Computational Design of Polymers and Macromolecular Biomaterials

Arthi Jayaraman
Associate Professor
Dept. of Chemical & Biomolecular Engineering and Dept. of Materials Science & Engineering
University of Delaware, Newark

HPC Symposium 2016

January 27th 2016

Research Group Website: http://udel.edu/~arthij/
Polymer Modeling and Simulation in Jayaraman Group

How molecular features affect macroscopic morphology

Functionalized Nanoparticles in Polymer Nanocomposites

Conjugated Polymers for Organic Electronics

Self-assembled monolayer (SAM)

DNA-surface distance

25 Å

10 Å

5 Å

How molecular features impact macromolecular interactions

Nucleic acid-polymer interactions

Peptide-polymer based biomaterials
Polymer Nanocomposites: Polymer grafted nanoparticles in a polymer matrix

Using theory and molecular simulations we are able to link features of polymer functionalization to particle dispersion/aggregation in a polymer matrix.
Polymer Nanocomposites:
Polymer grafted nanoparticles in a polymer matrix

Using theory and molecular simulations we are able to link features of polymer functionalization to particle dispersion/aggregation in a polymer matrix

Polymer Grafted Nanoparticles in a Polymer Matrix
Physics Governing Morphology when Graft and Matrix Polymers are Chemically Similar

Particle Aggregation
Matrix MW $>$ Graft MW

Particle Dispersion
Matrix MW $<$ Graft MW

Wetting/dewetting of the grafted layer tunes the polymer grafted particle dispersion/aggregation in the polymer matrix.

Designing polymer functionalization to improve nanoparticle dispersion in polymer matrix

Polydispersity in graft polymer increases wetting of grafted layer by matrix chains, and thus improves particle dispersion in monodisperse polymer matrix.

⇒ Our predictions were confirmed by experiments by Krishnamoorti and coworkers
Experiments showing agreement with our predictions

Results from laboratory of Prof. Ramanan Krishnamoorti at University of Houston

Polydisperse polymer grafted nanoparticles exhibit

a) Higher swelling (or wetting) of grafted particles by matrix chains than monodisperse grafts

b) Reduced macrophase separation (or particle aggregation)

So far, experiments in agreement with our predictions.
Tailoring Entropic Driving Forces to Tune Morphology

Graft chemistry = Matrix chemistry

Monodisperse

Polydisperse

Increasing *graft length polydispersity* can *stabilize dispersions* of polymer grafted nanoparticles in a *monodisperse* polymer matrix.

Decreasing *graft and matrix flexibility* can *stabilize dispersions* of polymer grafted nanoparticles in a *monodisperse* polymer matrix.

Lin B.†, Martin T.B.†, Jayaraman A., *ACS Macro Lett* 2014, 3 (7) 628-632
Chemically Dissimilar Graft and Matrix Homopolymers

With attractive interactions between graft and matrix monomers, at low temperatures the enthalpically driven graft-matrix mixing should lead to particle dispersion even when $N_{\text{matrix}} \gg N_{\text{graft}}$
Simulations and experiments show that wetting-dewetting transition is gradual and distinct from the sharp dispersion-aggregation.

Critical wetting that marks onset of dispersion->aggregation is equal to the wetting found in corresponding athermal system.

Tailoring Thermodynamic Driving Forces to Tune Polymer Nanocomposite Morphology

Tuning Entropic Driving Forces

Increasing Graft MW Dispersity

Decreasing Polymer Flexibility

Tuning mostly Enthalpic Driving Forces

Chemically dissimilar graft and matrix polymers

Copolymer grafted nanoparticles compatibilizing interfaces in homopolymer blends

Diblock copolymer functionalization to stabilize interfaces

Designing polymer functionalization to direct nanoparticle assembly

Copolymer functionalization on the nanoparticles tuned to achieve desired particle assembly and order

Experiments done in Dr. Park’s lab at UC Boulder

Polymer Modeling and Simulation in Jayaraman Group

How molecular features affect macroscopic morphology

Functionalized Nanoparticles in Polymer Nanocomposites

Conjugated Polymers for Organic Electronics

Solar Cell

Device Efficiency

Morphology

Molecular-level Interactions

How molecular features impact macromolecular interactions

Nucleic acid-polymer interactions

DNA-surface distance

25 Å

10 Å

5 Å

Self-assembled monolayer (SAM)

Peptide-polymer based biomaterials
Efficiency of organic photovoltaics depends upon active layer morphology

Donor: Conjugated polymer

Acceptor: Fullerenic derivative

e.g. P3HT
e.g. PCBM

1) Excitons generated in donor material
2) Exciton dissociation at donor/acceptor interface
3) Charge transport to electrodes

Morphology (e.g. polymer crystallinity, domain connectivity, interfacial area) is important for device efficiency

http://blog.disorderedmatter.eu/2008/06/05/picture-story-how-do-organic-solar-cells-function
Challenge: Various Length Scales in Donor-Acceptor Morphology

0.1nm - 5nm

Molecular-level detail, e.g. fullerene intercalation

>1nm < 100nm

Phase separation of donor and acceptor into domains (disorder → order)

>100nm

Active layer film in solar cell

PCBM

\[\text{PCBM} \]

McGehee and coworkers, *Nano Letters*, 2009

pBTTT

\[\text{pBTTT} \]

Yin and Dadmun, ACS Nano 2011
Comparison of Molecular Simulation Approaches

<table>
<thead>
<tr>
<th>Length scale & Time scale</th>
<th>Atomistic models</th>
<th>Intermediate resolution CG models</th>
<th>Highly Coarse-Grained models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disorder to Order Transition</td>
<td><10 nm, << 100 ns</td>
<td>Up to 10-20 nm, 100s of ns</td>
<td>Up to 100 nm, > 1 μs</td>
</tr>
<tr>
<td>Molecular packing, e.g. Crystallization, intercalation</td>
<td>Computationally not feasible to capture Disorder to Order</td>
<td>Captures Disorder to Order</td>
<td>Captures Disorder to Order</td>
</tr>
<tr>
<td></td>
<td>Captures atomistic level packing (initial configuration has to be ordered)</td>
<td>Captures backbone orientational order Captures intercalation</td>
<td>Cannot capture most of the molecular level packing at the side chain-backbone level.</td>
</tr>
</tbody>
</table>

McGehee and coworkers, *Advanced Materials*, 2011

Carrillo et al., *Physical Chemistry; Chemical Physics*, 2013
Simulation Results with our Donor Polymer - Acceptor Model & Experimental Comparison

Simulation

P3HT

PDHBT

Agreement in Morphologies

Observation of Intercalation

Experiment

Ko et. al., JACS., 2012

Zhang, Briseno, Marsh, Jayaraman JACS 136 (52), 18120 (2014)

Polymer Modeling and Simulation in Jayaraman Group

How molecular features affect macroscopic morphology

Functionality Nanoparticles in Polymer Nanocomposites

Conjugated Polymers for Organic Electronics

How molecular features impact macromolecular interactions

Nucleic acid-polymer interactions

Peptide-polymer based biomaterials
Polymers for Non-viral DNA Delivery

- Simulations linking cationic polymers architecture and chemistry to DNA-polymer complexation
- Polymer synthesis and in-vitro DNA transfection in T. Emrick’s lab at UMass

Effect of Varying Polymer Architecture On Polymer DNA Binding Thermodynamics

Effect of Varying Oligopeptide-based Comb-Polymer Chemistry

Zwitterion containing polymers for DNA delivery

Then, established the effect of sulfobetaine content on polymer-DNA complexation - thermodynamics & structure

Ahmad Ghabadi, R. Letteri, T. Emrick, A. Jayaraman, Biomacromolecules (2016)
Article ASAP

We first developed appropriate models to simulate relevant length and time scales.
Polymer Modeling and Simulation in Jayaraman Group

How molecular features affect macroscopic morphology

Functionalized Nanoparticles in Polymer Nanocomposites

Conjugated Polymers for Organic Electronics

How molecular features impact macromolecular interactions

Nucleic acid-polymer interactions

Peptide-polymer based biomaterials

DNA-surface distance:
- 25 Å
- 10 Å
- 5 Å

Self-assembled monolayer (SAM)
Peptide-Polymer Based Biomaterials

Computational Design of Oligopeptide Containing Poly(ethylene glycol) Brushes for Stimuli-Responsive Materials

Francesca Stanzione and Arthi Jayaraman
Journal of Physical Chemistry B 119 (42), 13309-13320 2015
Computational Approach Scan of a Large Design Space

Systematically varying peptide length, sequence and composition
For e.g. KKEEEEHHH, KEKEHEHEHE, KKKKKEEEEEHHHH etc.

Systematically varying peptide placement within the PEG

Systematically increasing PEG polymer crowding effects

Polymer Modeling and Simulation in Jayaraman Group

How molecular features affect macroscopic morphology

Functionalized Nanoparticles in Polymer Nanocomposites

Conjugated Polymers for Organic Electronics

How molecular features impact macromolecular interactions

Nucleic acid-polymer interactions

Peptide-polymer based biomaterials

I. TYLER MARTIN

II. AHMADREZA GHOBADI

III. FRANCESCA STANZIONE
Welcome!
The Jayaraman research group is lead by Prof. Arthi Jayaraman, Associate Professor, Chemical and Biomolecular Engineering and Materials Science and Engineering at University of Delaware. Our research interests lie in understanding molecular-level phenomena governing complex biological processes and material science problems using theoretical and simulation techniques.

Current Research Focus

Polymer Nanocomposites

Biomaterials

Conjugated Polymer Based Materials

Recent News

Our collaborative paper with Todd Emrick and coworkers (at UMass) on accepted in Biomacromolecules!

Tyler has been selected as a finalist for the Padden symposium at APS March meeting 2016!

Research highlight on our JACS paper! Link US Department of Energy also tweets about this work Link

Arthi has been selected as Princeton University’s Saville Lecturer for 2015-16!
Current members of Jayaraman group

Tyler Martin - PhD student, Polymer Nanocomposites
Joshua Condon - PhD student, Peptide-Polymer Biomaterials
Thomas Gartner - PhD student, Polymer Nanocomposites
Dr. Francesca Stanzione - Peptide based biomaterials
Dr. Ahmad Ghobadi - Nucleic acid based biomaterials
Christopher Knieste - undergrad

Some of the group alumni and their current positions

• Arezou Seifpour – PhD 2013 – Intel (May 2013-)
• Robert Elder PhD Dec 2013 – Army Research Lab (Jan 2014 -)
• Carla Esteridge PhD May 2015 – Boeing Research (July 2015-)
• Hilary Marsh PhD May 2015 – NREL
• Charles Starbird MS 2012 – Eastman (June 2012-)
• Eric Jankowski Postdoc 2012-13 – Asst. Prof. at Boise State (2015-)
• Nitish Nair Postdoc 2009-11 – Shell (2011-)
• D. Zhang Postdoc 2011-12 – UT Dallas (2012-)
Overview of Using GPUs for Molecular Dynamics Simulations

Tyler B. Martin
Advisor: Prof. Arthi Jayaraman

January 27, 2016
Polymer Nanocomposite Morphology

Dispersed Morphology

Polymer nanocomposite morphology dictates macroscopic properties

Aggregated Morphology

Mechanical Reinforcement

Contamination Barriers

Aircraft Coatings

Microelectronics

nano-filler

matrix polymer

O₂

saе.org

placon.com

wikimedia.org

Chlorineremoval.com
How do we simulate polymer nanocomposites?

Molecular Dynamics Simulation

MD Simulation Steps
For each bead in simulation...
1. Calculate force on bead i
2. Calculate acceleration of bead
3. Update bead velocity
4. Update bead position

The force calculation in MD scales $O(N^2)$ where N is the number of atoms.

This is the dominant bottleneck in these simulations
How do we simulate polymer nanocomposites?

1. Polymer nanocomposites have very long relaxation times (must integrate Newton’s Equations millions of times for each bead)

2. Most interesting polymer phenomena only occurs for large polymer lengths and system sizes (N becomes very large i.e. force calculation is expensive)

The force calculation in MD scales $O(N^2)$ where N is the number of atoms.

For each bead in simulation...
1. Calculate force on bead i
2. Calculate acceleration of bead
3. Update bead velocity
4. Update bead position

This is the dominant bottleneck in these simulations
How do we achieve the large system sizes and long time scales needed for polymer nanocomposite study?

Software Improvements

Neighbor Lists
- Neighbor List Sorting
- Memory Chunking
- Domain Decomposition

Hardware Improvements

- CPU Clock Speed
- Memory Bandwidth
- CPU Parallelization
- **GPU Parallelization**

No Neighbor List

Verlet Lists

Cell List
How do GPUs improve MD simulations?

CPU’s are designed to handle complex, rapidly-varying tasks quickly.

CPU

A few high-speed processors

GPU

many low-speed streaming-multiprocessors

GPU’s are designed to handle simple, highly-repetitive tasks very quickly.

MD Simulation Steps

1. Calculate force on bead i
2. Calculate acceleration of bead
3. Update bead velocity
4. Update bead position
Reasons to consider HOOMD-blue over other MD packages. HOOMD-blue...

- is purpose-built for the GPU

- is flexible enough to simulate simple bead-systems to complex bio-macromolecules

- leverages the full power of Python scripting
Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming

Benjamin G. Levine, John E. Stone, Axel Kohlmeyer

Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, United States
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

ARTICLE INFO

Article history:
Received 15 September 2010
Received in revised form 22 January 2011
Accepted 31 January 2011
Available online 26 February 2011

Keywords:
Pair distribution function
Two-point correlation function
GPGPU

ABSTRACT

The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

© 2011 Elsevier Inc. All rights reserved.
HPC Symposium

Ahmadreza F. Ghobadi

Arthi Jayaraman’s Research Group
Dep. of Chemical and Biomolecular Engineering &
Dep. of Material Science and Engineering
1/27/2016
What do I do with Farber?

Generate data:
- Lammps
- Gromacs
- Gaussian
- Plumed

Analyze data:
- C++
- Python
- VMD

Visualize data:
- GNUplot
- VMD
- OriginLab

Backup data:
Generate Data (using Lammps)

Project definition:
- Relatively small system of interacting molecules
- Two different temperature (T1 & T2)
- Three simulation trials
- Each simulation needs 24 hrs on 10 cpu cores (no GPU)

File preparation:
- Simulation input files (data file, etc)
- Simulation submission file (qs file)
- Scripts to submit multiple simulations at once

Generate Data (using Lammps) – Input files

Simulation input file (inp_eq):
Read initConf.dat
T = temp #Temperature
Random number = XXX
...
...
Write restart*

Simulation restart file (inp_res):
Read restart*
T = temp
Random number = XXX
...
...
dump output to temp-runY-prodZ.dat
Write restart*
"submit.qs" file:

```bash
#$ -pe threads 10           # export OMP_NUM_THREADS=$NSLOTS
#$ -l m_mem_free=2G         # Memory that must be available
#$ -l standby=1
#$ -l exclusive=1
#$ -l h_rt=8:00:00
# -m eas
# -M ahmadg@udel.edu
#$ -o dummy.o
#$ -e dummy.e
#$ -V                      # This is generally ignored
#$ -N dummy                # Names the job to dummy
export VALET_PATH=$VALET_PATH: ...some path...
vpkg_require jlab-lammps/ahmad
lmprun_FLAGS = "input_file"
#WANT_CPU_AFFINITY=YES
MY_EXE = lmp
mpirun ${OPENMPI_FLAGS} $MY_EXE < $lmprun_FLAGS
```
Generate Data (using Lammmps) – Bash script

```
"runs.sh" file:
#!/bin/bash
for T in T1 T2
    for run in 1 2 3
        ... some lines ...
        RND1=$RANDOM
        sed -i "s/temp/$T/g" inp_eq
        sed -i "s/XXX/$RND1/g" inp_eq
        ... some lines ...
        job = job_name_$T_$run
        sed -i "s/dummy/$job/g" submit.qs
        sed -i "s/input_file/inp_eq/g" submit.qs
        ... some lines ...
        jid = `qsub -terse submit.qs`
        ... some lines ...
    for next in 1 2 3
        ... replace ZZ in inp_prod file with $next ...
        jid = `qsub -terse -hold_jid $jid submit.qs`
    done
done
```

Log into Farber
Navigate to your workgroup
Navigate to $Lustre/scratch/…

[Parent directory] $ bash runs.sh
[Parent directory] $ qstat
 some jobs r
 some jobs hqw
Analyze Data – Serial Jobs

“analyze.sh” file:

```
#!/bin/bash
for T in T1 T2
  for run in 1 2 3
    ... some lines ...
    Read temp-runY-prod3.dat
    g++ analyze
    ... some lines ...
  done
done
```

“analyze.py” file:

```
import os
for T in T1 T2
  for run in 1 2 3
    ... some lines ...
    Read temp-runY-prod3.dat
    python myscript.py (T1*a)/2
    ... some lines ...
  done
done
```

Commands:

- **[Parent directory]** $ qlogin (to ask 1 core from Jayaraman_lab.q)
- **[Parent directory]** $ vpkg_require *some packages*
- **[Parent directory]** @some_node $ bash analyze.sh
- Or
- **[Parent directory]** $ vpkg_require *python-numpy*
- **[Parent directory]** @some_node $ python analyze.py
Using GROMACS and Open MPI to perform Parallel Atomistic Molecular Dynamic (MD) Simulations on Farber

Francesca Stanzione
Prof. Arthi Jayaraman’s group

HPC Symposium 2016
January 27th 2016
Several software for Atomistic Molecular Dynamics: GROMACS, Amber, NAMD, CHARMM...

GROMACS one of the fastest molecular dynamics packages and it is implemented on Farber
Atomistic MD Simulation on Farber

GROMACS available on Farber: Version 4.6.7 and version 5.0

Atomistic MD simulations are computationally more expensive than CG MD simulations and require more than 1 node
Parallel simulations on multiple nodes: Open MPI

Open MPI: the dominant multi-node parallelization-scheme

my_gromacs.qs

Parallel environment and number of processors desired

Our group nodes but it could be replaced by -l standby=1

With this flag I ask to use all 20 CPUs of the node

GROMACS specifics

Open MPI specifics (next slide)

Grid-engine & Open MPI

N.B. Detailed gromacs.qs file is available on Farber:

/opt/templates/gridengine/gromacs
OPENMPI_FLAGS="--display-map --mca btl ^tcp"
if ["x$WANT_CPU_AFFINITY" = "xYES"]; then
 OPENMPI_FLAGS="${OPENMPI_FLAGS} --bind-to core"
fi
if ["${WANT_NPROC:-0}" -gt 0]; then
 OPENMPI_FLAGS="${OPENMPI_FLAGS} --np ${WANT_NPROC} --map-by node"
fi
if ["x$SHOW_MPI_DEBUGGING" = "xYES"]; then
 OPENMPI_FLAGS="${OPENMPI_FLAGS} --debug-devel --debug-daemons --display-devel-map --display-devel-allocation --mca mca_verbose 1 --mca coll_base_verbose 1 --mca ras_base_verbose 1 --mca ras_gridengine_debug 1 --mca ras_gridengine_verbose 1 --mca btl_base_verbose 1 --mca mtl_base_verbose 1 --mca plm_base_verbose 1 --mca pls_rsh_debug 1"
 if ["x$WANT_CPU_AFFINITY" = "xYES" -o "x$WANT_HALF_CORES_ONLY" = "xYES"]; then
 OPENMPI_FLAGS="${OPENMPI_FLAGS} --report-bindings"
 fi
fi
Benchmarking

to evaluate how many resources are required by a single simulation

Increasing the number of nodes do not improve the performance

Best performance in both hours required to complete the simulation and hours of computing
Optimizing the Performance with GROMACS

A crucial calculation to be optimized is the long range interactions which consist of dispersion-type particle-particle (PP) interactions and the electrostatic forces obtained from the Particle Mesh Ewald (PME) method.

my_gromacs.qs

```bash
#$ -pe mpi 120
#$ -l m_mem_free=2G
#$ -q jayaraman_lab.q
#$ -l h_rt=04:00:00
#$ -V
#$ -l exclusive=1

vpkg_require gromacs.double

#USE_SINGLE_PRECISION=NO

MDRUN_FLAGS="-s run.tpr -deffnm run -npme -1"
```

To set the number of cores only for PME calculation:

```bash
MDRUN_FLAGS="-s run.tpr -deffnm run -npme 40"
```
Optimizing the Performance with Grid-Engine flags

my_gromacs.qs
#$ -pe mpi 128
#$ -l m_mem_free=2G
#$ -q jayaraman_lab.q
#$ -l h_rt=04:00:00
-l exclusive=1
#$ -R y
vpkg_require gromacs/double
$ WANT_CPU_AFFINITY=YES

MDRUN_FLAGS="-s run.tpr -deffnm run -npme -1"

Disable the exclusive flag
Reserve the minimum number of nodes to satisfy my CPUs request