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A new family of Hadamard matrices of order 4(2q2+1)

Ka Hin Leung, Koji Momihara, and Qing Xiang

Abstract. Let q be a prime power of the form q = 12c2+4c+3 with c an arbitrary in-

teger. In this paper we construct a difference family with parameters (2q2; q2, q2, q2, q2−

1; 2q2 − 2) in Z2 × (Fq2 ,+). As a consequence, by applying the Wallis-Whiteman array,

we obtain Hadamard matrices of order 4(2q2 + 1) for the aforementioned q’s.

1. Introduction

A Hadamard matrix of order v is a v×v matrixH with entries ±1 such thatHH⊤ = vI,

where I is the identity matrix. It can be easily shown that if H is a Hadamard matrix

of order v, then v = 1, 2, or 4t for some positive integer t. A long-standing conjecture in

combinatorics states that a Hadamard matrix of order v exists for every v ≡ 0 (mod 4).

Despite the work of many researchers, the conjecture is far from being resolved. Currently

it is still not known whether the set of orders of Hadamard matrices has positive density.

For some sparse infinite subsequences of {4t : t = 1, 2, 3, . . .}, it is often possible to

construct Hadamard matrices of order v for every v belonging to the subsequences. The

most famous examples are the Paley constructions which produce Hadamard matrices of

order q + 1 if q is a prime power congruent to 3 modulo 4, and Hadamard matrices of

order 2(q + 1) if q is a prime power congruent to 1 modulo 4. As further examples, we

mention that for prime powers q ≡ 1 (mod 4) or q ≡ 3 (mod 8), Xia and Liu [12, 14]

construct Hadamard matrices of order 4q2; for q ≡ 7 (mod 8), the first author, Ma and

Schmidt [4] construct two possibly infinite families of Hadamard matrices of order 4q2.

All these constructions are based on cyclotomy of finite fields. The Paley constructions

use the nonzero squares of Fq. The constructions by Xia and Liu [12, 14], and by Leung,

Ma, and Schmidt [4] use the 4th, 8th and (q + 1)th cyclotomic classes of Fq2. The main

idea behind the constructions of Xia/Liu and Leung/Ma/Schmidt is to use cyclotomic

classes of finite fields to construct a difference family with appropriate parameters in an

abelian group G.
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Throughout this paper, we will use the following notation. Let (G,+) be an additively

written finite abelian group and let G∗ := G \ {0G}. For any subset D in G, we define

D(−1) := {−x : x ∈ D}, D := G∗ \D, and Dc := G \D. Furthermore, we will identify D

with the group ring element
∑

x∈D x ∈ Z[G] when there is no confusion.

Let Bi, i = 1, 2, . . . , ℓ, be ki-subsets of G. The set B = {Bi : i = 1, 2, . . . , ℓ} is

called a difference family with parameters (v; k1, k2, . . . , kℓ;λ) in G if the list of differences

“x − y, x, y ∈ Bi, x 6= y, i = 1, 2, . . . , ℓ” represents every nonzero element of G exactly λ

times; or equivalently

ℓ
∑

i=1

BiB
(−1)
i = λG+

(

ℓ
∑

i=1

ki − λ
)

· 0G.

Each subset Bi is called a block of B. We now define two special classes of difference

families. A difference family in G with four blocks is said to be of type H if
∑4

i=1 ki−|G| =

λ; and of type H∗
4 if

∑4
i=1 ki − (|G|+ 1) = λ.

It is well known that if there is a difference family of type H in G, then we obtain a

Hadamard matrix of order 4|G| by plugging the group invariant (−1, 1) matrices obtained

from its blocks into the Goethals-Seidel array [1]. In the literature, difference families of

type H have been extensively studied [4, 12, 13, 14, 15, 16, 17].

On the other hand, from a difference family of type H∗
4 in a finite abelian group G, we

obtain a Hadamard matrix of order 4(|G|+1) by plugging the the group invariant (−1, 1)

matrices obtained from its blocks into the Wallis-Whiteman array [10, Theorem 4.17].

Indeed difference families of type H∗
4 are particularly interesting as the orders of the

Hadamard matrices obtained from the difference families are no longer of the form 4|G|,

but of the form 4(|G| + 1). Very recently, the first and second authors [5] gave two new

constructions of difference families of type H∗
4 with parameters (2n;n, n, n, n− 1; 2n− 2).

Difference families with these parameters were initially considered by Whiteman [11], who

obtained one infinite family. Soon afterwards, Spence [8] came up with two new families

whose constructions are based on relative difference sets. On the other hand, the existence

of difference families with parameters (2n;n, n, n, n − 1; 2n − 2) in dihedral groups was

also studied in [2, 3, 7]. Let us summarize all known constructions of difference families

of type H∗
4 with parameters (2n;n, n, n, n− 1; 2n− 2).

Theorem 1.1. There exists a difference family of type H∗
4 with parameters (2n;n, n, n,

n− 1; 2n− 2) if n satisfies any of the following conditions:

(1) [11, 7] n = q and 2q − 1 are both prime powers.

(2) [8] q = 2n + 1 is a prime power for which there exists a nonnegative integer s

such that (q − 2s+1 − 1)/2s+1 is an odd prime power.

(3) [8] n = q is a prime power such that q ≡ 1 (mod 4), and q − 2 is also a prime

power.
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(4) [5] n = 9t0q4t11 q4t22 · · · q4tss , where pi, i = 1, 2, . . . , s, are prime powers and ti,

i = 0, 1, . . . , s, are nonnegative integer.

(5) [5] n = q2 with q a prime power such that q ≡ 1 (mod 4).

In particular, there exists a Hadamard matrix of order 4(2n + 1) if n satisfies any of the

above conditions.

In this paper, we obtain a new series of difference families of type H∗
4 with parameters

(2q2; q2, q2, q2, q2−1; 2q2−2) where q is a prime power congruent to 3 modulo 8 satisfying

some extra condition. The construction uses 8th cyclotomic classes of Fq2 and “half lines”

in AG(2, q). In [4, 12, 14], the main idea is to construct difference families of type H

in the group (Fq2 ,+). Our approach here is analogous to that of [5]; the main difference

here is the usage of Paley type partial difference sets. The following are our main results.

Theorem 1.2. Let q be a prime power of the form q = 12c2 + 4c + 3 with c an

arbitrary integer, and let n = q2. Then there exists a difference family with parameters

(2n;n, n, n, n− 1; 2n− 2) in Z2 × (Fq2 ,+).

By plugging the group invariant (1,−1) matrices obtained from the blocks of the

difference family in Theorem 1.2 into the Wallis-Whiteman array, we immediately obtain

the following:

Theorem 1.3. Let q be a prime power of the form q = 12c2+4c+3 with c an arbitrary

integer, and let n = q2. Then there exists a Hadamard matrix of order 4(2n+ 1).

We remark that there are 386 prime powers of the form q = 12c2 + 4c + 3 < 107

while there are 166181 prime powers q < 107 such that q ≡ 3 (mod 8). The first 58 prime

powers of the form q = 12c2 + 4c+ 3 < 105 are listed below:

3, 11, 19, 43, 59, 179, 211, 283, 563, 619, 739, 1163, 1499, 1979, 2083, 2411, 3011,

3539, 4259, 4723, 7603, 8011, 8219, 10211, 11411, 12163, 14011, 14563, 14843,

17483, 20011, 23059, 25579, 26699, 28619, 29803, 30203, 33923, 36083, 36523,(1.1)

41539, 49411, 54139, 55219, 55763, 59083, 60779, 63659, 65419, 69011, 70843,

75211, 80363, 81019, 82339, 83003, 88411, 93283.

2. The construction

We first fix our notation. Let q be a prime power such that q ≡ 3 (mod 4). Let ω be a

primitive element of Fq2 and let 0F
q2

denote the zero of Fq2. For any fixed positive integer

N dividing q2 − 1, define C
(N,q2)
i = ωi〈ωN〉, i = 0, 1, . . . , N − 1, called the N th cyclotomic
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classes of Fq2 . Furthermore, define

Hi =C
(2(q+1),q2)
i , i = 0, 1, . . . , 2q + 1,

Li =C
(q+1,q2)
i , i = 0, 1, . . . , q,

Si =C
(q+1,q2)
i ∪ {0}, i = 0, 1, . . . , q,

Di =C
(4,q2)
i ∪ C

(4,q2)
i+1 , i = 0, 1, . . . , 3.

Note that each Si is a line through the origin of AG(2, q); for this reason the Hi’s are

called half lines [18]. In the group ring Z[(Fq2,+)], we have

(2.1) SiSj = Fq2 for i 6= j and S2
i = qSi for all i.

Lemma 2.1. For i = 0, 1, 2, 3, Di is a Paley type partial difference set in (Fq2 ,+). In

particular,

DiD
(−1)
i =

q2 − 5

4
Di +

q2 − 1

4
Di +

q2 − 1

2
· 0F

q2
.

For a proof of Lemma 2.1, we refer the reader to [6, p. 216]. The strongly regular

Cayley graph, Cay(Fq2, D0), is often called a Peisert graph.

Our objective is to construct difference families with parameters (2q2; q2, q2−1, q2, q2; 2q2−

2) in Z2 × Fq2. So we need to find four blocks B0, B1, B2, B3 with |Bi| = q2, i = 0, 2, 3,

and |B1| = q2 − 1, in Z2 × Fq2 such that

3
∑

i=0

BiB
(−1)
i = (2q2 − 2)(Z2 × Fq2) + (2q2 + 1) · (0, 0F

q2
).

To construct the first two blocks, we make use of the Paley type partial difference sets

D0 and D2 defined above. Note that D2 = ω2D0 and D2 = D0. In Z2 × Fq2, we set

B0 = ({0} ×D0) ∪ ({1} × (Fq2 \D0)),

B1 = ({0} ×D2) ∪ ({1} ×D2).

Then |B0| = q2 and |B1| = q2 − 1.

Proposition 2.2. With B0, B1 defined as above, we have

(2.2)
∑

i=0,1

BiB
(−1)
i = {0}×

(

(q2−2)F∗

q2+(2q2−1)·0F
q2

)

+{1}×
(

2D0−2D2+(q2−1)Fq2

)

.

Proof. It is clear that

∑

i=0,1

BiB
(−1)
i = {0} ×

(

2
∑

i=0,2

DiD
(−1)
i + (q2 − 2|D0|)Fq2

)

+ {1} ×
(

− 2D0D
(−1)
0 + 2D2D

(−1)
2 + 2|D0|Fq2

)

.(2.3)
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By Lemma 2.1, we have

∑

i=0,2

DiD
(−1)
i =

q2 − 5

4
(D0 +D2) +

q2 − 1

4
(D0 +D2) + (q2 − 1) · 0F

q2

=
q2 − 3

2
F
∗

q2 + (q2 − 1) · 0F
q2
,(2.4)

and

−D0D
(−1)
0 +D2D

(−1)
2 = − (

q2 − 5

4
D0 +

q2 − 1

4
D2) + (

q2 − 5

4
D2 +

q2 − 1

4
D0)

=D0 −D2.(2.5)

It is now straight forward to obtain (2.2) from (2.3), (2.4) and (2.5). �

To construct the remaining blocks of the desired difference family, we need difference

families of type H in Fq2 that satisfy certain conditions.

Proposition 2.3. Suppose E = {Ei : i = 0, 1, 2, 3} is a difference family of type H

in Fq2 such that |E0| = |E1| = |E2| = |E3| = (q2 − q)/2 and

(2.6) E0E
(−1)
1 + E1E

(−1)
0 + E2E

(−1)
3 + E3E

(−1)
2 = (q − 1)2Fq2 + 2D0 − 2D2.

Let B0, B1 be defined as above and set

B2 = ({0} × E0) ∪ ({1} × (Fq2 \ E1)),

B3 = ({0} × E2) ∪ ({1} × (Fq2 \ E3)).

Then {B0, B1, B2, B3} is a difference family with parameters (2q2; q2, q2−1, q2, q2; 2q2−2)

in Z2 × Fq2.

Proof. First of all, we have |B2| = q2+|E0|−|E1| = q2 and |B3| = q2+|E2|−|E3| = q2.

In view of (2.2), it suffices to show that
∑

i=2,3

BiB
(−1)
i = {0} × (2q2 · 0F

q2
+ q2F∗

q2) + {1} × ((q2 − 1)Fq2 − 2D0 + 2D2).

It is clear that

∑

i=2,3

BiB
(−1)
i = {0} ×

(

3
∑

i=0

EiE
(−1)
i + 2(q2 − |E1| − |E3|)Fq2

)

+ {1} × (−E0E
(−1)
1 −E1E

(−1)
0 − E2E

(−1)
3 − E3E

(−1)
2 + 2(|E0|+ |E2|)Fq2).(2.7)

Since {Ei : i = 0, 1, 2, 3} is a difference family of type H and |E1|+ |E3| = q2− q, we have

(2.8)
3

∑

i=0

EiE
(−1)
i + 2(q2 − |E1| − |E3|)Fq2 = 2q2 · 0F

q2
+ q2F∗

q2 .

On the other hand, by the assumption (2.6) and |E0|+ |E2| = q2 − q, we have

(2.9)

−E0E
(−1)
1 −E1E

(−1)
0 −E2E

(−1)
3 −E3E

(−1)
2 +2(|E0|+ |E2|)Fq2 = (q2− 1)Fq2 − 2D0+2D2.
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The proposition now follows from (2.7), (2.8), and (2.9). �

To construct difference families of type H in Fq2 satisfying the conditions in Proposi-

tion 2.3, it is then natural to consider those constructed in [4].

Lemma 2.4. ([4, Lemma 4 and Corollary 5]) Let q ≡ 3 (mod 4) be a prime power

and let e be the exact power of 2 dividing q + 1. Let α < e be an odd number and set

β = qe−α(q+1)
2e

. Let A ⊆ {0, 1, . . . , 2e− 1} and B0, . . . ,Be−1 ⊆ {0, 1, . . . , q} with |A| = α,

|B0| = · · · = |Be−1| = β such that b 6≡ a (mod e) for all a ∈ A and b ∈
⋃e−1

r=0Br. Set

H =
⋃

i∈A

C
(2e,q2)
i

Mi =
⋃

j∈Bi

Lj , i = 0, 1, . . . , e− 1

Di = ωi(H ∪Mi), i = 0, 1, . . . , e− 1.

Then |Di| =
q(q−1)

2
for i = 0, 1, . . . , e− 1, and {Di : i = 0, 1, . . . , e− 1} forms a difference

family in (Fq2 ,+) with λ = eq(q−2)
4

.

We now assume that q is a prime power and q = 8m+ 3 for some positive integer m.

In view of Lemma 2.4, we need a set A ⊆ {0, 1, . . . , 7} with |A| = 3, and four subsets Bi,

i = 0, 1, 2, 3, of {0, . . . , q}, each of size m, satisfying certain conditions.

First, we require I ∩ {x + 4 (mod 8) : x ∈ I} = ∅. Since |I| = 3, the condition

I ∩ {x+ 4 (mod 8) : x ∈ I} = ∅ simply means that I contains exactly one odd or exactly

one even element, say, y ∈ I. (Note that such an I clearly exists, for example, take

I = {0, 1, 3}; and in this case y = 0.) Next, we define two m-subsets of {0, 1, . . . , q}:

J1 = {y + 2 + 4i (mod q + 1) : i ∈ {0, 1, . . . , m− 1}} and

J2 = {y + 4i (mod q + 1) : i ∈ {0, 1, . . . , m− 1}}.

Now, using the notation in Lemma 2.4, we set e = 4, α = 3 and β = m. Let A = I,

B0 = B1 = J1,

B2 = B3 = {y − 2 + 4i (mod q + 1) : i ∈ {0, 1, . . . , m− 1}}.

It is then straight forward to check that the conditions in Lemma 2.4 are all satisfied.

Therefore we obtain a difference family {Di : i = 0, 1, 2, 3}. However, for our purpose, we

need to set E0 = D0, E1 = D2, E2 = D1 and E3 = D3. In terms of I, J1, J2, we have the

following:

E0 =
(

⋃

i∈I

C
(8,q2)
i

)

∪
(

⋃

i∈J1

Li

)

, E1 =
(

⋃

i∈I

C
(8,q2)
i+2

)

∪
(

⋃

i∈J2

Li

)

,(2.10)

E2 =
(

⋃

i∈I

C
(8,q2)
i+1

)

∪
(

⋃

i∈J1

Li+1

)

, E3 =
(

⋃

i∈I

C
(8,q2)
i+3

)

∪
(

⋃

i∈J2

Li+1

)

.
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By Lemma 2.4, {Ei, i = 0, 1, 2, 3} is a difference family of type H in (Fq2 ,+). Furthermore,

|Ei| =
q2−q

2
for i = 0, 1, 2, 3. It therefore remains to show the following:

Theorem 2.5. The Ei’s defined in (2.10) satisfy the equation (2.6). In particular,

there is a difference family with parameters (2q2; q2, q2, q2, q2−1; 2q2−2) in Z2× (Fq2 ,+).

3. Proof of Theorem 2.5

To prove Theorem 2.5, we need to compute E0E
(−1)
1 + E0E

(−1)
1 +E2E

(−1)
3 + E3E

(−1)
2 .

As in the case of Lemma 4 in [4], it will make the computations easier if we write each Ei

in a different form (i.e., as a union of Hi’s and Lj’s). Recall that q = 8m+ 3 is a prime

power. We define

I1 = {x+ 8i (mod 2(q + 1)) : x ∈ I, i ∈ {0, 1, . . . , 2m}} and I2 = I1 + 2.

Here we use the notation K + 1 = {x + 1 : x ∈ K}. Note that |I1| = |I2| = 3(q + 1)/4.

Recall that

J1 = {y + 2 + 4i (mod q + 1) : i ∈ {0, 1, . . . , m− 1}} and J2 = J1 − 2.

We write

E0 =
∑

i∈I1

Hi +
∑

i∈J1

Li and E1 =
∑

i∈I2

Hi +
∑

i∈J2

Li,

E2 =
∑

i∈I1+1

Hi +
∑

i∈J1+1

Li and E3 =
∑

i∈I2+1

Hi +
∑

i∈J2+1

Li.

Observe that the following conditions are satisifed:

(1) Since I ∩ {x+ 4 (mod 8) : x ∈ I} = ∅, we have Ii ∩ {h+ (q + 1) (mod 2(q + 1)) :

h ∈ Ii} = ∅ for i = 1, 2,

(2) a 6≡ b (mod q + 1) for all a ∈ Ii, b ∈ Ji, i = 1, 2,

(3) |I1|+ 2|J1| = |I2|+ 2|J2| = q,

(4) J1 ⊆ I ′2 ∪ J2 and J2 ⊆ I ′1 ∪ J1, where I ′j = {i (mod q + 1) : i ∈ Ij} for j = 1, 2.

Lemma 3.1. In the group ring Z[(Fq2 ,+)], E0E
(−1)
1 + E1E

(−1)
0 =

(3.1)
∑

i∈I1

∑

j∈I2

HiH
(−1)
j +

∑

i∈I2

∑

j∈I1

HiH
(−1)
j + λ1 · 0F

q2
+ λ2Fq2 − |J2|

∑

i∈I′
1

Si − |J1|
∑

i∈I′
2

Si,

where λ1 = |I1||J2|+ |I2||J1|+2|J1||J2| and λ2 = |I ′1||J2|+ |I ′2||J1|+2|J1||J2| − |I ′1 ∩ J2| −

|I ′2 ∩ J1| − 2|J1 ∩ J2|.

Proof. Note that L
(−1)
i = Li. We first expand the expression E0E

(−1)
1 +E0E

(−1)
1 and

obtain the following:

E0E
(−1)
1 + E1E

(−1)
0 =

∑

i∈I1

∑

j∈I2

HiH
(−1)
j +

∑

i∈I2

∑

j∈I1

HiH
(−1)
j + Y where

Y =
∑

i∈I1

(Hi +H
(−1)
i )

∑

i∈J2

Li +
∑

i∈I2

(Hi +H
(−1)
i )

∑

i∈J1

Li + 2
∑

i∈J1

Li

∑

i∈J2

Li.
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Note that Si = Li + 0F
q2
. So, we may replace each Li by Si − 0F

q2
in the above sum

and we get

Y = − |J2|
∑

i∈I1

(Hi +H
(−1)
i )− |J1|

∑

i∈I2

(Hi +H
(−1)
i )

+
∑

i∈I1

∑

j∈J2

Sj(Hi +H
(−1)
i ) +

∑

i∈I2

∑

j∈J1

Sj(Hi +H
(−1)
i )

+ 2
∑

i∈J1

∑

j∈J2

SiSj − 2|J1|
∑

j∈J2

Si − 2|J2|
∑

j∈J1

Si + 2|J1||J2| · 0F
q2
.

Observe that Hi +Hq+1+i = Si − 0F
q2

for i = 0, 1, . . . , q and (3) holds. Also note that

∑

i∈I1

∑

j∈J2

Sj(Hi +H
(−1)
i ) =

∑

i∈I′
1

∑

j∈J2

SjSi − |J2|
∑

i∈I′
1

Si and

∑

i∈I2

∑

j∈J1

Sj(Hi +H
(−1)
i ) =

∑

i∈I′
2

∑

j∈J1

SjSi − |J1|
∑

i∈I′
2

Si.

We then have

Y =λ1 · 0F
q2
− |J2|

∑

i∈I′
1

Si − |J1|
∑

i∈I′
2

Si − q
∑

i∈J2

Si − q
∑

i∈J1

Si

+
∑

i∈I′
1

∑

j∈J2

SjSi +
∑

i∈I′
2

∑

j∈J1

SiSj + 2
∑

i∈J1

∑

j∈J2

SiSj .(3.2)

On the other hand, SiSj = Fq2 whenever i 6= j. Therefore, by the conditions (2) and

(4), for distinct u, v in {1, 2},

(3.3)
∑

i∈I′u

∑

j∈Jv

SjSi = q
∑

i∈(I′u∩Jv)

Si + (|I ′u| · |Jv| − |Iu ∩ Jv|)Fq2 and

(3.4)
∑

i∈J1

∑

j∈J2

SiSj = q
∑

i∈(J1∩J2)

Si + (|J1| · |J2| − |J1 ∩ J2|)Fq2.

(3.1) now follows easily from (3.2), (3.3) and (3.4). �

Now, replace Ii with Ii+1, and Ji with Ji+1 in the argument above and observe that

condition (2), (3) and (4) still hold. We immediately get the following:

Lemma 3.2. In the group ring Z[(Fq2 ,+)], E2E
(−1)
3 + E3E

(−1)
2 =

(3.5)
∑

i∈I1+1

∑

j∈I2+1

HiH
(−1)
j +

∑

i∈I2+1

∑

j∈I1+1

HiH
(−1)
j +λ1·0F

q2
+λ2Fq2−|J2|

∑

i∈I′
1

Si−|J1|
∑

i∈I′
2

Si,

where λ1 = |I1||J2|+ |I2||J1|+2|J1||J2| and λ2 = |I ′1||J2|+ |I ′2||J1|+2|J1||J2| − |I ′1 ∩ J2| −

|I ′2 ∩ J1| − 2|J1 ∩ J2|.
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Lemma 3.3. Let Ei, i = 0, 1, 2, 3, be defined as in (2.10). Recall that q = 8m + 3.

Then, we have

E0E
(−1)
1 +E0E

(−1)
1 +E2E

(−1)
3 +E3E

(−1)
2 =

∑

h=0,1

∑

i,j∈I

(

C
(8,q2)
i+h C

(8,q2)
j+2+h

(−1)
+C

(8,q2)
i+2+hC

(8,q2)
j+h

(−1))

+Z

where Z = 8m(4m+ 1) · 0F
q2
+m(28m+ 5)F∗

q2
.

Proof. Applying Lemmas 3.1 and 3.2, we obtain

E0E
(−1)
1 + E0E

(−1)
1 + E2E

(−1)
3 + E3E

(−1)
2

=
∑

h=0,1

∑

i,j∈I

(

C
(8,q2)
i+h C

(8,q2)
j+2+h

(−1)
+ C

(8,q2)
i+2+hC

(8,q2)
j+h

(−1))

+ 2λ10F
q2
+ 2λ2Fq2(3.6)

− |J2|
∑

i∈I′
1

(Si + Si+1)− |J1|
∑

i∈I′
2

(Si + Si+1).

Since |I ′1| = |I ′2| = 6m+ 3, we have
∑

i∈I′
1

(Si + Si+1) = 2(6m+ 3) · 0F
q2
+
∑

i∈I

(

C
(4,q2)
i + C

(4,q2)
i+1

)

and
∑

i∈I′
2

(Si + Si+1) = 2(6m+ 3) · 0F
q2
+
∑

i∈I

(

C
(4,q2)
i+2 + C

(4,q2)
i+3

)

.

Note that
∑3

j=0C
(4,q2)
i+j = F

∗

q2
, |I| = 3 and |J1| = |J2| = m. Hence,

(3.7) − |J2|
∑

i∈I′
1

(Si + Si+1)− |J1|
∑

i∈I′
2

(Si + Si+1) = −12m(2m+ 1) · 0F
q2
− 3mF

∗

q2 .

Furthermore, it is clear that

(3.8) λ1 = 2m(7m+ 3) and λ2 = 2m(7m+ 2).

Our lemma now follows from (3.6) with (3.7) and (3.8). �

To finish our proof, we need to evaluate C
(8,q2)
i C

(8,q2)
j

(−1)
. The coefficient cx of x ∈ Fq2

in C
(8,q2)
i C

(8,q2)
j

(−1)
is
∣

∣(C
(8,q2)
j + x)∩C

(8,q2)
i

∣

∣. If x ∈ C
(8,q2)
h , it is clear that cx =

∣

∣(C
(8,q2)
j−h +

1) ∩ C
(8,q2)
i−h

∣

∣. The numbers (i, j)N =
∣

∣(C
(N,q2)
i + 1) ∩ C

(N,q2)
j

∣

∣, i, j = 0, 1, . . . , N − 1, are

called N th cyclotomic numbers. In our case, q ≡ 3 (mod 8) is a prime power. In view of

[9, Lemma 30], we obtain the following:

Proposition 3.4. Let q ≡ 3 (mod 8) be a prime power. Then the cyclotomic numbers

(i, j)8, i, j = 0, 1, . . . , 7, in Fq2 are determined by Table 1 and the relations:

64n1 = q2 − 15 + 2q, 64n2 = q2 + 1− 2q − 4a, 64n3 = q2 + 1− 6q + 8a,

64n4 = q2 + 1 + 18q, 64n5 = q2 − 7− 2q + 4a, 64n6 = q2 + 1 + 6q + 4a+ 16b,

64n7 = q2 + 1 + 6q + 4a− 16b, 64n8 = q2 − 7 + 2q − 8a,
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where a, b are specified by the unique proper representation of q2 = a2 + 2b2 with a ≡

1 (mod 4). Note that there is no restriction on the sign of b.

Table 1. Cyclotomic numbers of order 8: the (i, j)-entry is (i, j)8.

0 1 2 3 4 5 6 7

0 n1 n2 n3 n2 n4 n2 n3 n2

1 n5 n5 n6 n2 n2 n2 n2 n7

2 n8 n2 n8 n7 n3 n2 n3 n6

3 n5 n2 n2 n5 n2 n7 n6 n2

4 n1 n5 n8 n5 n1 n5 n8 n5

5 n5 n2 n7 n6 n2 n5 n2 n2

6 n8 n7 n3 n2 n3 n6 n8 n2

7 n5 n6 n2 n2 n2 n2 n7 n5

Theorem 3.5. Suppose q2 = a2 + 2b2 is the unique proper representation with a ≡

1 (mod 4). Theorem 2.5 holds if either of the following conditions is satisfied.

(a) I = {0, 2, 3} and 3q = a + 4b+ 16.

(b) I = {0, 2, 7} and 3q = a− 4b+ 16.

Proof. By Lemma 3.3, it is sufficient to show the following:

(3.9)

U :=
∑

h=0,1

∑

i,j∈I

(

C
(8,q2)
i+h C

(8,q2)
j+2+h

(−1)
+C

(8,q2)
i+2+hC

(8,q2)
j+h

(−1))

=
q2 − 1

2
·0F

q2
+
9q2 − 17

16
F
∗

q2+2D0−2D2.

We give a proof only in the case where 3q = a+4b+16. The proof for the case where

3q = a− 4b+ 16 is similar.

Define D =
⋃

i∈I C
(8,q2)
i , and let cx denote the coefficient of x ∈ Fq2 in U . To show that

c0 =
q2−1
2

, it is sufficient to check number of pairs (i, j) ∈ I×I such that i ≡ j+2 (mod 8)

and i + 2 ≡ j (mod 8). Clearly, the solution is (2, 0) and (0, 2) in each case respectively.

Therefore, c0 = 2 × 2 × q2−1
8

= q2−1
2

. To prove that (3.9) holds, it is enough to see that

c1 = cω = cω2 +4 = cω3 +4 since cwi = cwi+4j for all i, j. On the other hand, cx for x ∈ F
∗

q2

is given by

cx = |D ∩ (ω2D + x)|+ |ω2D ∩ (D + x)|+ |ωD ∩ (ω3D + x)|+ |ω3D ∩ (ωD + x)|.

Hence, the system of equations c1 = cω = cω2 + 4 = cω3 + 4 is reformulated as

|D ∩ (ω2D + 1)|+ |ω2D ∩ (D + 1)|+ |ωD ∩ (ω3D + 1)|+ |ω3D ∩ (ωD + 1)|

= |ω−1D ∩ (ωD + 1)|+ |ωD ∩ (ω−1D + 1)|+ |D ∩ (ω2D + 1)|+ |ω2D ∩ (D + 1)|

= |ω−2D ∩ (D + 1)|+ |D ∩ (ω−2D + 1)|+ |ω−1D ∩ (ωD + 1)|+ |ωD ∩ (ω−1D + 1)|+ 4

= |ω−3D ∩ (ω−1D + 1)|+ |ω−1D ∩ (ω−3D + 1)|+ |ω−2D ∩ (D + 1)|+ |D ∩ (ω−2D + 1)|+ 4.
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Noting that |ωD∩(ω3D+1)|+|ω3D∩(ωD+1)| = |ω−3D∩(ω−1D+1)|+|ω−1D∩(ω−3D+1)|,

the equations above are reduced to

(3.10) |ωD ∩ (ω3D + 1)|+ |ω3D ∩ (ωD+ 1)| = |ω−1D ∩ (ωD+ 1)|+ |ωD ∩ (ω−1D + 1)|

and

(3.11) |D ∩ (ω2D + 1)|+ |ω2D ∩ (D + 1)| = |ω−2D ∩ (D + 1)|+ |D ∩ (ω−2D + 1)|+ 4.

Let

N1 = |ωD ∩ (ω3D + 1)|+ |ω3D ∩ (ωD + 1)|, N2 = |ω−1D ∩ (ωD + 1)|+ |ωD ∩ (ω−1D + 1)|,

N3 = |D ∩ (ω2D + 1)|+ |ω2D ∩ (D + 1)|, N4 = |ω−2D ∩ (D + 1)|+ |D ∩ (ω−2D + 1)|.

Then, (3.10) and (3.11) are rewritten as N1 = N2 and N3 = N4 + 4, respectively. From

the definition of I and Table 1 of Proposition 3.4, we have

N1 = (1, 3)8 + (1, 5)8 + (1, 6)8 + (3, 3)8 + (3, 5)8 + (3, 6)8 + (4, 3)8 + (4, 5)8 + (4, 6)8

+ (3, 1)8 + (5, 1)8 + (6, 1)8 + (3, 3)8 + (5, 3)8 + (6, 3)8 + (3, 4)8 + (5, 4)8 + (6, 4)8

=8n2 + n3 + 4n5 + 2n6 + 2n7 + n8,

N2 = (7, 1)8 + (7, 3)8 + (7, 4)8 + (1, 1)8 + (1, 3)8 + (1, 4)8 + (2, 1)8 + (2, 3)8 + (2, 4)8

+ (1, 7)8 + (3, 7)8 + (4, 7)8 + (1, 1)8 + (3, 1)8 + (4, 1)8 + (1, 2)8 + (3, 2)8 + (4, 2)8,

=8n2 + n3 + 4n5 + 2n6 + 2n7 + n8,

N3 = (0, 2)8 + (0, 4)8 + (0, 5)8 + (2, 2)8 + (2, 4)8 + (2, 5)8 + (3, 2)8 + (3, 4)8 + (3, 5)8

+ (2, 0)8 + (4, 0)8 + (5, 0)8 + (2, 2)8 + (4, 2)8 + (5, 2)8 + (2, 3)8 + (4, 3)8 + (5, 3)8,

=n1 + 4n2 + 2n3 + n4 + 2n5 + n6 + 3n7 + 4n8,

N4 = (6, 0)8 + (6, 2)8 + (6, 3)8 + (0, 0)8 + (0, 2)8 + (0, 3)8 + (1, 0)8 + (1, 2)8 + (1, 3)8

+ (0, 6)8 + (2, 6)8 + (3, 6)8 + (0, 0)8 + (2, 0)8 + (3, 0)8 + (0, 1)8 + (2, 1)8 + (3, 1)8

=2n1 + 6n2 + 4n3 + 2n5 + 2n6 + 2n8.

It is clear that N1 = N2. By the evaluations for n1, n2, . . . , n8 in Proposition 3.4, we

have N3 = (18q2 + 28q − 8a − 32b − 46)/64 and N4 = (18q2 + 20q + 8a + 32b − 46)/64.

Hence, N3 = N4 + 4 if and only if 3q = a + 4b + 16. This shows that (3.9) holds if

3q = a + 4b+ 16. �

It is not difficult to see that the condition q2 = a2 + 2b2 with 3q = a ± 4b + 16 and

a ≡ 1 (mod 4) is equivalent to that q has the form q = 12c2 + 4c+ 3 with c an arbitrary

integer; in this case, a = 4c2 + 12c + 1 and b = ±(8c2 − 2). Hence, by Theorem 3.5 and

Proposition 2.3, Theorem 1.2 now follows.

To see whether we have constructed an infinite family of Hadamard matrices in The-

orem 1.3, a natural question arises: are there infinitely many prime powers q of the form
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q = 12c2 + 4c + 3 with c an integer? We believe that there are infinitely many primes

of the form 12c2 + 4c + 3 with c an integer. But this is probably very difficult to prove.

On the other hand, we conjecture that there are no proper prime powers q of the form

q = 12c2 + 4c + 3 (c is an integer). That is, we conjecture that there are no solutions to

the equation

12c2 + 4c+ 3 = pα, α > 1,

where c is an integer, and p is a prime. Some evidence is given in Introduction, namely

all 58 prime powers listed in (1.1) are actually primes.
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