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Abstract

In this paper, we develop a new method for constructing m-ovoids in the symplectic
polar space W(2r − 1, pe) from some strongly regular Cayley graphs in [6]. Using this
method, we obtain many new m-ovoids which can not be derived by field reduction.
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1. Introduction

Let e ≥ 1, r ≥ 2 be integers, p be a prime, and Fpe be the finite field of size pe. Let
V be a 2r-dimensional vector space over Fpe and f be a non-degenerate alternating form
defined on V . The symplectic polar space W(2r − 1, pe) associated with the form f is
the geometry consisting of subspaces of PG(V ) induced by the totally isotropic subspaces
with respect to f . The symplectic polar space W(2r − 1, pe) contains totally isotropic
points, lines, planes, etc. Note that since f is alternating, every point of PG(V ) is totally
isotropic. Therefore the set of points of W(2r − 1, pe) coincides with the set of points of
PG(V ). The (totally isotropic) subspaces of maximum dimension are called maximals (or
generators) of W(2r − 1, pe). The rank of W(2r − 1, pe) is the vector space dimension of
its maximals, namely r.

In this paper, we are concerned with m-ovoids in W(2r − 1, pe). An m-ovoid in
W(2r − 1, pe) is a set M of points such that every maximal of W(2r − 1, pe) meets M
in exactly m points. A 1-ovoid in W(2r − 1, pe) is simply called an ovoid. Ovoids in
W(2r− 1, pe) (and more generally in any classical polar space) were first defined by Thas
[22] in 1981. The existence problem for ovoids in W(2r − 1, pe) is completely solved:
W(3, pe) has an ovoid if and only if p = 2; and W(2r − 1, pe), r > 2, has no ovoids. The
concept of an m-ovoid was first defined by Thas [23] for generalized quadrangles, and
then generalized to that in classical polar spaces by Shult and Thas [21]. There are some
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closely related objects, called i-tight sets, in W(2r− 1, pe). We will not study i-tight sets
in this paper, but simply mention that m-ovoids and i-tight sets of W(2r − 1, pe) can be
unified under the umbrella of intriguing sets [2] of W(2r − 1, pe).

Intriguing sets (in particular, m-ovoids) in classical polar spaces have close connections
with other geometric and combinatorial structures such as strongly regular graphs and
projective two-weight codes, cf. [2, 3, 4, 8]. For example, m-ovoids in W(2r−1, pe) turn out
to be projective two-intersection sets in PG(2r−1, pe) and thus give rise to strongly regular
graphs, cf. [2]. There is also a significant relation between projective two-intersection sets
and two-weight codes, cf. [8]. A construction of m-ovoids in Q−(5, pe) via strongly regular
Cayley graphs was given in [3].

The main problem concerningm-ovoids in W(2r−1, pe) is: For whichm ≥ 1 does there
exist an m-ovoid in W(2r − 1, pe)? As we mentioned above, when m = 1, this problem
is completely solved. In sharp contrast, the existence problem for m-ovoids with m ≥ 2
is wide open. We give a brief summary of known results here. We start with W(3, pe):
When p is odd, there are no ovoids in W(3, pe), cf. [19]; but there is a partition of W(3, pe)
into 2-ovoids, so there exists an m-ovoid in W(3, pe) for each even positive integer m, cf.

[4]; moreover Cossidente et al. gave a construction of (pe+1)
2

-ovoids in W(3, pe) when p is
odd in [7]. When p = 2, Cossidente et al. gave a construction of m-ovoids for all possible
m in W(3, pe) in [7]. Next we consider the case of W(5, pe): First there are some sporadic
examples of m-ovoids in W(5, pe), cf. [2]; when p = 2, Cossidente and Pavese [9] gave two
constructions of nonclassical (pe + 1)-ovoids in W(5, pe) by utilizing relative hemisystems
and embedded Suzuki-Tits ovoids of a Hermitian surface. For general W(2r − 1, pe),
in terms of necessary conditions, it is proved in [2] that if there exists an m-ovoid in

W(2r − 1, pe) with r > 2, then m ≥ (−3+
√
9+4per)

2pe−2
; as for constructions, Cossidente and

Pavese [10] gave a partition of W(4n − 1, pe) into a (pe(2n−2)−1)
pe−1

-ovoid, a pe(2n−2)-ovoid

and some 2pe(2n−2)-ovoidsfor pe even. Also we should mention an important construction
method: by using field reduction, an m′-ovoid in low rank classical polar spaces gives rise
to an m-ovoid in higher rank classical polar space. Specifically with the method of field
reduction, an m′-ovoid in W (2r′ − 1, pe

′
) gives rise to an m-ovoid in W (2r− 1, pe) if r′ | r

and re = r′e′, cf. [15]. In the end of Section 3 of this paper, we will construct m-ovoids
in W (2r− 1, pe), with r being a prime, say p0; since p0 has only two factors 1 and p0, an
m-ovoid in W (2p0 − 1, pe) can not be constructed from an m′-ovoid in a symplectic polar
space with rank lower than p0 by the field reduction method.

As can be seen from the above summary there has been very little work on m-ovoids
in high rank symplectic polar spaces. In terms of constructions, when q is odd, the only
known contruction method for m-ovoids in high rank symplectic polar spaces is the field
reduction method, cf. [15]. In this paper, we develope a new construction method which
allows us to construct many new m-ovoids in high rank symplectic polar spaces. To
facilitate the description of our method, we give the following equivalent definition of
m-ovoids in W(2r − 1, pe).

Lemma 1.1. Let M be a set of points of W(2r − 1, pe). Then M is an m-ovoid if and
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only if

|P⊥ ∩M| =
{

m(pe(r−1) + 1)− pe(r−1), if P ∈ M,

m(pe(r−1) + 1), otherwise.
(1.1)

For a proof of the lemma, we refer the reader to [2]. The basic idea of our construction
of m-ovoids is to use a partial converse to Theorem 11 in [2]. Concerning W(2r − 1, pe),
Theorem 11 in [2] says that an m-ovoid gives rise to a strongly regular Cayley graph
over (F2r

pe,+) of negative Latin square type. A partial converse to this statement is true;
that is, a strongly regular Cayley graph over (F2r

pe,+) of negative Latin square type with
some special property can give rise to an m-ovoid in W(2r − 1, pe) (the special property
is the “self-dual” property; this will be made precise in Theorem 3.2). To implement
this strategy, we start with some strongly regular Cayley graphs Cay(Fq, D) in [6], and
equip the ambient finite field Fq, now viewed as a vector space over a subfield Fpe, with
an appropriate non-degenerate alternating form f , and show that with respect to f , D is
“self-dual”, hence the set M of projective points obtained from D will satisfy (1.1), giving
rise to an m-ovoid in the symplectic polar space W(2r−1, pe) of rank r. The organization
of this paper is as follows. In Section 2, we give some preliminaries on strongly regular
graphs and describe the construction using cyclotomic classes of finite fields in [6]. In
Section 3, we first describe our construction strategy, and then give the details of our
construction of m-ovoids. We conclude the paper with Section 4.

2. Preliminaries

A strongly regular graph srg(v, k, λ, µ) is a simple and undirected graph, neither com-
plete nor edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.
(2) For each pair of adjacent vertices x, y, there are exactly λ vertices adjacent to both

x and y.
(3) For each pair of nonadjacent vertices x, y, there are exactly µ vertices adjacent to

both x and y.

For example, the pentagon is an srg(5, 2, 0, 1) and the Petersen graph is an srg(10, 3, 0, 1).
The parameters of an srg(v, k, λ, µ) satisfy the following basic relation.

Lemma 2.1. [14, Section 10.1] Let Γ be an srg(v, k, λ, µ). Then

k(k − λ− 1) = (v − k − 1)µ.

Let Γ be a (simple, undirected) graph. The adjacency matrix of Γ is the (0, 1)-matrix
A with both rows and columns indexed by the vertex set of Γ, where Axy = 1 when there
is an edge between x and y in Γ and Axy = 0 otherwise. The eigenvalues of Γ are defined
to be those of its adjacency matrix A. For convenience we call an eigenvalue of Γ restricted
if it has an eigenvector which is not a multiple of the all-ones vector 1. (For a k-regular
connected graph, the restricted eigenvalues are simply the eigenvalues different from k.)
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Theorem 2.2. For a simple graph Γ of order v, neither complete nor edgeless, with
adjacency matrix A, the following are equivalent:

1. Γ is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,

2. A2 = (λ− µ)A+ (k − µ)I + µJ for certain real numbers k, λ, µ, where I, J are the
identity matrix and the all-ones matrix, respectively,

3. A has precisely two distinct restricted eigenvalues α1, α2.

For a proof of Theorem 2.2, we refer the reader to [5]. For later use, we write down the
explicit relations between the paramenters of an srg(v, k, λ, µ) and its restricted eigenval-
ues α1, α2.

Lemma 2.3. [14, Section 10.2] Let Γ be an srg(v, k, λ, µ) with restricted eigenvalues α1,
α2, where α1 > α2. Then

α1 =
(λ− µ) +

√

(λ− µ)2 + 4(k − µ)

2
,

α2 =
(λ− µ)−

√

(λ− µ)2 + 4(k − µ)

2
,

(2.1)

with multiplicities m1 =
1
2
((v−1)− 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)
) and m2 =

1
2
((v−1)+ 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)
)

respectively.

An effective method to construct strongly regular graphs is by the Cayley graph con-
struction. Let G be an additively written abelian group of order v, and let D be a subset
of G such that 0 6∈ D and −D = D, where −D = {−d | d ∈ D}. The Cayley graph
on G with connection set D, denoted by Cay(G,D), is the graph with the elements of
G as vertices; two vertices are adjacent if and only if their difference belongs to D. Let
Ĝ be the (complex) character group of G. All the eigenvalues of Cay(G,D) are given by
ψ(D) :=

∑

d∈D ψ(d), ψ ∈ Ĝ. Note that ψ0(D) = |D|, where ψ0 is the principal character
of G. By Theorem 2.2, the graph Cay(G,D) is strongly regular if and only if D generates
G and {ψ(D) : ψ ∈ Ĝ \ {ψ0}} = {α1, α2} with α1 6= α2. If this is the case, then the
connection set D is called a partial difference set, and the Delsarte dual of D is defined
to be either of {ψ ∈ Ĝ : ψ(D) = αi}, i = 1, 2.

An srg(v, k, λ, µ) is said to be of Latin square type (resp. negative Latin square type)
if (v, k, λ, µ) = (n2, a(n− ǫ), ǫn + a2 − 3ǫa, a2 − ǫa) and ǫ = 1 (resp. ǫ = −1).

Let G and D be the same as above. Suppose that Cay(G,D) is an srg(v, k, λ, µ).
Then, by Lemma 2.3, one of the duals of D has the same size as that of D if and only if

k =
1

2
((v − 1)− 2k + (v − 1)(λ− µ)

√

(λ− µ)2 + 4(k − µ)
) or k =

1

2
((v − 1) +

2k + (v − 1)(λ− µ)
√

(λ− µ)2 + 4(k − µ)
),

which in turn is equivalent to

(2k + (v − 1)(λ− µ))2

(λ− µ)2 + 4(k − µ)
= (v − 1− 2k)2. (2.2)
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After some tedious computations, we see that when (2.2) is satisfied, v must be a square,
and µ = ( k√

v−1
)2 − k√

v−1
or µ = ( k√

v+1
)2 + k√

v+1
. Note that by Lemma 2.1, λ = k − 1 +

(1 − v−1
k
)µ. Consequently if one of the duals of D has the same size as that of D, then

the strongly regular graph Cay(G,D) must be of Latin square or negative Latin square
type.

Conversely, when (v, k, λ, µ) = (n2, a(n − 1), n + a2 − 3a, a2 − a), by Lemma 2.3,
α1 = n − a with multiplicity f = a(n − 1), and α2 = −a with multiplicity g = (n + 1 −
a)(n − 1). Thus the dual {ψ ∈ Ĝ : ψ(D) = α1} has the same size as that of D. When
(v, k, λ, µ) = (n2, a(n+ 1),−n+ a2 + 3a, a2 + a), by Lemma 2.3, α1 = a with multiplicity
f = (n − 1 − a)(n + 1), and α2 = a − n with multiplicity g = a(n + 1). Thus the dual
{ψ ∈ Ĝ : ψ(D) = α2} has the same size as that of D.

We will use Cayley graphs Cay(Fq, D), where the connection sets are unions of cyclo-
tomic classes, for the purpose of constructing m-ovoids in symplectic polar spaces. To
this end, we define cyclotomic classes of finite fields. Let q = ps be a prime power, and
let γ be a fixed primitive element of Fq. Let N > 1 be a divisor of q − 1. We define the

N th cyclotomic classes C
(N,q)
i of Fq by

C
(N,q)
i = {γjN+i | 0 ≤ j ≤ q − 1

N
− 1},

where 0 ≤ i ≤ N − 1. That is, C
(N,q)
0 is the subgroup of F∗

q consisting of all nonzero N th

powers in Fq, and C
(N,q)
i = γiC

(N,q)
0 , for 1 ≤ i ≤ N − 1. In the sequel, if N, q are clear

from the context, we will simply write C
(N,q)
i as Ci.

Suppose that q = ps with p a prime, and let e be any positive divisor of s. Let
Trq/pe : Fq → Fpe be the trace function from Fq to Fpe, i.e.,

Trq/pe(x) = x+ xp
e

+ · · ·+ xp
e(s/e−1)

, ∀x ∈ Fq.

Set ωp := exp
(

2π
√
−1

p

)

. Define ψFq : Fq → C∗ by

ψFq(x) = ω
Trq/p(x)
p , ∀x ∈ Fq.

The map ψFq is a character of the additive group of Fq, and it is called the canonical
additive character of Fq. For any y ∈ Fq, we define ψFq,y: Fq → C∗ by

ψFq,y(x) = ψFq(xy), ∀x ∈ Fq.

It is well known that {ψFq,y | y ∈ Fq} = (̂Fq,+).
Next we recall the following construction of strongly regular Cayley graphs given in

[6], see also [5, Section 9.8.5]. Suppose that q = ps with p prime, and let N be a proper
divisor of q−1 such that pℓ ≡ −1 (mod N) for some positive integer ℓ. Choose ℓ minimal
and write s = 2ℓt. Take a proper subset J ⊂ ZN of size u. If q is even, then the choice of

5



J is arbitrary; if q is odd, then we require that N | q−1
2

and J + q−1
2

= J . Set DJ = ∪i∈JCi.
Then the graph Cay(Fq, DJ) is strongly regular with eigenvalues

k =
q − 1

N
u, with multiplicity 1,

α1 =
u

N
(−1 + (−1)t

√
q), with multiplicitiy q − 1− k,

α2 =
u

N
(−1 + (−1)t

√
q) + (−1)t+1√q, with multiplicity k.

(2.3)

To be specific, for i = 0, 1, . . . , N − 1, we have

ψFq(γ
iD) =











α2, if εs = 1 and i ∈ −J (mod N)

or εs = −1 and i ∈ −J +N/2 (mod N),

α1, otherwise,

(2.4)

where ε =

{

−1, if N is even and pℓ+1
N

is odd;

1, otherwise.

The graph Cay(Fq, DJ) is of Latin square type (resp. negative Latin square type) if t is
odd (resp. even).

3. Construcions of m-ovoids in W(2r − 1, pe) via strongly regular Cayley
graphs

Throughout the rest of this paper, we fix the following notation. Let q = ps, where p
is an odd prime and s = 2er for some positive integers e and r ≥ 2. We view Fq as a 2r
-dimensional vector space over Fpe (a subfield of Fq), and denote this Fpe-vector space by
V . As usual, for a nonzero v ∈ V , we write 〈v〉 for the projective point in the projective
space PG(V ) corresponding to the 1-dimensional Fpe-subspace spanned by v. We will

equip a bilinear form on V as follows. Let L(X) =
∑2r−1

i=0 ciX
pie ∈ Fq[X ] be a linearized

polynomial. Define f : V × V → Fpe by

f(x, y) = Trq/pe(xL(y)), ∀(x, y) ∈ V × V.

Then f is an Fpe-bilinear form on V .

Lemma 3.1. With notation as above, the Fpe-bilinear form f on V is alternating if and

only c0 = 0 and cp
ie

2r−i = −ci for 1 ≤ i ≤ 2r − 1. Moreover, the form f is non-degenerate
if and only if x 7→ L(x) is a bijection from Fq to itself.

Proof. The form f is alternating if and only if f(x, x) = 0 for all x ∈ V . We have

f(x, x) =
2r−1
∑

i=0

Trq/pe
(

cix
1+pie

)

=
2r−1
∑

i,j=0

cp
je

i xp
je+p(i+j)e

=
∑

0≤i<k≤2r−1

(cp
ie

k−i + cp
ke

2r−k+i)x
pie+pke +

2r−1
∑

j=0

cp
je

0 x2p
je

.
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We view f(x, x) as a polynomial in x with coefficients in Fq. As can be seen from the
above expression, f(x, x) has degree less than or equal to q − 1. The polynomial f(x, x)
vanishes at every element of Fq if and only if it is the zero polynomial. The first claim of
the lemma now follows by comparing the coefficients.

Assume that f is non-degenerate. Suppose that f(x, y) = Trq/pe(xL(y)) = 0 for all
x ∈ Fq. We must have L(y) = 0 since Trq/pe is a nontrivial linear form on V . By the
assumption that f is non-degenerate, we have y = 0. It follows that x 7→ L(x) is a
bijection since L is linearized. The proof of the converse is straightforward. This proves
the second claim of the lemma.

Let L(X) =
∑2r−1

i=1 ciX
pie ∈ Fq[X ] be a linearized permutation polynomial such that

f(x, y) = Trq/pe(xL(y)) is a non-degenerate alternating form. Equip V = (Fq, +) with the
alternating form f , and this will be our model for the symplectic polar space W(2r−1, pe)
of rank r. For any nonzero y ∈ V , we define

〈y〉⊥ = {〈x〉 | f(x, y) = 0, x ∈ V \ {0}}.

Also for any y ∈ V we define Ψy ∈ (̂Fq,+) as follows:

Ψy(x) = ψFq(xL(y)) = ψFpe
(f(x, y)).

It is well known that {Ψy | y ∈ V } = (̂Fq,+). We now give the definition of self-dual
partial difference sets in (Fq,+). (Note that such a self-dual partial difference set is
necessarily of Latin square type or negative Latin square type by the discussions in the
last section.) Let D be an F∗

pe-invariant subset of F
∗
q . That is, D is a union of some cosets

of F∗
pe in F∗

q. Assume that Cay(Fq, D) is a strongly regular graph of negative Latin square
type, and with parameters

(q, |D|,−√
q + (

|D|√
q + 1

)2 +
3|D|√
q + 1

, (
|D|√
q + 1

)2 +
|D|√
q + 1

).

Let D∗ ⊂ Fq \ {0} be such that {Ψy ∈ (̂Fq,+) | y ∈ D∗} is one of the Delsarte duals.
We say that D is self-dual if D∗ = D. Now we state the connection between m-ovoids in
W(2r − 1, pe) and self-dual partial difference sets in (Fq,+) explicitly.

Theorem 3.2. With notation as above, let D be an F∗
pe-invariant subset of F

∗
q such that

|D| ≡ 0 (mod (
√
q + 1)(pe − 1)). Then the set M = {〈v〉 : v ∈ D} is a |D|

(pe−1)(
√
q+1)

-

ovoid in W(2r−1, pe) if and only if D is a self-dual partial difference set with parameters

(q, |D|,−√
q + ( |D|√

q+1
)2 + 3|D|√

q+1
, ( |D|√

q+1
)2 + |D|√

q+1
).

Proof. Assume thatD is a self-dual partial difference set with the above parameters. Then
by Lemma 2.3, the graph Cay(Fq, D) has two eigenvalues α1 = |D|√

q+1
(with multiplicity

m1 = q − 1 − |D|), and α2 = |D|√
q+1

− √
q (with multiplicity m2 = |D|); and furthermore

since D is self-dual, we have Ψy(D) = α2 if y ∈ D∗ = D, and Ψy(D) = α1 if y ∈ F∗
q \D.
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Write M := {〈vi〉 : 1 ≤ i ≤ M}, where M = |D|/(pe − 1). Then D = {θvi : 1 ≤ i ≤
M, θ ∈ F∗

pe}. For any nonzero y ∈ V , we have

Ψy(D) =
M
∑

i=1

∑

θ∈F∗
pe

Ψy(θvi)

=
M
∑

i=1

∑

θ∈F∗
pe

ψFpe
(θf(vi, y))

= −M +
M
∑

i=1

∑

θ∈Fpe

ψFpe
(θf(vi, y))

= −M + pe · |{1 ≤ i ≤M : f(vi, y) = 0}|
= pe · |〈y〉⊥ ∩M| − |M|.

Now from Ψy(D) = α2 if y ∈ D, we obtain

|〈y〉⊥ ∩M| = |D|
(pe − 1)(

√
q + 1)

· (pe(r−1) + 1)− pe(r−1) if 〈y〉 ∈ M;

and from Ψy(D) = α1 if y ∈ F∗
q \D, we obtain

|〈y〉⊥ ∩M| = |D|
(pe − 1)(

√
q + 1)

· (pe(r−1) + 1) if 〈y〉 6∈ M.

Therefore M is a |D|
(pe−1)(

√
q+1)

-ovoid in W(2r− 1, pe) by Lemma 1.1. The converse can be

proved by simply running the above reasoning backwards. The proof is complete.

We make some comments on self-duality. Let D be an F∗
pe-invariant subset of F∗

q .
Assume that Cay(Fq, D) is a strongly regular graph of negative Latin square type with
parameters

(q, |D|,−√
q + (

|D|√
q + 1

)2 +
3|D|√
q + 1

, (
|D|√
q + 1

)2 +
|D|√
q + 1

).

Define
D′ = {y ∈ Fq | ψFq ,y(D) = α2}. (3.1)

Noting that Ψy(D) = ψFq ,L(y)(D), we see that D is self-dual if and only if L(D) = D′.
We will use Theorem 3.2 for the purpose of constructing m-ovoids in W(2r − 1, pe).

The first step is to equip V with a concrete non-degenerate alternating form by choosing
L(X) carefully. Let γ be a primitive element of Fq (recall that q = ps is an odd prime

power, and s = 2er), and set δ = γ
√
q+1

2 ∈ Fq. Then we have δ
√
q = −δ. Let L(X) = δX

√
q.

By Lemma 3.1, f(x, y) := Trq/pe(xL(y)) is a non-degenerate alternating form defined on
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V . We will take V equipped with this f as our model for the symplectic polar space
W(2r − 1, pe) in the rest of this paper.

We further assume that q = ps with s = 2ℓt and t even. Take N = pℓ + 1, and let
C0, . . . , CN−1 be the N th cyclotomic classes of Fq. In this case, it is easy to verify that
N | q−1

2
. Let J be a proper subset of ZN of size u, and set DJ = ∪i∈JCi. By [6] (see the

discussions in the end of Section 2), the graph Cay(Fq, DJ) is a strongly regular graph
with negative Latin square type parameters

(q,
u(
√
q − 1)

N
(
√
q + 1),−√

q + (
u(
√
q − 1)

N
)2 +

3u(
√
q − 1)

N
, (
u(
√
q − 1)

N
)2 +

u(
√
q − 1)

N
).

Moreover, its eigenvalues are

ψFq(γ
iDJ) =

{

u
N
(
√
q − 1)−√

q, if − i (mod N) ∈ J,
u
N
(
√
q − 1), otherwise.

(3.2)

It follows that D′
J = ∪−i∈JCi, where D

′
J is defined in (3.1). In order to use Theorem 3.2

to obtain m-ovoids in W(2r−1, pe), we need DJ to be self-dual. To avoid possible overlap
with the m-ovoids obtained by the field reduction method, we further assume that r is
odd.

Lemma 3.3. With notation as above, DJ is self-dual if and only if J is σ-invariant,
where σ : i 7→ −1− i (mod N).

Proof. We have L(Ci) = γ
√

q+1

2
+
√
qiC0, i.e., L maps Ci to Cτ(i), where τ(i) :=

√
q+1

2
+
√
qi

(mod N). Note that
√
q ≡ 1 (mod N), and

√
q−1

2
= (pℓt−1)

(p2ℓ−1)
· (pℓ−1)

2
· N ≡ 0 (mod N)

since t is even by assumption. Therefore τ(i) = i + 1 (mod N). The partial difference
set DJ is self-dual if and only if L(DJ ) = D′

J which in turn is equivalent to {i + 1
(mod N) : i ∈ J} = {−i (mod N) : i ∈ J}, i.e., −J − 1 = J . The proof of the lemma is
complete.

Lemma 3.4. With notation as above, DJ is F∗
pe-invariant if and only if J is invariant

under the map ρ : i 7→ i+ 2d0 (mod N), where d0 is an odd integer defined by

d0 := gcd

(

N

2
,

√
q − 1

pe − 1

)

. (3.3)

Proof. Note that F∗
pe = 〈γ(q−1)/(pe−1)〉. So DJ is F∗

pe-invariant if and only if J is invariant

under the map i 7→ i+ q−1
pe−1

(mod N). We have
√
q + 1 ≡ 2 (mod N) by the assumption

that t is even. It follows that gcd(N, q−1
pe−1

) = gcd(N,
2(
√
q−1)

pe−1
) = 2d0 with d0 as defined in

(3.3).The conclusion of the lemma follows.

Theorem 3.5. Let p be an odd prime, and q = ps with s = 2er = 2ℓt for some positive
integers e, r, ℓ, t, where r is odd and t is even. Set N = pℓ + 1, and let d0 be defined as

in (3.3). If d0 > 1, then there exists a
b(
√
q−1)

d0(pe−1)
-ovoid in W(2r − 1, pe) for each integer

1 ≤ b ≤ d0 − 1.
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Proof. We continue with the above notation. By Lemma 3.3 and Lemma 3.4, the set
DJ is F∗

pe-invariant and satisfies L(DJ) = D′
J if and only if J is invariant under the

map ρ : i 7→ i + 2d0 (mod N) and σ : i 7→ −1 − i (mod N). We claim that 〈ρ, σ〉 =

{1, ρ, ρ2, ..., ρ
N
2d0

−1
, σ, ρσ, ρ2σ, ..., ρ

N
2d0

−1
σ} by the fact that 〈ρ, σ〉 is a dihedral group D N

d0

,

cf. [20, 2.24]. Thus each 〈ρ, σ〉-orbit O on ZN has equal length N
d0
, and the corresponding

union DO = ∪i∈OCi of cyclotomic classes has size |C0| · N
d0

= q−1
d0

. This number is divisible

by (
√
q + 1)(pe − 1), since d0 divides

√
q−1

pe−1
by (3.3). Therefore, DO is an m-ovoid in

W(2r − 1, pe) with m =
√
q−1

d0(pe−1)
. By taking union of b such DO’s, we get bm-ovoids in

W(2r − 1, pe) for 1 ≤ b ≤ d0 − 1.

For the following discussions, we choose r to be an odd prime p0, and give explicit
conditions that guarantee d0 > 1, where d0 is defined in (3.3). This excludes the possibility
that the resulting m-ovoids from Theorem 3.5 come from field reduction. Recall that
s = 2ep0 = 2ℓt with t even. We consider two cases.

(A) First consider the case p0 | t. Write t = p0t0. So t0 is even and e = ℓt0, and

√
q − 1

pe − 1
=

p0−1
∑

i=0

pie =

p0−1
∑

i=0

piℓt0 ≡ p0 (mod pℓ + 1).

Therefore, d0 = gcd(N/2, p0) = gcd(N, p0). In this case, d0 > 1 if and only if
p0 | (pℓ + 1), which in turn is equivalent to d0 = p0. In Table 1, we give some
examples of m-ovoids constructed by using Theorem 3.5 in this case.

(B) Next consider the case where p0 does not divide t. In this case, from p0e = ℓt, we

deduce that p0 | ℓ. Write ℓ = ℓ0p0. Then e = ℓ0t. We show that d0 = gcd(N/2,
√
q−1

pe−1
)

is always greater than 1. We have
√
q − 1 = pℓt − 1 ≡ (−1)t − 1 = 0 (mod N) by

the fact t is even, so N/2 divides
√
q − 1. On the other hand, gcd(pe − 1, N/2)

divides gcd(pe − 1, p2ℓ − 1) = pgcd(e,2ℓ) − 1 = p2ℓ0 − 1 by the fact p0 ∤ t. Since
p2ℓ0 −1 < N/2 = (pℓ0p0 +1)/2, we see that N/2 does not divide pe−1. We conclude
that d0 > 1. In Table 2, we give some examples of m-ovoids constructed by using
Theorem 3.5 in this case.

It was conjectured in [1] that if an m-ovoid exists in W(2r − 1, pe) with r > 2, then
m ≥ cpe(r−2) for some positive constant c > 0. From Theorem 3.5, we know that there

exist m-ovoids in W(2r − 1, pe) with m =
b(
√
q−1)

d0(pe−1)
if d0 > 1. We compute

m

pe(r−2)
=

b(
√
q − 1)

d0(pe − 1)pe(r−2)
=

b(per − 1)

d0(pe(r−1) − pe(r−2))

In the following we show that the aforementioned conjecture is false.

Example 3.6. In the case (B), when p = 3, r = p0 = 5, t = 2, we have d0 = gcd (3
5ℓ0+1
2

, 3
10ℓ0−1
32ℓ0−1

).

It follows that 35ℓ0+1
3ℓ0+1

| d0; thus m
pe(p0−2) ≤ b(34ℓ0+33ℓ0+32ℓ0+3ℓ0+1)

36ℓ0
, for some fixed b, and

limℓ0→∞
m

pe(p0−2) = 0.
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Table 1: m-ovoids constructed from Theorem 3.5 in the case r = p0 odd prime, p0 | t

p0 p ℓ t d0 W (2p0 − 1, pe) m

3 p odd 1 6k, k ∈ Z+ 3 W (5, p2k) b
3
(p4k + p2k + 1), b ∈ {1, 2}

5 3 2 10k, k ∈ Z+ 5 W (9, 34k) b(320k−1)
5(34k−1)

, 1 ≤ b ≤ 4

5 7 2 10k, k ∈ Z+ 5 W (9, 74k) b(720k−1)
5(74k−1)

, 1 ≤ b ≤ 4

5 13 2 10k, k ∈ Z+ 5 W (9, 134k) b(1320k−1)
5(134k−1)

, 1 ≤ b ≤ 4

5 17 2 10k, k ∈ Z+ 5 W (9, 174k) b(1720k−1)
5(174k−1)

, 1 ≤ b ≤ 4

5 19 1 10k, k ∈ Z+ 5 W (9, 192k) b(1910k−1)
5(192k−1)

, 1 ≤ b ≤ 4

7 3 3 14k, k ∈ Z+ 7 W (13, 36k) b(342k−1)
7(36k−1)

, 1 ≤ b ≤ 6

7 5 3 14k, k ∈ Z+ 7 W (13, 56k) b(542k−1)
7(56k−1)

, 1 ≤ b ≤ 6

7 13 3 14k, k ∈ Z+ 7 W (13, 136k) b(1342k−1)
7(136k−1)

, 1 ≤ b ≤ 6

11 7 5 22k, k ∈ Z+ 11 W (21, 710k) b(7110k−1)
11(710k−1)

, 1 ≤ b ≤ 10

11 13 5 22k, k ∈ Z+ 11 W (21, 1310k) b(13110k−1)
11(1310k−1)

, 1 ≤ b ≤ 10

11 17 5 22k, k ∈ Z+ 11 W (21, 1710k) b(17110k−1)
11(1710k−1)

, 1 ≤ b ≤ 10

11 19 5 22k, k ∈ Z+ 11 W (21, 1910k) b(19110k−1)
11(1910k−1)

, 1 ≤ b ≤ 10

13 5 2 26k, k ∈ Z+ 13 W (25, 54k) b(552k−1)
13(54k−1)

, 1 ≤ b ≤ 12

13 7 6 26k, k ∈ Z+ 13 W (25, 712k) b(5156k−1)
13(512k−1)

, 1 ≤ b ≤ 12

Table 2: m-ovoids constructed from Theorem 3.5 in the case r = p0 odd prime, p0 ∤ t

p0 p ℓ t d0 W (2p0 − 1, pe) m

3 3 3 2k, 3 ∤ k 7 W (5, 32k) b(36k−1)
7(32k−1)

, 1 ≤ b ≤ 6

3 5 3 2k, 3 ∤ k 21 W (5, 52k) b(56k−1)
21(52k−1)

, 1 ≤ b ≤ 20

3 7 3 2k, 3 ∤ k 43 W (5, 72k) b(76k−1)
43(72k−1)

, 1 ≤ b ≤ 42

5 3 5 2k, 5 ∤ k 61 W (9, 32k) b(310k−1)
61(32k−1)

, 1 ≤ b ≤ 60

5 5 5 2k, 5 ∤ k 521 W (9, 52k) b(510k−1)
521(52k−1)

, 1 ≤ b ≤ 520

7 3 7 2k, 7 ∤ k 547 W (13, 32k) b(314k−1)
547(32k−1)

, 1 ≤ b ≤ 546

7 5 7 2k, 7 ∤ k 13021 W (13, 52k) b(514k−1)
13021(52k−1)

, 1 ≤ b ≤ 13020

11 3 11 2k, 11 ∤ k 44287 W (21, 32k) b(322k−1)
44287(32k−1)

, 1 ≤ b ≤ 44286
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Example 3.7. In the case (B), when p = 5, r = p0 = 7, t = 2, we have d0 = gcd (5
7ℓ0+1
2

, 5
14ℓ0−1
52ℓ0−1

).

It follows that 57ℓ0+1
5ℓ0+1

| d0; thus m
pe(p0−2) ≤ b(57ℓ0−1)

(5ℓ0−1)510ℓ0
, for some fixed b, and limℓ0→∞

m
pe(p0−2) =

0.

Example 3.8. In the case (B), when p = 5, r = p0 = 11, t = 2, we have d0 =

gcd (5
11ℓ0+1

2
, 5

22ℓ0−1
52ℓ0−1

). It follows that 511ℓ0+1
5ℓ0+1

| d0; thus m
pe(p0−2) ≤ b(511ℓ0−1)

(5ℓ0−1)518ℓ0
, for some

fixed b, and limℓ0→∞
m

pe(p0−2) = 0.

4. Conclusion

In this paper, we develop a new method for constructing m-ovoids in finite symplectic
spaces. We use some “special” strongly regular Cayley graphs Cay(Fq, D) from uniform
cyclotomy in [6] and equip the ambient finite field Fq with a non-degenerate alternating
form f so that the connection set D gives rise to an m-ovoid in the symplectic space
(Fq, f). In this way we are able to obtain m-ovoids in high rank symplectic spaces which
do not come from field reduction. We remark that there have been extensive investigations
on constructions of strongly regular Cayley graphs from cyclotomy in recent years, cf.
[13, 16, 12, 17], and it will be of interest to examine whether further new m-ovoids can
arise from Theorem 3.2.

We mention in passing that we only considered constructing m-ovoids in symplectic
spaces from strongly regular graphs of negative Latin square type, but did not discuss
similar constructions of i-tight sets in symplectic spaces from strongly regular graphs of
Latin square type. The reason is as follows: each component of a spread of W(2r− 1, pe)
is a 1-tight set, thus there exist i-tight sets for all i in W(2r − 1, pe).

The results in this paper show that there are many more m-ovoids in finite symplectic
spaces than previously thought. Still it remains an interesting problem to determine for
which values of m there exists an m-ovoid in W(2r − 1, pe).
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