Design and Evaluation of an Automated Aspect Mining Tool

Author : Shepherd, David; Gibson, Emily; Pollock, Lori
Booktitle : 2004 International Conference on Software Engineering and Practice
Date : Jun 2004
Publisher : IEEE
Description : Also presented at the 2005 Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS) in April 2005.
Keyword(s) : Aspect Mining, Aspect Oriented Programming, Program Analysis
Document Type : In Conference Proceedings

Abstract :

Attention to aspect oriented programming (AOP) is rapidly growing as its benefits in large software system development and maintenance are increasingly recognized. However, existing large software systems, which could benefit most from refactoring in AOP, still remain unchanged in practice, due to the high cost of the refactoring. Automatic identification and extraction of aspects would not only enable migration of legacy systems to AOP, but also prevent current systems from accumulating scattered and duplicated code. In this paper, we present the design, implementation, and evaluation od an aspect mining analysis, which automatically identifies desirable candidates for refactoring into AOP, without requiring input from the user or predefined queries. By exploiting the program dependence graph and abstract syntax tree representations of a program, our analysis is able to automatically identify a much larger set of valuable refactoring candidates than current aspect mining techniques, as demonstrated by empirical evaluation of our automatic mining analysis on two large software systems.

Paper Link