitted from the sprayer are adjusted through pulsing pressure changes from the nozzles.  Regulations are in place to keep the pressure, ‘on target’ to avoid spraying private property & gardens.  With the Sprayer’s electrified network, any application of nitrogen is prone to mess up any one of the 72 computers onboard.  Mr. WARRY said that due to the info.-input overload of having each computer sending it’s own date, Hoober’s is going to do an $18, 000 re-tool on a 12-row sprayer, using just seven computers for a batch of nozzles using a new company’s technology.

Next up, we saw the Planter.  This machine was not one we go to drive, but we went through a run-down of its features too.  It cost around $150, 000- $180, 000- one of the cheapest pieces of equipment we spoke on today.  The seed is sucked into numerous individual planters by a vacuum.  The Planter is able to change its seeding rate and use markers to mark the rows, via satellite imagery and overlaying maps.  Seeds are planted using hydraulic downforce– how hard the see is placed into the ground. This machine can plant and fertilize seed.  There is also a no-till setting with which the machine parts the organic matter in a V-shape before depositing a seed and packing the soil over top.

The talk concluded and, instead of unfolding our hands, the Sprayer was folded into a much more compact, easier-to-drive setting.  During this transition, Prof. ISAACS reminded us of the $150mil cost of taking an idea to the construction phase- all the changes and improvements to each iteration of the equipment that had to be tested and approved before making it to market. One student asked what type of equipment might cut costs for the farmer.  Mr. WARRY said it depends, but a $60-70, 000 piece of machinery could be combined with an $11, 000 planter, then stripped and fit with electronics and computers, an do an acceptable job when compared with a top-line model.

During my ride in the one of the machines- the older of two CASE tractors, I was able to have some of my questions answered too.  I learned that Hoober’s does rent some equipment and there are places to go for that, but usually a farmer will invest in their own.  I also learned that new farm equipment may also come with failsafes to prevent damage from improper use- for example, when the Sprayer was being folded, Prof. ISAACS mentioned that if the sections were folded out of sequence they could crumple the components or even come through the cab!  Lastly, in response to what Mr. WARRY had mentioned about the technology component of precision agriculture being easier on older bodies, I asked about accessibility for farm equipment- a thought that came to me simply because I am shorter and climbing into the cabs, though not impossible, was a bit daunting.  Mr. ISAACS told me such a program exists- it’s call AgrAbility.  He told me that they make entering the cab much easier, but unlike other services that make custom vans from the ground up, there are no, ‘custom cabs’ because tractors cannot deviate from there factory default specs like that.

The trip concluded with a class picture and free Hoober ball caps and snapbacks for everyone.

 

Mr. James ADKINS on, ‘The Importance of Irrigation & Water Management in Delaware’

On October 2, 2019 Mr. James ADKINS spoke to us on irrigation practices across the state of Delaware and how they’ve evolved over time.  Mr. ADKINS has a Bachelors degree from the University of Maryland and works at the UD Carvel Research Center and is an Extension Specialist with fruits and vegetables.  He also worked with Mr. KEE- the man who brought PictSweet to Delaware along with mechanized pickling.  Additionally, Mr. ADKINS works with equipment, technology, and irrigation nationally and internally, as well as handling irrigation on Warrington Farm.

The talk began with a brief history on irrigation in relation to the systems used today.  Only 20% of the world’s farmland is irrigated but 40% of the world’s food supply is produced with irrigation.  Mr. ADKINS traces irrigations humble beginnings to the Towers of Babylon in Machu Picchu, originally pumped by slaves.  Irrigation systems requiring man-power could be found in other ancient civilization throughout the world, as well as animal, wind, and water power.

One of the first methods of irrigation Mr. ADKINS discussed was flood irrigation.  Also called gravity/furrow irrigation, it is used when a weir controls the water flow.  This type of irrigations works best on heavy (capable of holding a lot of water), mostly level soil where 3-4inches of water is applied per application- Delaware is not level enough to employ this method.  In California, however, each farm receives this type of water delivery method 4 times per year with a 4 inch application each time.  Siphon tubes are used to run water across a ditch with grated pipe, a system used by 30% of U.S. farms.  A canal manager/operator oversees the transfer of water between farms as farmers upstream receive the water, then that tailwater is re-used on the next farm down. Mr. ADKINS tells us that there are stockholders in canal water- reiterating the points made by Mr. KEE about the complicated water rights in California.  The Homestead Act and combined with the controversy around who owns what means farmers may not even own the water underneath their property.

After WW2 came the advent of the pressurized sprinkler system. With this system came the second method of irrigation, using hand-moved pipe.  This pipe was made from aluminum, originally sourced from scrapyards in Washington and Oregon where airplane manufacture had been done.  This system was often used in the western U.S.  A variation of this system, side-roll wheeled-pipe, could be hooked to 150-200ft risers underground and can be seen in use in Idaho.  This system doesn’t work well with corn.

Another pressurized system, the traveling gun, can be used for corn, soybeans, wheat, and other agronomic crops.  This device has the spraying power of 10-20 fire hose in pounds per square inch (psi) of pressure.  This force is not evenly applied, however, and the machine itself requires lots of power and fuel, meaning it has negative energy efficiency.  This device is often used on sports fields, running 6hours at a time to cover 10acres.  It is a poor choice to give water to newly plant, fragile, and shallow rooted crops.

Frank ZYBACH’s center pivot irrigation, uses an anemometer powered by water.  The crops it is used on are often planted in circles.  Mr. ADKINS showed us examples of it’s use in Nebraska, but it is broadly used, even in largely desert countries like Saudi Arabia.  The system is used in Delaware and works well with furrow planted crops.

The greatest percentage of irrigated land exists in Asia, where 68% of the farmland receives water via surface water irrigation like dams and hydroelectric.  Half of the 60 million acres of U.S. farmland that are irrigated use flood (surface water) irrigation. Mr. ADKINS informed the class that the first source of irrigation is often surface water before acquirers are sourced for water instead- aquifers require more pressure to pump water and therefore more money.  Most of the irrigated farms in Asia are small, encompassing less than 5acres.  90% of India’s freshwater is used for agricultural irrigation compared to 65% of China’s freshwater.

After Asia, America comes in at a mere 17% with it’s irrigated farmland, followed by Europe at 9%, Africa at 5%m and Oceana at 1%.  The U.S.’s irrigated farm area expanded rapidly from 1950 to 2000, going from 250 acres to 700 acres, or 280% in 50years.  This is staggering, compared to the 10% increase from 2000 to 2010.  Despite the more modern methods of irrigation utilized in the U.S., many aquifers are struggling.  An example would be the large Oklahoma state high plains aquifer that is being depleted faster than it can naturally recharge- the rivers going through aren’t given the chance to percolate. Globally 15-35% of irrigation withdrawals are projected to be unsustainable. In California, irrigation withdrawals were a mere 19% in 2005, with almond trees allowed to die as irrigation water is diverted to the city for people to drink instead.

In Delaware, 30% of the farmland, or 15, 000 acres is irrigated.  In Sussex County Delaware, 50% of the farmland is irrigated.  In the older properties of the county, many wells are hand-dug and only go as deep as 40ft, when modern wells are often much deeper.  Controversy often arises from citizens believing the neighboring farms center-pivot system is pumping out their drinking water, however this is often incorrect as domestic-use wells are deeper than irrigation wells and often tap into different aquifers because the aquifers are ‘stacked’ underground.  Companies like Tidewater and Artesian can capitalize on these water disputes by promising new residents in their brand new developments, ‘fresh, uncontaminated drinking water’.  When consumers buy a property they purchase water allocation rights, meaning the cone of influence to off-set their neighbor can’t exceed a foot of their well water.

Irrigation can also give locales on brink of disaster a second chance.  In Ken BURNS’ documentary, ‘The Dust Bowl’ an Oklahoma city is irrigated after a lack of rainfall due to climactic change and the farmland is able to be recovered.  In Saudi Arabia, 16, 000ft. well are dug to pump acquirers in the desert and increase the countries food security in times of conflict.  Water desalinating technology is another expensive method used to bring water to the desert.

Lastly, Mr. ADKINS discussed ways in which aquifers are made more effective and efficient.  1 million gallons of water usage equals 10 households per year, 1.5 Olympic swimming pools, and 100 acres of corn in 1 day during the pollination stage. Much of the water applied to crops can be lost to the soil and air in a process referred to as evapotranspiration,or ET. Mr. ADKINS showed us an image of an old dike system where the aquifer was lined with concrete to prevent water loss from water seeping through the salt rock.  He shared an interesting anecdote in which, through his travels, he learned that Idaho kids can ride a raft down the river for 20miles to an overpass for recreation.  Certain cultivars, like corn, can use copious amounts of water- anywhere from 20-25inches, or an average of 22 in per year.  Crop coefficients can be measured and estimated based on crop and growth stage charts and taking variables like humidity, rainfall, and wind into consideration.  Increasingly high temperatures can make irrigation even less effective, as water is lost when plants are under heat stress.  In Delaware, the sprinkler, drip, and sub-surface irrigation may require more water usage in sandy soil, but still used less water overall that alternative methods.  In New Castle County, specific methods like drip irrigation can be better for the general soil type.

New irrigation technology was shown briefly at the end of the lecture. The Warrington Pivot works via SmartPhone and can be turned on remotely, creating added convenience and reducing the need for travel for farmers.  When using the corner system and center pivot, zone control can be employed to adjust the water distribution rates for varying soil types on different plots of land- also known as Variable rate irrigation, or VRI, a small system for an area f low variability can cost $25, 000 as opposed to upwards of $30-$40, 000 for a larger, more complex system.  To justify the expense, farmers use a free AGIS soil survey with records dating back to the 1940s to determine the needs of their property.  For additional support, farmers can seek the help of a Natural Resource Conservation Specialist.  Major soil variability will often occur near rivers and swamps, but any equipment for slight variability is usually used as a research tool, instead of a practical farming expense.

As the lecture lasted right up to the end of class, there was little in the way of closing statements or remarks.

Hoober Field Trip

I am really glad I had the opportunity to be exposed to and drive important machinery used in the agricultural industry. Since I grew up in a suburb not too far outside of New York City I haven’t been around farm equipment for a substantial part of my childhood. I am constantly being impressed by the knowledge of people I’m surrounded by. I was also impressed by the fact that the tractors are able to be programmed so they can self-steer themselves. I also felt a strong sense of community while being at Hoober, Inc. Especially when learning about how the company handles customer service. Unlike some bigger companies, you have the opportunity to get to know the support team on a more personal level. It is important for farmers to get their machinery fixed fast, so they can get back to what needs to be done. Customer support is so important, especially as precision agriculture continues to be become more advanced.

Hoobers Inc. and Precision Agriculture

Picture of the class with our two guides in front of a Case IH 4430 Sprayer.

Hoobers Inc. a well known agriculture equipment dealership among the East Coast is one that has seen technology change over the years. Our class was toured around the Middletown dealership by two employees that are excellent in the precision ag. field and taught us the broad history of Hoobers and what they do on a daily basis. Hoobers Inc. was first started in 1941 in Intercourse, Pa where Charles Hoober sold International Harvesters. Since 1941 the company has expanded to 9 locations covering 4 different states and continues to adapt to the new technology available to farmers. One aspect that really stands out compared to other companies today is that Hoobers is still owned and operated by the same family that means they really know and believe in their product. After the two employees taught us some history they took us on a tour of the Middletown facility where we got to see the products and services they provide to farmers.

Growing up on a large grain farm I was familiar with Hoobers Inc. and precision agriculture for my family is a huge customer to the company. However I did not realize that this company was a 3rd generation operation, which appeals to me and gives me a sense of trust towards the company. I also thought that the drone was quite interesting because while my family uses precision ag. for our equipment we do not currently take-advantage of drones. I believe this technology could save my family money in the future because we currently use two different agriculture consultant companies to scout our fields but with the technology of drones we could scout ourselves, which could possibly reduce or eliminate the scouting cost.

 

Irrigation with James Adkins

Last Wednesday James Adkins guest lectured in class on agriculture irrigation. From the start I was very surprised by the quote he included that said, “While 20% of the world’s farmland is irrigated, it produces 40% of our foods supply.” This is actually pretty crazy to think that 20% of the farmland produces almost half  of the food supply, and that 20% has to pay for the costs of irrigation.  Through the lecture, James talked a lot about different types of irrigation systems, and different methods of irrigation around the US and world. It was really cool to see how things differed from location to location, especially when irrigation is not used on my farm at all. Irrigation is something in agriculture I am not exposed to much, so it was interesting to learn about the use/impacts of irrigation. He also talked about irrigation in California, which we briefly discussed during one of Ed Kee’s lecture.

James was really intriguing to listen to lecture because of his vast knowledge/experience with these systems. He talked about the process as well as what can go wrong with the systems. James also discussed the precision part of irrigation, and how technology has greatly impacted the accuracy and efficiency of irrigation. Ultimately, I learned a lot about agricultural irrigation from this lecture!

Guest Lecture: James Adkins

After a few minor setbacks early in the semester regarding James Adkins he was finally able to come in and talk with us about agricultural irrigation in November. James Adkins works at the UD Carvel Research center with a focus in the technology surrounding irrigation. We received a brief rundown of his personal history and then an extensive lecture regarding many aspects of agricultural irrigation – how it was done in the past and how its changed, scientific advancements, several types of irrigation (center pivot, flood/furrow irrigation, drip irrigation, etc.) and much more. What continues to surprise me is how advanced farming is today. Irrigation systems can be programmed to water certain areas with more or less water depending on the plant’s needs, it can monitor the exact amount of fertilizers/pesticides that might be used, and can maximize water efficiency in an agricultural setting. As time goes on, water is becoming more and more of a scarce resource is many parts of the world, which means that James Adkins may have one of the most important jobs to face our future.