

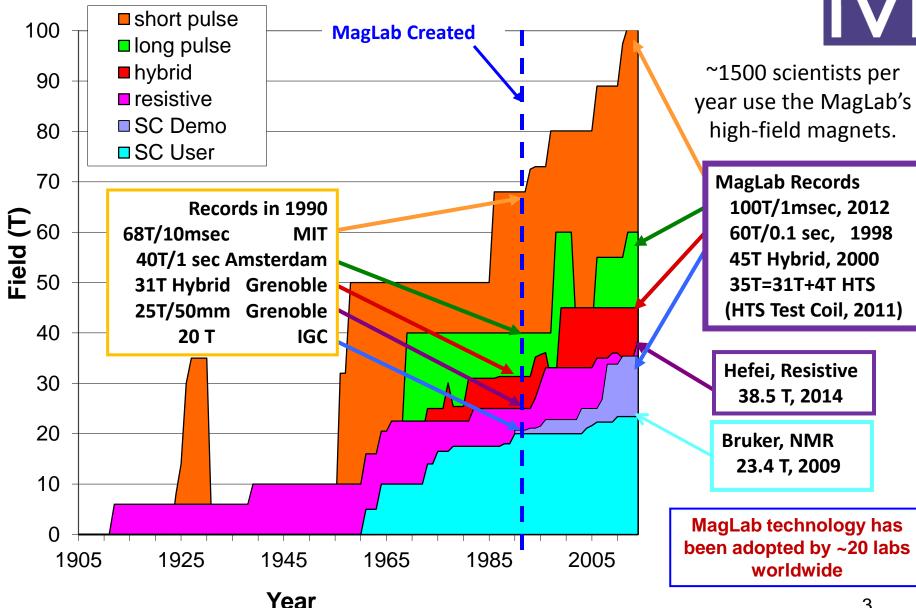
Florida-Bitter Magnets 1995

UHF DC Magnets at the NHMFL

Mark D. Bird, Ph.D. Director, Magnet Science and Technology National High Magnetic Field Laboratory

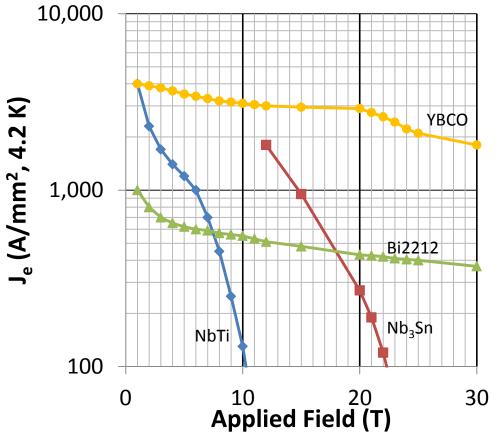
27 T Supercon 2015

900-MHz Ultra-Wide Bore 2004


Supported by:

Field Laboratory National High Magnetic NSF **Florida State University** 45T Hybrid **DC Magnet 1.4 GW Generator** Los Alamos National Laboratory **University of Florida Advanced Magnetic Resonance Imaging** and Spectroscopy Facility **101T Pulse Magnet** 10mm bore 900MHz, 105mm bore 11.4T MRI Magnet High B/T Facility 21T NMR/MRI Magnet 400mm warm bore 17T, 6weeks at 1mK

~100 Years of Non-Destructive Magnets



MagLab Steps

Magnet Class	Record at Project Start	MagLab Record or Target	Increase
Resistive	25 T	35 T	40%
Resistive/Supercon Hybrid	31 T	45 T	45%
Pulsed	60 T	93 T	55%
Split	18 T	25 T	39%
Neutron Scattering	15 T	26 T	73%
Superconducting Test	20 T	35 T	75%
Superconducting User	23.5 T	32 T (2016)	36%
Past High Resolution NMR	14.1 T	21.1 T	50%
Future High Resolution NMR 1	23.4 T	32.8 T	40%
Future High Resolution NMR 2	23.4 T	37.5 T	60%
Future Human Head MRI	10.5 T	20 T	90%

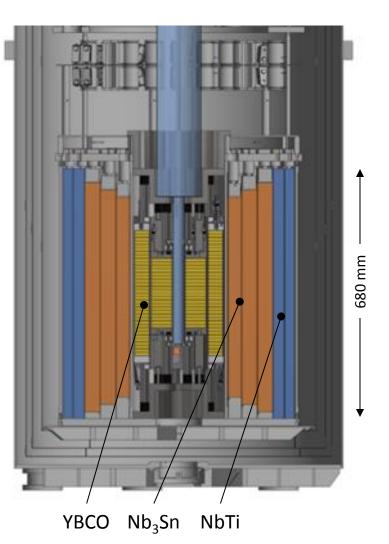
Superconducting Materials for Magnets

NbTi is used for existing human MRI magnets as well as accelerator and detector magnets for High-Energy Physics.

Its peak field is ~10 T at 4.2 K & ~12 T at 2 K.

The emergence of High-Temperature Superconductors (HTS) in 1986 moved superconducting (SC) magnets from the J_c-limited regime to the stress-limited regime like pulsed & dc resistive & hybrid magnets have been in for decades.

The Hastelloy-reinforced YBCO tape from SuperPower in 2007 was the first high-strength HTS material and is the core of the MagLab's 32 T magnet.


Nb₃Sn is used for most superconducting magnets >12 T (NMR, preclinical MRI, record dc magnets, etc).

Its peak field is ~22 T at 4.2 K & ~23 T at 2 K.

MagLab 32 T SC USER MAGNET

2003: 1st 25 T SC test coil 2008: 1st 35 T SC test coil 2015: 1st 27 T all-SC test

Total field	32 T
Field inner YBCO coils	17 T
Field outer LTS coils	15 T
Cold inner bore	32 mm
Current	172 A
Inductance	619 H
Stored Energy	9.15 MJ
Uniformity	5x10 ⁻⁴ 1 cm DSV

• Commercial Supply:

- 15 T, 250 mm bore LTS coils <u>Delivered!</u>
- Cryostat <u>Delivered!</u>
- (Dilution Refrigerator)
- In-House development:
 - 17 T, 34 mm bore YBCO coils

32 T YBCO Technology Development

Prototype coils represent • 20% of 32 T REBCO coils .

Ceramic on co-wound SS tape

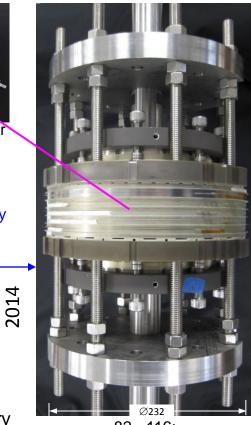
Development:

Coil winding technology

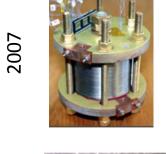
Insulation technology

Joint technology

Quench heater


Heater-only quench protection

© 2014


NHMFL:

Proprietary

- Quench analysis & protection
- Fatigue testing of components

82 - 116: 2nd Full-featured Prototype

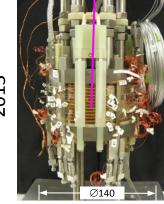
2008

2009

Demonstration inserts 20 T+ ΔB

2012 **First Quench Heaters**

> 42-62 Mark 1: 1st test coil

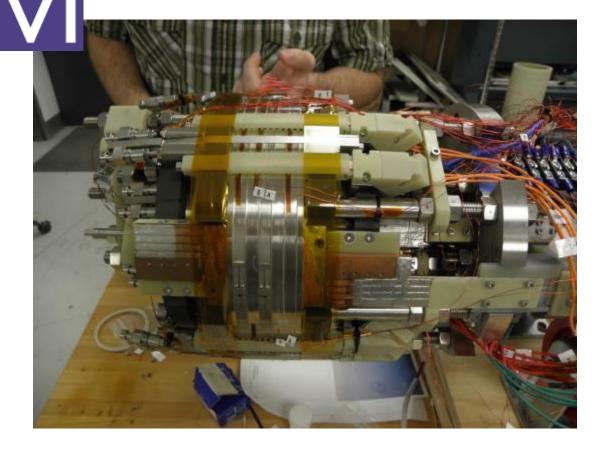


High-B coils

 $31 T + \Delta B$

42-62 Mark 2: 2nd test coil

2013



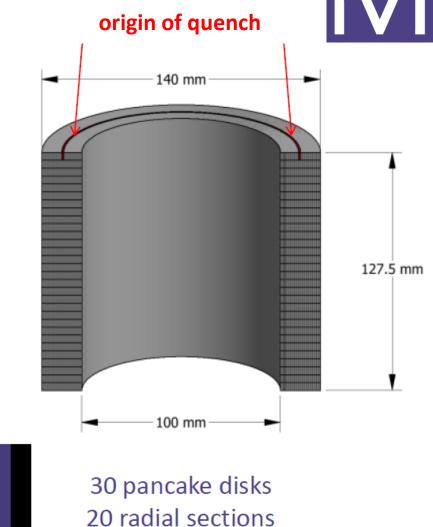
Ø140

Ø232

20 - 70: 1st Full-featured Prototype

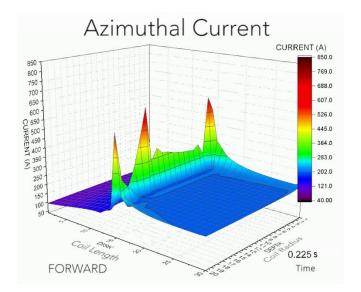
YBCO Coil Technology

- Cycled to high stress without ill effect:
 - 20 cycles 100% design stress
 - 40 cycles 110% design stress
 - 2 cycles 120% design stress

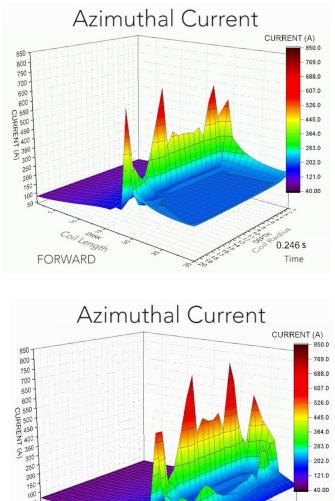

- Development Completed:
 - Improve YBCO tape.
 - Develop Insulation.
 - High-Strength Joints.
 - Pancake Winding Technology.
 - Quench Protection.
- 2nd Prototype was tested in Aug. 2014.
- Included all features of real coils for 32 T except length.
- Intentionally Quenched >80 times without degradation.
- Was tested again w/ Outsert in June 2015
- World's First 27 T SC Test!

Weijers, Markiewicz, Voran, Abraimov, Bai, Gavrilin, Gundlach, Hannahs, Hilton, Lu, Noyes, Painter, Viouchkov,, White, et al.

Quench Modelling of No-Insulation YBCO Solenoid


REBCO Pancake Test Coil

- A quench is initiated at one end of a coil in a section of conductor having low critical current
- After quench initiation, the quench propagates by a dynamic, inductive process
- A rapid quench propagation is observed over a wide range of resistance between turns

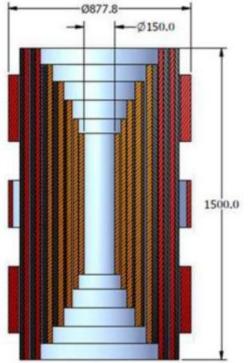

Quench Modelling in NI-YBCO

Several HTS magnets developed elsewhere have been damaged due to insufficient understanding of behavior during quench.

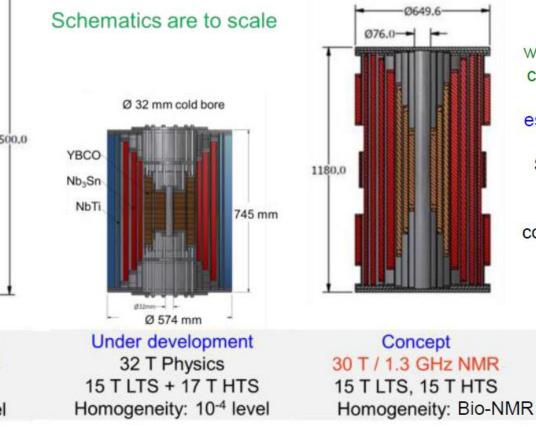
The MagLab has performed extensive modelling & testing (>100 times) of quench in HTS coils.

0.271 s

Time

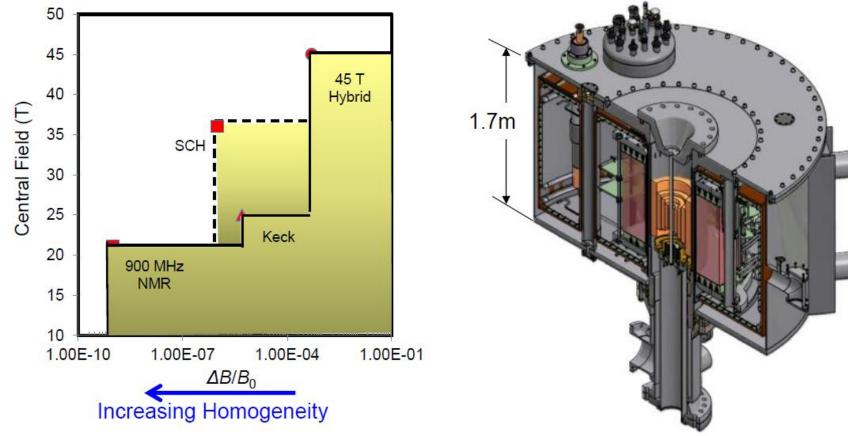

ength

FORWARD


W.D. Markiewicz

Perspective on 30 T NMR

Previously developed 21.1 T/900 MHz UWB 21 T LTS Homogeneity: ppb level The MagLab is pursuing multiple conductor and coil technologies in pursuit of 30 T NMR.


Operating current, winding current density, copper current density, fraction of I_c are all essentially the same as in 32 T design Stress level is ~ 20% higher, ~23 km of HTS conductor versus 10 km in 32 T

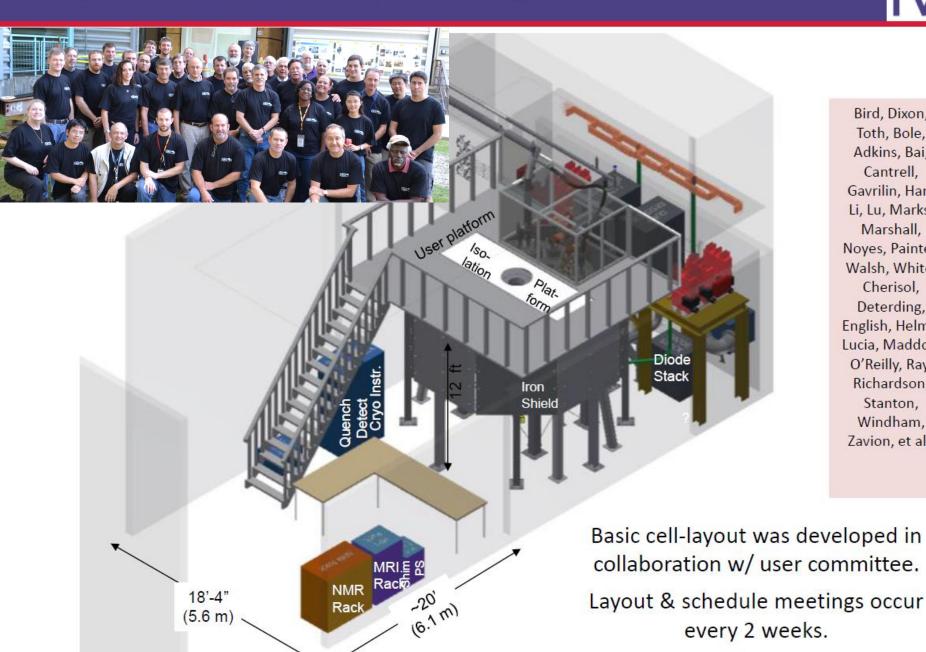
HTS section shares many design parameters with 32 T design Field homogeneity and stability are the major new challenges

W.D. Markiewicz

36 T, 1ppm Resistive/Superconducting Magnet

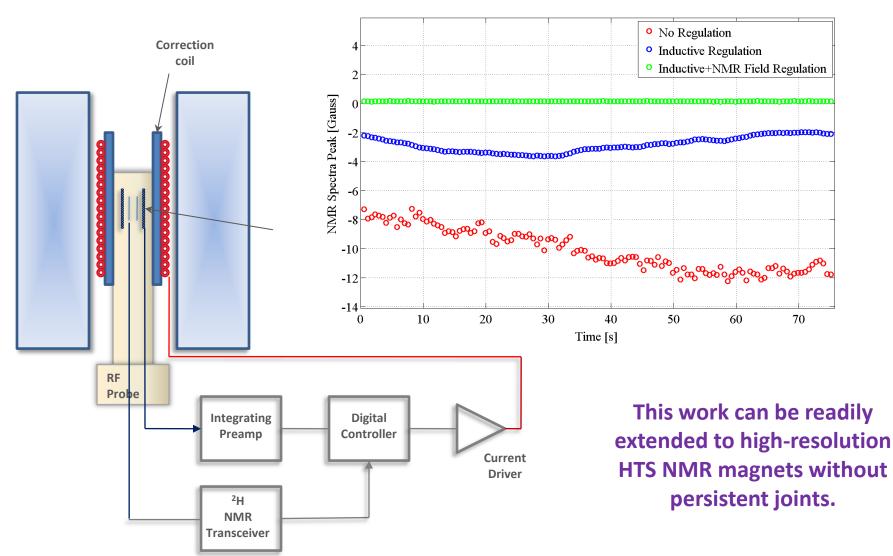
- Provide a unique combination of performance parameters:
 - High field (36T)
 - High field quality (1ppm)
 - Larger bore (40 mm)
 - 1 Power Supply (13 MW)

- Enable
 - NMR experiments not possible elsewhere.
 - Demonstration of value of building high-resolution NMR magnets >30 T (where FSU is also a world leader).
 - Development of 60 T hybrid proposed by COHMAG.

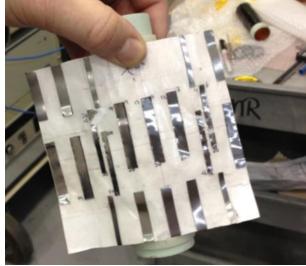

MagLab 36 T, 1 ppm Hybrid Magnet Status

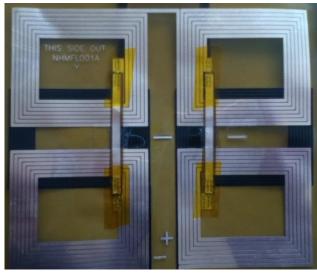
Milestone	Date
Cryostat Arrived	Sept. 2014
Cold-Test including cold-box, cryostat, controls	Dec. 2014
Assembly of Cold-Mass and Current-Leads complete	Apr. 2015
Paschen Test Complete	June 2015
Cryostat Closed	Oct. 2015
Insert Plumbing Complete	Dec. 2015
Insert Coils installed	Jan 2015
Transfer Line installation complete	Mar. 2016
Cool-down Complete	April 2016
Insert-Only	May 2016
36 T	June 2016

MagLab 36 T, 1-ppm Hybrid Magnet Cell Isometric

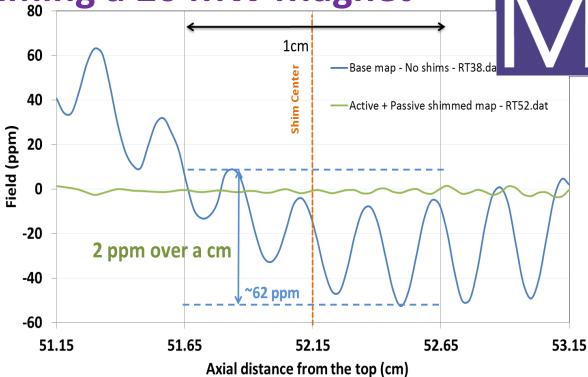


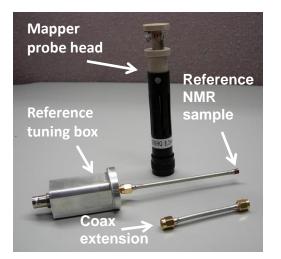
Bird, Dixon, Toth, Bole, Adkins, Bai, Cantrell, Gavrilin, Han, Li, Lu, Marks, Marshall, Noyes, Painter, Walsh, White, Cherisol, Deterding, English, Helms, Lucia, Maddox, O'Reilly, Ray, Richardson, Stanton, Windham, Zavion, et al.,


Cascade Field Regulation for 20 MW, 25 T magnet



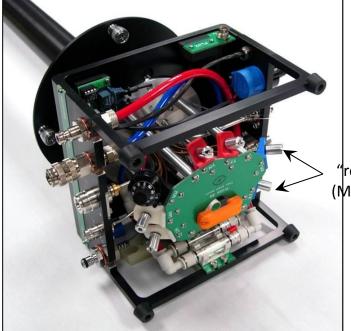
Jeff Schiano, et al., Penn State Univ


Mapping and Shimming a 20 MW Magnet



Passive shims on probe cap

Active shims on insert tube

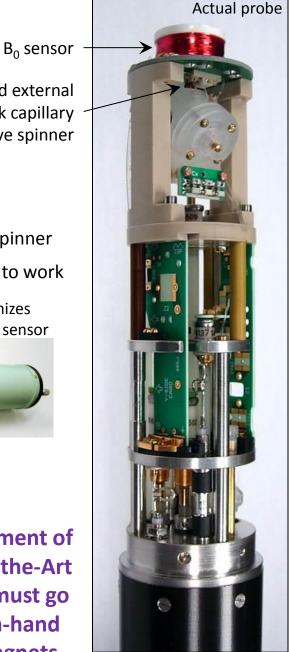

This work can be readily extended to HTS magnets with screening-currentbased inhomogeneity.

Oxford NMR

CP MAS Low-E probe (¹H–X–Y)

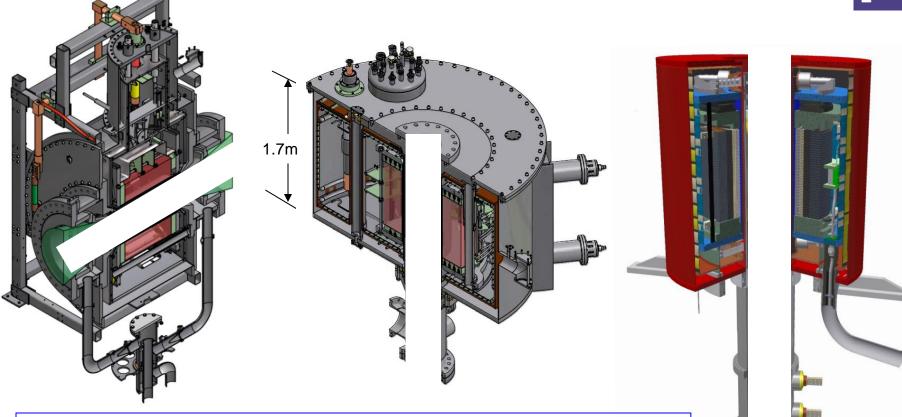
2.0 mm ¹H–X–Y MAS probe, 38 kHz speed Probe is nearly complete; currently tuning RF circuit X and Y isotopes frequencies are set by sliding TUNE CARDS Initially for 2D experiments like ¹³C/¹³C correlation etc. Sealed LiCl capillary for 4th external freq. lock channel is located above spinner Y-channel can double as internal ²H lock channel if external ⁷Li lock fails to work

Bill Brey & Peter Gorkov


Thin Cu-plated rf shield minimizes eddy current distortions in B₀ sensor

Adaptations for "remote" sideways tuning (Magnet safety regulation)

Development of State-of-the-Art probes must go hand-in-hand with magnets.



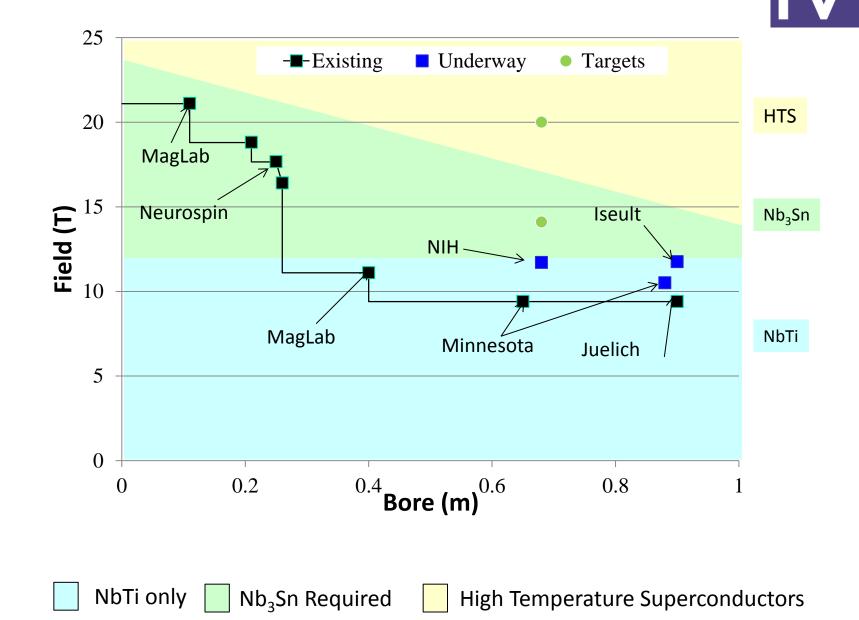
DC Inter-Lab Collaborat Tech Support and Tech		<u>SupCon</u> Magnets	<u>Hybrid Magnets</u> Nijmegen: We are building 45T outsert	Resistive Magn Nijmegen: We delivere	ed 33T Developing Florida-Bitter
Michigan State: We delivered Unique Nuclear Physics Magnet Brookhaven: We developed	design study	e performed of 25 – 30 T or neutrons.	coil & 20 kA HTS Leads.	Grenoble: We delivere coils & housings for 30	ed Operates
conceptual design of Magnets for Muon-Collider. LBL, MIT, JLab, Wellington, NIST: We test LTS & HTS Cables.			HZ Berlin: We are developing 25 T for no Oak Ridge: We des 35T for neutrons.	eutrons. Conduit & resolutio	aracterized SC Strand, CICCs. Contributed to on of Nb ₃ Sn problems. loping 40 T w/ CICC.
Michigan State	6		egen Lund, Sweden		
	P. T		egen, Lund, Sweden erlands		and and a second
NIST Argonne	ПМ	ITER	Berlin, Germ	and the second se	Sendai,
LBL	Brook		Twente, Netherl	ands	Japan
NHMFL	Oak Ridg	Grenob Je France	ble,		Tsukuba, Japan
	Pa		-1-17	1 52	Hefei, China
"Large facilities should also have strong collaborations w/ smaller regional centers" MagSci pg. 19	5				
			ld facilities worldwide sho improve magnets		Wellington, NZ

Five of six largest resistive magnet labs worldwide have adopted the Florida-Bitter technology. MagLab plays the leading role in international hybrid magnet development effort. Former MagLab personnel: Soren Prestemon, Deputy Division Dir., Lawrence Berkeley Lab; Kathleen Amm, MRI Technologies & Systems Leader, GE Global R&D; Ting Xu, Cryogenic Operations Leader at FRIB.

3 Recent Hybrid Magnets by MagLab (Same Nb₃Sn Cable-In-Conduit Conductors)

Chinese & Italian as well as numerous domestic projects were rejected due to insufficient personnel.

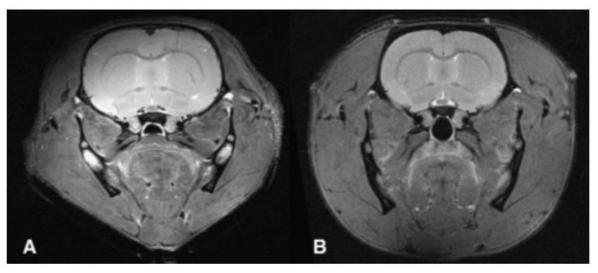
Helmholtz Zentrum Berlin (HZB)	MagLab	Radboud University	Lab
Berlin, <u>Germany</u>	Tallahassee, FL	Nijmegen, <u>Netherlands</u>	Location
26 T	36 T	45 T	Tot Field
13 T	13 T	12 T	SC Field
50 cm	46 cm	52 cm	SC Bore
Neutron Scattering	Condensed-Matter Physics	Condensed-Matter Physics	Purpose
2015	2016	2018	Operational



In 2014 The MagLab delivered a 26 T magnet for neutrons scattering to the Helmholtz Zentrum Berlin.

The superconducting part of this magnet provides 13 T in a 50 cm horizontal bore.

MRI Magnet Field vs Bore



20 T MRI

The National High Magnetic Field Lab in Tallahassee, Florida presently operates a 21.1 T, 105 mm bore NMR magnet for small animal MRI! Image quality improves dramatically with field!

In-Vivo proton MRI of rat-head @ 21.1 T (A) and 9.4 T (B). Both MRI images were acquired using spin echo pulse sequence and the same imaging parameters. The resolution of images was 0.137 x 0.137 x 0.41 mm³ [1].

20 T MRI magnets with various bores (up to 90 cm) can be built using traditional Low-Temperature Superconductors (LTS, NbTi & Nb₃Sn). This has not been done due to cost and safety concerns.

[1] Schepkin, et al., MRI, 28 (2010) 400 - 407

Perspective on 20 T MRI Magnet

11.75 T, 90 cm Whole-Body Under Construction, due 2014 (Iseult)
20 T, 68 cm Head-Only Preliminary Concept

Image: Construction of the second second

Parameter	Iseult		gLab 2 oncep		
Conductor Mass (Ton)	65		~35		
Stored Energy (MJ)	338		~350	-	
Current Density (A/mm ²)	26.4		~40		
Magnet Design	CEA	7	MagLab		

HTS & High-Strength materials at 4 K operate at high field and current-density resulting in compact magnets.

On Behalf of The MagLab's SC Magnet Teams

32 T SC Magnet Project			
H.W. Weijers			
arkiewicz			
<u>Materials</u>			
D. Larbalestie			
D. Abraimov			
J. Lu			
D. McGuire			
B. Walsh			
Fabrication			
T. Painter			
Z. Johnson			
B. Sheppard			
B. Jarvis			
G. Sheppard			

<u>Analysis</u>
I.R. Dixon
A.V. Gavrilin
H. Bai
T. Painter
S. Marshall
J. Toth
Y. Zhai
T. Xu
<u>Materi</u>
K. Ha
J. Lu

Design		
S. Bole		
T. Adkins		
K. Cantrell		
S. Napier		
A. Trowell		
S. Gundlach		
M. White		
G. Miller		

Dociar

<u>als</u>

n

- B. Walsh
- B. Goddard
- V. Toplosky
- J. McRae

<u>36 T SCH Ma</u>		
M.D		
I.R. Dixon		<u>Fabrication</u>
<u>Science</u>	Facilities	L. Marks
T. Cross	J. Kynoch	R. Stanton
B. Brey	W. Nixon	D. Richardson
I. Litvak	R. Lewis	M. Leuthold
<u>Controls</u>	G. Nix	N. Walsh
S. Hannahs	V. Williams	N. Adams
A. Powell	J. Maddox	L. English
P. Noyes	L. Windham	J. Lucia
	K. Braverman	J. Deterding

SUMMARY

- HTS Materials enable a revolution in UHF NMR (> 30 T).
 - The MagLab will deliver a 32 T superconducting user magnet in 2016.
 - We are pursuing 1.4 GHz (32.8 T) high-resolution NMR.
- Large-Scale Nb₃Sn magnet technology can be applied to human MRI magnets >14 T.
 - The MagLab has built 13 14 T SC magnets with 50 60 cm room-temperature bores.
 - Higher fields in larger bores with High-Homogeneity is feasible.
- 20 T human-head MRI will likely require HTS materials on a large scale.