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Cyclotomy, difference sets, sequences with low
correlation, strongly regular graphs, and related

geometric substructures
Koji Momihara, Qi Wang and Qing Xiang

Abstract. In this paper, we survey constructions of and nonexistence results on combinato-
rial/geometric structures which arise from unions of cyclotomic classes of finite fields. In
particular, we survey both classical and recent results on difference sets related to cyclotomy,
and cyclotomic constructions of sequences with low correlation. We also give an extensive sur-
vey of recent results on constructions of strongly regular Cayley graphs and related geometric
substructures such as m-ovoids and i-tight sets in classical polar spaces.
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1 Introduction

Let q = p` be a prime power, and Fq be the finite field of order q. We use F∗q to
denote the set of nonzero elements of Fq. It is well known that F∗q is a cyclic group
of order q − 1. When q is odd, let C0 denote the unique subgroup of index 2 of F∗q ;
that is, C0 is the subgroup of F∗q consisting of the nonzero squares of Fq. The set C0
has played very important roles in the construction of various combinatorial structures
such as Hadamard matrices, difference sets, and strongly regular graphs. The earliest
use of C0 for constructing Hadamard matrices goes back to Paley [83]. Subsequently,
many researchers considered using subgroups of F∗q of higher indices and their cosets
for constructing difference sets, binary sequences with low correlation, and strongly
regular Cayley graphs, etc. The additive properties of the subgroups of F∗q form a large
part of what we call the theory of cyclotomy today. To a large extent, the theory of
cyclotomy is a study of generalizations of Paley’s work in [83].

We now give the definition of difference sets in a (not necessarily cyclic) group of
order v. Let G be a finite multiplicative group of order v. A k-element subset D of G
is called a (v, k, λ) difference set in G if the list of “differences” d1d

−1
2 , d1, d2 ∈ D,
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d1 6= d2, represents each nonidentity element in G exactly λ times. A moment’s
reflection shows that the translates of D by all group elements form the blocks of a
(v, k, λ) symmetric design, and G is a regular automorphism group of the design. For
this reason difference sets play an important role in combinatorial design theory.

Given a subset D in the cyclic group (Z/vZ,+), we define its characteristic se-
quence s = (si)0≤i≤v−1 with the support D by setting si = 1 if i ∈ D, and
si = −1 otherwise. The periodic autocorrelation of a binary sequence s at the shift
τ , 0 ≤ τ < v, is defined as As(τ) =

∑v−1
i=0 sisi+τ , where i + τ is read modulo the

period v. From the definition of difference set, we see that D is a (v, k, λ) difference
set in Z/vZ if and only if

As(τ) =

{
v, if τ ≡ 0 (mod v),
v − 4(k − λ), otherwise.

(1.1)

This shows the equivalence of binary sequences with two-level autocorrelation and
cyclic (v, k, λ) difference sets. More generally, (v, k, λ) abelian difference sets are
equivalent to binary arrays with two-level autocorrelation. For background material
on difference sets, we refer the reader to the books [10, 65] and Chapter 6 of [12].

Let q = p` be a prime power, and let γ be a fixed primitive element of Fq. Let
N > 1 be a divisor of q − 1. We define the N th cyclotomic classes C(N,q)

i of Fq by

C
(N,q)
i = {γjN+i | 0 ≤ j ≤ q − 1

N
− 1},

where 0 ≤ i ≤ N − 1. That is, C(N,q)
0 is the subgroup of F∗q consisting of all nonzero

N th powers in Fq, and C(N,q)
i = γiC

(N,q)
0 , for 1 ≤ i ≤ N − 1. The case where N = 2

was first used by Paley [83] to construct the Paley difference set when q ≡ 3 (mod 4),
and the Paley graph when q ≡ 1 (mod 4). Even though the construction is determin-
istic, the resulting combinatorial structures (i.e., the Paley difference sets/graphs) are
pseudorandom or quasirandom. TheN th cyclotomic classes (withN > 2) also exhibit
pseudorandom behaviors.

(1) Roughly speaking, a pseudorandom graph is a graph that behaves like a random
graph of the same edge density. The notion of quasirandom (also called pseu-
dorandom) graphs was made precise by Thomason [98] and Chung, Graham and
Wilson [21]. The Paley graphs are now standard examples of explicitly con-
structed quasirandom graphs.

(2) Elements ofC(N,q)
0 are distributed in Fq in a way that is random-like and also very

regular at the same time. Here by random-like behavior, we mean that "being an
N th power" is like a random event of probability 1

N . For the precise statement
we refer the reader to Sziklai [95] (see also [103]). The N = 2 case was treated
by Szönyi [96] and Babai, Gal and Widgerson [3].
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(3) The characteristic sequences of many difference sets from cyclotomic classes
are pseudorandom with respect to certain randomness postulates, including bal-
ancedness, run property, low autocorrelation [52], pattern distribution [38], etc.

In this survey paper, we will mainly focus on constructions of various combinato-
rial/geometric structures by using cyclotomic classes. The paper is organized as fol-
lows. In Section 2, we survey both classical and recent results on difference sets related
to cyclotomy. The highlights are some recent results of Xia [104] on the long-standing
conjecture that if C(N,q)

0 is a difference set in (Fq,+), then N is a power of 2; and the
constructions of skew Hadamard difference sets by Feng and the third author [48] by
using unions of cyclotomic classes. In Section 3, we give a brief survey of results on
sequences with low correlation which are related to cyclotomy. Section 4 is devoted
to strongly regular Cayley graphs arising from cyclotomy and related geometric sub-
structures such as m-ovoids and i-tight sets in polar spaces; many families of strongly
regular Cayley graphs with new parameters have been constructed by using cyclotomic
classes during the past few years; we survey these constructions and the more recent
constructions of m-ovoids and i-tight sets in classical polar spaces.

2 Cyclotomy and difference sets

The idea of using cyclotomic classes to construct difference sets goes back to Pa-
ley [83]. In the mid-20th century, Baumert, Chowla, Hall, Lehmer, Storer, Whiteman,
Yamamoto, etc. pursued this line of research vigorously. Storer’s book [94] contains
a summary of results in this direction up to 1967. Important in the study of cyclo-
tomic (or power residue) difference sets are the cyclotomic numbers. Let q = p` be
a prime power, and let N > 1 be a divisor of q − 1. As we did in Section 1, we use
C

(N,q)
i , 0 ≤ i ≤ N−1, to denote the cyclotomic classes of indexN of Fq. For integers

a, b with 0 ≤ a, b < N , the cyclotomic number (a, b)N is defined by

(a, b)N = |(C(N,q)
a + 1) ∩ C(N,q)

b |.

Cyclotomic numbers are useful in many combinatorial investigations, including the
study of difference sets in (Fq,+). These numbers (a, b)N for q prime have been com-
puted when N ≤ 24 and N 6∈ {13, 17, 19, 21, 22, 23} (cf. [11, p.152]). But it should
be noted that when N is large, the formulae given for (a, b)N are often not explicit.
In the following two subsections, we survey recent results on existence/nonexistence
results on difference sets in (Fq,+) arising from unions of cyclotomic classes.

2.1 A Single Class

We first consider the question when a cyclotomic class C(N,q)
i , where i is some integer

such that 0 ≤ i ≤ N − 1, is a difference set in (Fq,+). Since C(N,q)
i = γiC

(N,q)
0 ,
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the question is equivalent to: When is the cyclotomic class C(N,q)
0 a difference set in

(Fq,+)? Paley [83] is the first to answer this question completely in the case when
N = 2. Later, Chowla [20] settled the problem in the case when q is prime andN = 4;
Lehmer [67] gave necessary and sufficient conditions for C(N,q)

0 to be a difference set
in (Fq,+) in terms of cyclotomic numbers.

Theorem 2.1. LetC(N,q)
0 be defined as above. ThenC(N,q)

0 is a difference set in (Fq,+)
if and only if N is even, (q − 1)/N is odd, and

(a, 0)N =
(q − 1−N)

N2

for a = 0, 1, 2, . . . , N2 − 1.

Theorem 2.1 is useful when N is small. Using this theorem, not only one can
recover the results of Paley and Chowla, but also obtain complete results in the cases
where N = 6 or 8.

Theorem 2.2. ([67]) Let Fq be the finite field of order q, where q = p` is a power of
an odd prime p. Let N ≥ 2 be an even divisor of q− 1, and C(N,q)

0 be the subgroup of
F∗q of index N .

(1) When N = 2, C(2,q)
0 is a difference set in (Fq,+) if and only if q ≡ 3 (mod 4).

(2) When N = 4, C(4,q)
0 is a difference set in (Fq,+) if and only if q = p = 1 + 4t2

for some odd integer t.

(3) When N = 6, C(6,q)
0 is never a difference set in (Fq,+).

(4) WhenN = 8,C(8,q)
0 is a difference set in (Fq,+) if and only if q = p = 1+8u2 =

9 + 64v2 for some odd integers u and v.

There are a couple of folklore conjectures in this area. It seems difficult to find the
exact origin of these conjectures. The third author of the survey was certainly aware
of these conjectures many years ago; for example, the stronger conjecture below was
mentioned explicitly in [48, p. 246] and [106]. It is quite certain that the history of
these conjectures is much longer. The first conjecture is the weaker conjecture.

Conjecture 2.3. Let Fq be the finite field of order q, where q = p` is an odd prime
power. Let N ≥ 2 be an even divisor of q − 1, and C(N,q)

0 be the subgroup of F∗q of

index N . If C(N,q)
0 is a difference set in (Fq,+), then N must be a power of 2.

The next conjecture is stronger.

Conjecture 2.4. Let Fq be the finite field of order q, where q = p` is an odd prime
power. Let N ≥ 2 be an even divisor of q − 1, and C(N,q)

0 be the subgroup of F∗q of

index N . If C(N,q)
0 is a difference set in (Fq,+), then N = 2, 4, or 8.
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We mention that in a recent paper [104], Xia posed essentially the same conjectures
as the above folklore conjectures. (It seems that Xia was unaware of the existence
of the folklore conjectures above.) Many researchers worked towards settling these
conjectures. In the period 1953-1967, the combined work of seven authors showed the
nonexistence of difference sets of the form C

(N,p)
0 in (Fp,+) for all 8 < N < 20,

where p is an odd prime; see the book [10] and [11, Chapter 5] for references. In
1970, Muskat and Whiteman [77] obtained partial results for the N = 20 case. Evans
[42] finally finished the N = 20 case by proving that C(20,p)

0 is never a difference
set in (Fp,+), where p is an odd prime. All these nonexistence results were obtained
by using Theorem 2.1 and cyclotomic numbers. When N is large, Lehmer’s theorem
is not very useful since the cyclotomic numbers involved are difficult to compute;
instead Gauss sums and Jacobi sums have proved to be more effective. In a recent
paper [104], by using Jacobi sums and extensive Gröbner basis computations of certain
overdetemined polynomial systems, Xia proved the following theorem.

Theorem 2.5. ([104]) Let Fq be the finite field of order q, where q = pf is an odd
prime power. Let N ≥ 2 be an even divisor of q − 1, and C(N,q)

0 be the subgroup of
F∗q of index N . If N ≤ 22 and N 6= 2, 4 or 8, then C(N,q)

0 is never a difference set in
(Fq,+).

Very recently, Evans and Van Veen [41] proved nonexistence of power residue dif-
ference sets in (Fp,+) for the case where N = 24 and p is a prime by computing
cyclotomic numbers with the help of a Mathematica program.

The investigations of the problem when C(N,q)
0 is a difference set in (Fq,+) have

also been motivated by questions in finite geometry. A finite projective plane is said
to be flag-transitive if its group of automorphisms acts transitively on the point-line
flags. Clearly Desarguesian planes are flag-transitive. Conversely, it is an old and
fundamental conjecture in the theory of projective planes, first mentioned in Higman
and McLaughlin [58], that every flag-transitive finite projective plane is Desarguesian.
The following theorem, mainly proved by Kantor [62], relates flag-transitive projective
planes to cyclotomic difference sets.

Theorem 2.6. If there exists a non-Desarguesian flag-transitive projective plane of
order n, then n2 + n + 1 := p is prime, n > 8 is even, and C(n,p)

0 is a (p, n + 1, 1)-
difference set in (Fp,+).

By the above theorem, the validity of Conjecture 2.4 implies that finite flag-transitive
projective planes must be Desarguesian. This provided strong motivations to investi-
gate Conjectures 2.3 and 2.4. Even though many researchers have worked on Con-
jectures 2.3 and 2.4 for more than sixty years, it seems that we are still far from
solving these conjectures. Thas and Zagier [97] investigated the special case of Con-
jectures 2.3 and 2.4 related to flag-transitive projective planes. They [97] called a pair



6 K. Momihara, Q. Wang and Q. Xiang

(p, n) special, where p is an odd prime and 1 < n < p− 1 an integer dividing p− 1, if
C

(n,p)
0 is a (p, n+ 1, 1)-difference set in (Fp,+). Using nontrivial computations, Thas

and Zagier [97] classified all special pairs (p, n), when p < 4×1022; no surprises arise
from the classification.

To end this subsection, we caution the readers that two papers with serious mis-
takes got published during the past 30 years. Feit [43] claimed that if there is a non-
Desarguesian projective plane of order n, then n is not a power of 2. In [82], Ott
claimed that any flag-transitive finite projective plane has prime power order. To-
gether with Theorem 2.6, these two results would imply the nonexistence of non-
Desarguesian flag-transitive finite projective planes. Unfortunately both papers, [43]
and [82], contain serious mistakes. We refer the readers to [108] and [97] for the exact
places in [43, 82] where the mistakes were made.

2.2 Two or More Classes

If Conjecture 2.4 is true, then C(N,q)
0 is rarely a difference set in (Fq,+). So a natural

question is: When is a union of two or more cyclotomic classes a difference set in
(Fq,+) while a single cyclotomic class is not? So far there have been very few results
on this question. The first result is a constructive one due to Marshal Hall Jr. [54]. See
also [55, Section 11.6].

Theorem 2.7. Let q be an odd prime power of the form q = 4x2 + 27 for some integer
x. Then C(6,q)

0 ∪ C(6,q)
1 ∪ C(6,q)

3 is a (q, q−1
2 , q−3

4 ) difference set in (Fq,+).

The difference sets arising from the above theorem are usually called the Hall sextic
residue difference sets. They were first constructed in the case where q is a prime
of the form 4x2 + 27. Later in [55], the construction was done in the more general
setting where q is a prime power of the form 4x2 + 27. However, we note that, as
pointed out in [81], there are only finitely many proper prime powers of the form
4x2 + 27. A second remark is that the above theorem was proved in [54, 55] by rather
detailed computations of the cyclotomic numbers (a, b)6. It would be interesting to
have a proof without using cyclotomic numbers. The reason is that having such a proof
will probably pave the way for discovering new difference sets. The investigations of
cyclotomic difference sets in the 20th century relied heavily on cyclotomic numbers
which are in general very difficult to compute if N is large. It appears that methods
using Gauss sums and Jacobi sums directly are more effective for large N .

After Marshall Hall Jr.’s work in 1956, several researchers investigated the question
when a union of two or more cyclotomic classes is a difference set in the cases where
N = 8, 10, or 12; only one sporadic difference set, a (31, 6, 1)-difference set which
is a union of two cyclotomic classes, was found [56] in the case where N = 10.
Most researchers thought that no new difference sets can be found by taking unions
of cyclotomic classes. Therefore it came as a great surprise that in 2012 Feng and
the third author [48] found new infinite families of difference sets by taking unions
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of cyclotomic classes with N = 2pm1 , where p1 is a prime. We give the detailed
statement below. (A difference set D in an additively written finite group G is called
skew Hadamard if G is the disjoint union of D, −D, and {0}. A skew Hadamard
difference set in a group of order v necessarily has parameter (v, v−1

2 , v−3
4 ).)

Theorem 2.8. ([48]) Let p1 ≡ 7 (mod 8) be a prime, N = 2pm1 , and let p be a prime
such that f := ordN (p) = φ(N)/2. Let s be an odd integer, q = pfs, I any subset of
Z/NZ such that {i (mod pm1 ) | i ∈ I} = Z/pm1 Z, and let

D =
⋃
i∈I

C
(N,q)
i ⊆ F∗q .

Then D is a skew Hadamard difference set in (Fq,+) if p ≡ 3 (mod 4).

Several remarks are in order. First, the proof of the above theorem uses index 2
Gauss sums instead of cyclotomic numbers. Second, the difference sets from Theo-
rem 2.8 are not cyclic since the f satisfying the conditions of the theorem is always
greater than 1. Third, there is a lot of flexibility in choosing the index set I in Theo-
rem 2.8; namely, there are 2p

m
1 choices for the index set I since each pair {i, i+ pm1 },

0 ≤ i ≤ pm1 − 1, contributes exactly one element to I . Fourth, the inequivalence be-
tween the difference sets from Theorem 2.8 and the Paley difference sets was proved
by the first author in [73] by using triple intersection numbers.

The case where p1 is a prime congruent to 3 modulo 8 and N = 2pm1 is more
complicated. Feng and the third author [48] first gave a construction of skew Hadamrd
difference sets in the case where N = 2p1, p1 ≡ 3 (mod 8) is a prime. Later on, this
construction was generalized by Feng, Momihara and Xiang [46] to work in the case
where N = 2pm1 , p1 ≡ 3 (mod 8) is a prime. Below we state the construction from
[46].

Theorem 2.9. ([46]) Let p1 ≡ 3 (mod 8) be a prime, p1 6= 3, N = 2pm1 , and let
p ≡ 3 (mod 4) be a prime such that f := ordN (p) = φ(N)/2. Let q = pf , J =
〈p〉 ∪ 2〈p〉 ∪ {0} (mod 2p1), and define

D =

pm−1
1 −1⋃
i=0

⋃
j∈J

C2i+pm−1
1 j

Assume that 1 + p1 = 4ph, where h is the class number of Q(
√
−p1). Then D is a

skew Hadamard difference set in the additive group of Fq.

Note that in Theorem 2.9, we need to choose a suitable primitive element γ of Fq
in order for the construction to work. We refer the reader to [46] for details on how to
choose such a primitive element of Fq.
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3 Sequences with low correlation from cyclotomy

In this section, we survey results on binary and quaternary sequences with low correla-
tion. Since there exist several excellent surveys on this subject, e.g. [1, 31, 53, 57, 90],
we will concentrate on sequences constructed by using cyclotomy. As indicated in
(1.1), binary sequences with two-level periodic autocorrelation {−1, v} are equiva-
lent to cyclic difference sets with parameters (v, (v − 1)/2, (v − 3)/4). Cyclotomy is
a powerful tool for constructing such cyclic difference sets, as we saw in Section 2.
Note that the Paley difference set is the classical example of such cyclic difference
sets (with v = p a prime) from cyclotomy, and the corresponding characteristic se-
quence is usually called the Legendre sequence since the sequence can be defined by
the Legendre symbol. In addition, binary sequences of composite length, and quater-
nary sequences, can also be explicitly constructed using cyclotomy. Below we give a
summary of results on such sequences constructed from cyclotomy.

3.1 Binary sequences from cyclotomy

By (1.1), clearly we have As(τ) ≡ v (mod 4). Thus, it is natural to classify binary
sequences into four categories according to v ≡ 3 (mod 4), v ≡ 2 (mod 4), v ≡ 1
(mod 4), and v ≡ 0 (mod 4). For each of these four categories, cyclotomy has played
an important role in constructing such binary sequences. For v ≡ 3 (mod 4), binary
sequences with two-level autocorrelation {−1, v} are said to have ideal autocorrelation
(for good surveys, see [17, 53, 105]). It seems very difficult to completely classify
binary sequences with ideal autocorrelation, either in terms of sequences or in terms
of their supports which are cyclic difference sets. Among the known constructions,
there are three arising from cyclotomy:

(1) the characteristic sequences of Paley difference sets [83];

(2) the characteristic sequences of Hall sextic difference sets [54];

(3) the twin-prime sequences involving cyclotomic classes of index 2 in both Fp and
Fp+2 [93], where p and p+ 2 are twin primes.

We remark that p-ary sequences with ideal two-level autocorrelation {−1, v} are equiv-
alent to relative difference sets with Singer parameters, and are characterized by the
d-homogeneous property [86, 87].

A natural question to ask is whether there exist binary sequences with two-level
autocorrelation in the other three categories for which v 6≡ 3 (mod 4). This question
remains open. However, it is evident that the optimal cases for v 6≡ 3 (mod 4) are bi-
nary sequences with three-level autocorrelation [61] (called optimal autocorrelation).
The supports of such binary sequences with optimal autocorrelation are almost differ-
ence sets. (A subset D of a finite group G is called an almost difference sets if the
list of “differences” d1d

−1
2 , with d1, d2 ∈ D and d1 6= d2 represents each nonidentity

element in G either λ times or λ + 1 times [2, 40].) For v ≡ 2 (mod 4), there are
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two constructions of binary sequences with three-level autocorrelation {2,−2, v} re-
lated to cyclotomy: One was given by Sidelnikov [92] (see also [99, 68]), where the
support D ⊆ (Z/(q − 1)Z,+) is defined as logγ(C

(2,q)
1 − 1) with q ≡ 3 (mod 4)

a prime power and γ a primitive element of Fq; the other construction was given by
Ding, Helleseth and Martinsen [40], which in fact uses a union of cyclotomic classes
of index 4 and relies on the explicit computations of cyclotomic numbers.

For the case v ≡ 1 (mod 4), all three currently known constructions of binary
sequences with autocorrelation values {1,−3, v} involve cyclotomy: the first is the
Legendre sequence, whose support is the Paley partial difference set; the second was
given by Ding, Helleseth and Lam [39], and the support is a union of two consecutive
cyclotomic classes of index 4, i.e., D = C

(4,p)
0 ∪ C(4,p)

1 , where p = x2 + 4 is a
prime with x ≡ 1 (mod 4); the third construction utilized the so-called generalized
cyclotomy, which generalized the twin-prime construction of difference sets to that of
almost difference sets by cyclotomic classes of index 2 in both Fp and Fp+4, where
both p and p + 4 are primes. We note that the second construction D = C

(4,p)
0 ∪

C
(4,p)
1 was discussed in [102], where the corresponding pseudo-Paley graphs were

distinguished from the classical Paley graphs by using p-ranks.
Most of the constructions in the case where v ≡ 0 (mod 4) interleave four appro-

priately shifted copies of binary sequences with ideal two-level autocorrelation, while
the construction by Sidelnikov [92] is an exception: D := logγ(C

(2,q)
1 −1) with q ≡ 1

(mod 4) a prime power and γ a primitive element in Fq.

3.2 Quaternary sequences from cyclotomy

Given a quaternary sequence s of period v over {1, i,−1, i3} where i =
√
−1, the pe-

riodic autocorrelation at shift τ with 0 ≤ τ < v is defined as As(τ) =
∑v−1

i=0 sisi+τ ,
where i + τ is read modulo v. Each quaternary sequence can be interpreted as two
binary sequences via the inverse Gray mapping φ−1 : Z/2Z× Z/2Z→ Z/4Z, where
φ−1(0, 0) = 0, φ−1(0, 1) = 1, φ−1(1, 1) = 2, and φ−1(1, 0) = 3. There are many
results on quaternary sequences with binary sequences with low autocorrelation as
building blocks due to [64, Eqn. (6)]. Instead of giving a complete survey of these
results in this section (for recent progress, see for example [72]), we present two con-
structions of quaternary sequences directly from cyclotomic classes.

The first construction again is due to Sidelnikov [92], which generates quaternary
sequences by logγ(C

(4,q)
j − 1) for j = 0, 1, 2, 3 with q − 1 divisible by 4 and γ a

primitive element in Fq. More generally, for an arbitrary divisor M of q − 1, M -ary
sequences of period q−1 are obtained in this way with autocorrelation upper bounded
by 4.

Very recently, a construction of quaternary sequences with autocorrelation bounded
by 3 was proposed in [72] from cyclotomic classes of index 8. Let p = x2 + 16 =
a2 + 2b2 ≡ 1 (mod 16) (x ≡ a ≡ 1 (mod 4)) be a prime such that x − a = 4.
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Define D0 = C
(8,p)
2 ∪ C(8,p)

6 , D1 = C
(8,p)
1 ∪ C(8,p)

3 , D2 = C
(8,p)
0 ∪ C(8,p)

4 , and D3 =

C
(8,p)
5 ∪ C(8,p)

7 , and the quaternary sequence s of period p is defined by

st = (
√
−1)j , if t ∈ Dj ,

for j ∈ {0, 1, 2, 3} and s0 = 1. Then the quaternary sequence s has autocorrelation
values {−1,−3, 3, p}. The proof was completed by an explicit computation of cyclo-
tomic numbers of order 8. Note that the first several primes satisfying the conditions
of this construction are 17, 97, 641, 2417, 6577, 14657.

4 Strongly regular Cayley graphs from cyclotomy
A strongly regular graph srg(v, k, λ, µ) is a simple and undirected graph, neither com-
plete nor edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.
(2) For each pair of adjacent vertices x, y, there are λ vertices adjacent to both x

and y.
(3) For each pair of nonadjacent vertices x, y, there are µ vertices adjacent to both

x and y.

Let Γ be a (simple, undirected) graph. The adjacency matrix of Γ is the (0, 1)-matrix
A with both rows and columns indexed by the vertex set of Γ, where Axy = 1 when
there is an edge between x and y in Γ and Axy = 0 otherwise. A useful way to check
whether a graph is strongly regular is by using the eigenvalues of its adjacency matrix.
For convenience we call an eigenvalue restricted if it has an eigenvector which is not
a multiple of the all-ones vector 1. (For a k-regular connected graph, the restricted
eigenvalues are the eigenvalues different from k.)

Theorem 4.1. For a simple graph Γ of order v, neither complete nor edgeless, with
adjacency matrix A, the following are equivalent:

(i) Γ is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,

(ii) A2 = (λ − µ)A + (k − µ)I + µJ for certain real numbers k, λ, µ, where I, J
are the identity matrix and the all-ones matrix, respectively,

(iii) A has precisely two distinct restricted eigenvalues.

For a proof of Theorem 4.1, we refer the reader to [15]. An effective method to
construct strongly regular graphs is by using Cayley graphs. Let G be an additively
written group of order v, and let D be a subset of G such that 0 6∈ D and −D =
D, where −D = {−d | d ∈ D}. The Cayley graph on G with connection set D,
denoted by Cay(G,D), is the graph with the elements of G as vertices; two vertices
are adjacent if and only if their difference belongs to D. In the case when Cay(G,D)
is a strongly regular graph, the connection set D is called a (regular) partial difference
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set. Examples of strongly regular Cayley graphs are the Paley graphs P(q), where q is
a prime power congruent to 1 modulo 4, the Clebsch graph, and the affine orthogonal
graphs ([15]). For Γ = Cay(G,D) with G abelian, the eigenvalues of Γ are exactly
χ(D) :=

∑
d∈D χ(d), where χ runs through the character group of G. This fact

reduces the problem of computing eigenvalues of abelian Cayley graphs to that of
computing some character sums, and is the underlying reason why the Cayley graph
construction has been very effective for the purpose of constructing srgs. The survey
of Ma [69] contains much of what is known about partial difference sets and about
connections with strongly regular graphs.

In this section, we always take the additive group of a finite field as the underlying
group G and take a union of cyclotomic classes as connection sets. Many reseachers
have studied the problem of determining when a union D of cyclotomic classes forms
a partial difference set. In some of the papers, the authors used the language of codes
or finite geometry in their studies instead of strongly regular Cayley graphs or partial
difference sets. We choose to use the language of srgs here.

Example 4.2. Here are three known “sporadic” examples of strongly regular Cayley
graphs on finite fields:

(1) ([101]) Cay(F34 , D) with D =
⋃
i∈{0,1,3}C

(8,34)
i is an srg(34, 30, 9, 12);

(2) ([59]) Cay(F212 , D) with D =
⋃
i∈{0,7}C

(35,212)
i is an srg(212, 234, 2, 14);

(3) ([35]) Cay(F38 , D) withD =
⋃
i∈{0,1,2,8,10,11,13}C

(16,38)
i is an srg(38, 2870, 1249, 1260).

4.1 Cyclotomic strongly regular graphs

Let p be a prime, ` and m be positive integers, and let q = p`. Let N > 1 be an integer
such that N |(qm−1), and γ be a primitive element of Fqm . For a subset D of F∗qm , we
call Cay(Fqm , D) a cyclotomic strongly regular graph ifD is a single cyclotomic class
of Fqm and Cay(Fqm , D) is strongly regular. The Paley graphs are primary examples
of cyclotomic srgs. Also, if D is the multiplicative group of a subfield of Fqm , then
it is clear that Cay(Fqm , D) is strongly regular. These cyclotomic srgs are usually
called subfield examples. Next, if there exists a positive integer j such that pj ≡
−1 (mod N), then Cay(Fqm , D) is strongly regular. See [9] for a proof of this result.
These examples are usually called semi-primitive. A generalization of semi-primitive
srgs so that its connection set is a union of at least two cyclotomic classes was given
in [14]; that generalization will be explained in Subsection 4.2.

In [89], Schmidt and White gave the following necessary and sufficient condition
for Cay(Fqm , D) to be a cyclotomic srg.

Theorem 4.3. ([89]) With notation as above, assume that N divides (qm−1)/(q−1).
Let f be the order of p modulo N , and put s = m`/f . Then, Cay(Fqm , C

(N,qm)
0 ) is
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strongly regular if and only if there exists a positive integer u satisfying the following
three conditions:

(i) u | (N − 1);

(ii) upst ≡ ±1 (mod N);

(iii) u(N − u) = (N − 1)ps(f−2t).

Here, t is the largest power of p dividing the Gauss sums Gqm(χ) for all nontrivial
multiplicative character χ of Fqm of order dividing N .

The necessary and sufficient conditions in the above theorem can be used to search
for cyclotomic srgs Cay(Fqm , C

(N,qm)
0 ) with largeN . The eleven sporadic examples in

Table 1 which are neither subfield examples nor semi-primitive examples were found
in this way in [89] (some of the eleven examples in Table 1 were already known before
the search conducted in [89]; see [8, 66]). A generalization of these sporadic examples
so that their connection sets are union of at least two cyclotomic classes was given in
[46, 49, 51, 74]. We will explain that generalization in Subsection 4.3.

Table 1. Eleven sporadic examples

No. N q m [(Z/NZ)∗ : 〈p〉]
1 11 3 5 2
2 19 5 9 2
3 35 3 12 2
4 37 7 9 4
5 43 11 7 6
6 67 17 33 2
7 107 3 53 2
8 133 5 18 6
9 163 41 81 2

10 323 3 144 2
11 499 5 249 2

On the other hand, Schmidt and White [89] made the following conjecture on cy-
clotomic srgs, which can be thought as a counterpart of Conjecture 2.4 for cyclotomic
srgs.

Conjecture 4.4. ([89]) Assume that N | (qm − 1)/(q − 1). Then, Cay(Fqm , C
(N,qm)
0 )

is strongly regular if and only if it is either a subfield example, or a semi-primitive
example or one of the eleven sporadic examples of Table 1.
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The Schmidt-White conjecture remains open. There are some results on this con-
jecture in [89] under the condition [(Z/NZ)∗ : 〈p〉] = 2 and the assumption of the
generalized Riemann hypothesis.

Remark 4.5. Theorem 4.3 and Conjecture 4.4 were stated in terms of two-weight ir-
reducible cyclic codes in [89]. We briefly explain the connection between two-weight
irreducible cyclic codes and cyclotomic srgs below.

For a positive divisor n of qm − 1, let ξ be a primitive nth root of unity in Fqm .
Then,

C =
{
c(y) :=

(
Trqm/q(yξ

i)
)n−1
i=0 | y ∈ Fqm

}
is called an irreducible cyclic code of length n over Fq. McEliece [70] showed that if
N := (qm−1)/n divides (qm−1)/(q−1), the Hamming weight of c(y) for y ∈ F∗qm
is given by

(q − 1)
qN

(qm − 1−N · ψFqm
(yC

(N,qm)
0 )),

where ψFqm
is the canonical additive character of Fqm . Hence, C is a two-weight code

if and only ifψFqm
(yC

(N,qm)
0 ), y ∈ F∗qm , take exactly two values, i.e., Cay(Fqm , C

(N,qm)
0 )

is strongly regular. For more details on the correspondence between projective two-
weight codes and strongly regular Cayley graphs on finite fields, see, e.g., [15, p. 140].

4.2 A generalization of semi-primitive examples

Let q = pm be a prime power with p a prime and N be a positive integer dividing
q − 1. Let γ be a primitive element of Fq. Assume that there is a j > 0 such that
pj ≡ −1 (mod N). Choose j minimal with this property and write m = 2js.

The following theorem is a generalization of semi-primitive examples of cyclotomic
srgs so that their connection sets are unions of at least two cyclotomic classes.

Theorem 4.6. ([14, 18]) With notation as above, let J be a subset of {0, 1, . . . , N −
1} of size ` and D =

⋃
i∈J C

(N,q)
i . If D = −D, then Cay(Fq, D) is an srg with

parameters (u2, r(u− ε)εu+ r2 − 3εr, r2 − εr) with u = pjs and r = `(pjs + ε)/N ,
where ε = −1 or 1 depending on whether s is even or odd. In particular, for a =
0, 1, . . . , N − 1,

ψFq(γ
aD) =

u((−1)s
√
q − 1)

N
+


(−1)s+1√q, if δs = 1 and a ∈ −J (mod N)

or δs = −1 and a ∈ −J +N/2 (mod N),

0, otherwise,

where

δ =

{
1, if N is even and (pj + 1)/N is odd,
−1, otherwise.
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We mention that an srg is said to be of Latin square type (respectively, negative
Latin square type) if (v, k, λ, µ) = (u2, r(u − ε), εu + r2 − 3εr, r2 − εr) and ε = 1
(respectively, ε = −1). Most known strongly regular Cayley graphs are of Latin square
or negative Latin square type.

In [14], the following two further generalizations were given. Pick several positive
integersNi, i ∈ I , withNi | (q−1). For each i ∈ I , let Ji be a subset of {0, 1, . . . , Ni−
1}. We define Di =

⋃
j∈Ji C

(Ni,q)
j , and assume that Di are mutually disjoint. Then, it

is possible forD to give rise to a strongly regular Cayley graph. The precise statements
are given below.

Proposition 4.7. Let p be an odd prime and Ni = pji + 1 for i = 1, 2. Let q = pm

with m = 4j1s1 = 4j2s2. Take J1 as a subset of {2h |h = 0, 1, . . . , N1/2− 1} and J2

as a subset of {2h+1 |h = 0, 1, . . . , N2/2−1}. DefineDi =
⋃
j∈Ji C

(Ni,q)
j , i = 1, 2,

and D = D1 ∪D2. Then, Cay(Fq, D) is an srg of negative Latin square type.

The proof of Proposition 4.7 is obvious since D1 ∩D2 = ∅ and a ∈ −Ji (mod Ni)
cannot hold for i = 1 and 2 simultaneously.

Example 4.8. Let (p, j1, j2, N1, N2, f) = (3, 1, 2, 4, 10, 8), J1 = {0}, J2 = {1}, and
J = {0, 1, 4, 8, 11, 12, 16}. Then,

D =
⋃
i=1,2

⋃
h∈J1

C
(Ni,q)
h =

⋃
h∈J

C
(20,q)
h ,

and Cay(Fq, D) is an srg with parameters (v, k, λ, µ) = (38, 2296, 787, 812).

Similar to Proposition 4.7, we have the following.

Proposition 4.9. Let p be an odd prime and Ni = pji + 1 for i = 1, 2. Let q = pm

with m = 2j1s1 = 2j2s2, where s1 and s2 are odd. Take J1 as a subset of {2h |h =
0, 1, . . . , N1/2− 1} and J2 as a subset of {2h+ 1 |h = 0, 1, . . . , N2/2− 1}. Assume
that

⋃
i∈J1

C
(N1,q)
−i+N1/2 and

⋃
i∈J2

C
(N2,q)
−i+N2/2 are disjoint. Define Di =

⋃
j∈Ji C

(Ni,q)
j ,

i = 1, 2, and D = D1∪D2. Then, Cay(Fq, D) is an srg of negative Latin square type.

There are many choices of p and ji, i = 1, 2, satisfying the condition of Proposi-
tion 4.9. For example, if p ≡ 3 (mod 4) and j1 and j2 are both odd, then

⋃
i∈J1

C
(N1,q)
−i+N1/2

and
⋃
i∈J2

C
(N2,q)
−i+N2/2 are disjoint.

4.3 A generalization of sporadic or subfield examples

In [46, 49, 51], the authors found infinite families of strongly regular Cayley graphs on
finite fields generalizing seven of the eleven sporadic examples of cyclotomic srgs in
Table 1. Their constructions used unions of “consecutive” cyclotomic classes of finite
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fields as connection sets for the Cayley graph construction. In particular, the following
theorem was proved.

Theorem 4.10. (i) ([49]) Let q = pp
m−1
1 (p1−1)/2,N = pm1 , andD =

⋃pm−1
1 −1
i=0 C

(N,q)
i .

Then, Cay(Fq, D) is strongly for any m > 1 in the following cases:

(p, p1) = (2, 7), (3, 107), (5, 19), (5, 499), (17, 67), (41, 163).

(ii) ([51]) Let q = pp
m−1
1 (p1−1)/4, N = pm1 , and D =

⋃pm−1
1 −1
i=0 C

(N,q)
i . Then,

Cay(Fq, D) is strongly regular for any m > 1 in the following cases:

(p, p1) = (3, 13), (7, 37).

(iii) ([46]) Let q = pp
m−1
1 (p1−1)pn−1

2 (p2−1)/2,N = pm1 p
n
2 , andD =

⋃pm−1
1 −1
i=0

⋃pn−1
2 −1
j=0 C

(N,q)
pn2 i+p

m
1 j

.
Then, Cay(Fq, D) is strongly regular for any m,n > 1 in the following cases:

(p, p1, p2) = (2, 3, 5), (3, 5, 7), (3, 17, 19).

The srgs in the cases when (p, p1) = (2, 7), (3, 13) and (p, p1, p2) = (2, 3, 5) in
Theorem 4.10 are generalizations of subfield examples. The others are generaliza-
tions of sporadic examples of Table 1. In all cases, it holds that [(Z/NZ)∗ : 〈p〉] =
[(Z/p1Z)∗ : 〈p〉] or [(Z/NZ)∗ : 〈p〉] = [(Z/p1p2Z)∗ : 〈p〉]. The proofs are based on
known evaluations of index 2 or 4 Gauss sums (see [44, 107]).

Note that it is unlikely that one can generalize the 1st example in Table 1 by a similar
method since [(Z/11mZ)∗ : 〈3〉] 6= [(Z/11Z)∗ : 〈3〉] form > 2. In order to generalize
the 5th and 8th srgs in Table 1 into infinite families, we may need to evaluate Gauss
sums of index 6. However, it seems very difficult to compute Gauss sums of index e
when e > 4. As a result, it is hard to find new srgs on Fq in the index e > 4 cases. On
the other hand, in [74], the first author of this survey succeeded in giving a recursive
construction of srgs, which enables him to generalize the remaining examples into
infinite families not using explicit evaluations of Gauss sums. Instead, he studied the
rationality of “relative” Gauss sums.

Theorem 4.11. ([74]) Let N1 = p1 · · · pmpm+1 · · · p`, where pi’s are distinct odd
primes, and assume that [(Z/hZ)∗ : 〈p〉] = e. Furthermore, LetN = pe1

1 · · · pemm p
em+1
m+1 · · · p

e`
` ,

where ei > 1 for 1 6 i 6 m and ei = 1 for m+ 1 6 i 6 `, and assume that 〈p〉 is of
index e modulo N . Let q1 = pd and q = pf , where d = φ(N1)/e and f = φ(N)/e.
Here, φ is the Euler totient function. Put hj =

∏
i 6=j pi for 1 6 j 6 m. Assume that

there exists an integer sj such that psj ≡ −1 (mod hj) for 1 6 j 6 m. Let

D :=
p
e1−1
1 −1⋃
i1=0

· · ·
pem−1
m −1⋃
im=0

C
(N,q)
i1n1+···+imnm

,

where nj =
∏
i 6=j p

ei
i . If Cay(Fq1 , C

(N1,q1)
0 ) is an srg, then so is Cay(Fq, D).
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Example 4.12. (i) We can apply Theorem 4.11 to the 5th srg in Table 1 as (`, p1, p, e) =
(1, 43, 11, 6). In this case, we do not need the condition that there exists an inte-
ger sj such that psj ≡ −1 (mod hj). It is clear that [(Z/pe1

1 Z)∗ : 〈p〉] = 6 for
any e1 > 1. Hence, Cay(F

p
p
e1−1
1 (p1−1)/6

, D) is strongly regular, where

D =

p
e1−1
1 −1⋃
i=0

C
(p

e1
1 ,p

p
e1−1
1 (p1−1)/6

)
i .

There are many examples in the subfield case satisfying the condition of Theo-
rem 4.11 with ` = 1, for example,

(p, f, p1, e) = (3, 3, 13, 4), (2, 5, 31, 6), (5, 3, 31, 10), (2, 9, 73, 8).

In these cases, we have [(Z/pe1
1 Z)∗ : 〈p〉] = e for any e1 > 1. Hence, these

examples can be similarly generalized into infinite families.

(ii) We can apply Theorem 4.11 to the 8th srg in Table 1 as (`,m, p1, p2, p, e) =
(2, 1, 19, 7, 5, 6). In this case, there exists an integer s2 such that ps2 ≡ −1 (mod p2).
It is clear that [(Z/pe1

1 p2Z)∗ : 〈p〉] = 6 for any e1 > 1. Hence,
Cay(F

p
p
e1−1
1 (p1−1)(p2−1)/6

, D) is strongly regular, where

D =

p
e1−1
1 −1⋃
i=0

C
(p

e1
1 p2,p

p
e1−1
1 (p1−1)(p2−1)/6

)
i .

There are many examples in the subfield case satisfying the condition of Theo-
rem 4.11 with ` = 2, for example,

(p, f, p1, p2, e) = (2, 4, 3, 5, 2), (2, 8, 5, 17, 8), (2, 10, 31, 11, 30), (2, 14, 127, 43, 378).

In the former two cases, we have [(Z/pe1
1 p

e2
2 Z)∗ : 〈p〉] = e for any e1, e2 > 1

and p is semi-primitive modulo both p1 and p2. In the latter two cases, we have
[(Z/pe1

1 p2Z)∗ : 〈p〉] = e for any e1 > 1, and p is semi-primitive modulo p2
only. Hence, these examples can be generalized into infinite families by using
Theorem 4.11.

4.4 On de Lange’s sporadic examples of srgs

In [35], de Lange found four “sporadic” examples of strongly regular Cayley graphs
on the additive groups of finite fields by using a computer. The srgs he found have the
following parameters:
(1) (v, k, λ, µ) = (38, 2296, 787, 812);

(2) (v, k, λ, µ) = (38, 2870, 1249, 1260);
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(3) (v, k, λ, µ) = (212, 273, 20, 18);

(4) (v, k, λ, µ) = (212, 1911, 950, 840).

The 3rd and 4th examples of srgs are dual to each other; hence de Lange found
essentially three examples. In particular, the 2nd example is the one given in Exam-
ple 4.2 (3). As explained in Example 4.8 and Theorem 4.10 (iii), the 1st and 3rd
examples above have already been generalized in [14] and [49], respectively. How-
ever, it seems difficult to generalize the 2nd example above into an infinite family of
srgs. In [106], the third author asked the question of generalizing the last example
of de Lange (see Problem 5.2 in [106]). In this subsection, we show that there is an
infinite family of srgs including an srg with the same parameters as those of the 2nd
example above.

We will need the following families of srgs.

Theorem 4.13. ([18]) Let Q : Fnq → Fq be a nonsingular quadratic form, where
n = 2m is even and q is an odd prime power. Define Q = {x ∈ Fnq \ {0} |Q(x) = 0}
and Di = {x ∈ Fnq |Q(x) ∈ C

(2,q)
i }, i = 0, 1. Then, each Cay(Fnq , Di), i = 0, 1,

is an srg with parameters (u2, r(u − ε), εu + r2 − 3εr, r2 − εr) with u = qm and
r = εqm−1(q − 1)/2, where ε = 1 or −1 depending on whether Q is hyperbolic or
elliptic.

The srg Cay(Fq, D0) in the above theorem is called an affine polar graph. In [75],
the following recursive construction of srgs was given as a generalization of the con-
struction above. Let q be a prime power and N > 1 be an integer dividing q − 1.
Furthermore, let γ be a fixed primitive element of Fq2 , and let ω = Normq2/q(γ),

which is a primitive element of Fq. Put C(e,q2)
i = γi〈γN 〉, i = 0, 1, . . . , N − 1. Let

Q : Fnq → Fq be a quadratic form. For y ∈ Fq, define Dy = {x ∈ Fnq |Q(x) = y},
and for a subset E of Fq, write DE =

∑
y∈E Dy.

Theorem 4.14. Let J be a subset of {0, 1, . . . , N − 1}, and let E =
⋃
i∈J C

(N,q)
i .

Assume that Cay(Fq2 ,
⋃
i∈J C

(N,q2)
i ) is an srg of negative Latin square type. Let

Q : Fnq → Fq be a nonsingular quadratic form, where n = 2m is even. Then,
Cay(Fnq , DE) is an srg(u2, r(u − ε), εu + r2 − 3εr, r2 − εr) with u = qm and
r = ε|J |qm−1(q − 1)/N , where ε = 1 or −1 depending on whether Q is hyperbolic
or elliptic.

In [75, 76], the authors gave constructions of strongly regular graph Cay(Fq2 , D) of

negative Latin square type such that D is a union cosets of C(q−1,q2)
0 based on cyclo-

tomic srgs, which can be used as starters in order to apply Theorem 4.14. Furthermore,
in [47], the authors studied a construction of srgs based on weakly regular bent func-
tions instead of quadratic forms in Theorem 4.14.

We will also need the following family of srgs.
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Example 4.15. Let q be an odd prime power andQ : F8
q → Fq be an elliptic quadratic

form defined by
Q(x) = Trq8/q(x

q4+1). (4.1)

We define Q = {x ∈ Fnq \ {0} |Q(x) = 0}. Let D = C
(q2+1,q8)

(q2+1)/2 . Then, D ⊆
Q, and Cay(Fq8 , D) is strongly regular with negative Latin square type parameters
(q8, r(q4+1),−q4+r2+3r, r2+r), where r = q2−1, since q2 ≡ −1 (mod N) with
N = q2+1 (i.e., the semi-primitive condition holds here). In this case, Cay(Fq8 ,Q\D)
is also an srg of the same type.

Finally, we use the following theorem of van Dam [100].

Theorem 4.16. Let {G1, G2, . . . , Gd} be a decomposition of the complete graph on a
vertex set X , where each Gi is strongly regular. If the Gi’s are all of Latin square type
or all of negative Latin square type, then a union of any subset of {G1, G2, . . . , Gd} is
also an srg of the same type on X .

Remark 4.17. In [100], van Dam actually proved that the decomposition {G1, G2, . . . , Gd}
forms a d-class amorphic association scheme under the same assumption of Theo-
rem 4.16. We will not need the full strength of this result. The theorem above suffices
for our purpose.

Example 4.18. Let q be an odd prime power and n = 8. Let Q : Fnq → Fq be a
nonsingular elliptic quadratic form. Let G1 = Cay(Fnq , D1) be an affine polar graph
of negative Latin square type associated with Q, and G2 = Cay(Fnq , D2) be the srg
defined in (4.1). Then, the four graphs G1, G2, G3 = Cay(Fnq ,Fnq \ ({0} ∪ Q ∪D1)),
G4 = Cay(Fnq ,Q\D2) give a decomposition of the complete graph on Fnq , where each
Gi is an srg of negative Latin square type. By Theorem 4.16, the graph Γ = G1 +G3
is also an srg of negative Latin square type. Take q = 3, and then the graph Γ is
an srg with parameters (v, k, λ, µ) = (38, 2870, 1249, 1260). This srg has the same
parameters as those of de Lange’s 2nd example Γ′ of srgs. We checked that Γ and Γ′

are nonisomorphic by a computer. In particular, we have #Aut(Γ) = 27 · 312 · 5 · 41
and #Aut(Γ′) = 24 · 38 · 5 · 41.

4.5 Projective two-intersection sets, m-ovoids, and i-tight sets

During the past few years, strongly regular Cayley graphs defined on the additive
groups of finite fields have been extensively studied due to their close connections
with certain substructures in finite geometry. In most published works by geometers,
the authors used the language of projective two-intersection sets, or two-character sets.
Because of the large amount of papers published in this direction, it is difficult to sum-
marize all known constructions and existence results in this short subsection. Instead
we will focus on explaining the connections between projective two-intersection sets
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and strongly regular Cayley graphs on finite fields, and a linkage with geometric ob-
jects, called m-ovoids and i-tight sets in polar spaces.

A set M of points of a projective space PG(n − 1, q) is called a projective two-
intersection set of type (a, b) (or simply, a set of type (a, b)) if every hyperplane of
PG(n− 1, q) meetsM in a or b points. In some papers, a projective two-intersection
set is also called a two-character set.

Example 4.19.
(1) A hyperoval in PG(2, 2f ) is a set of type (0, 2).
(2) A unital in PG(2, q2) is a set of type (1, q + 1).
(3) A nodegenerate quadric Q in PG(2m − 1, q) is a set of type (θm − q2m−2, θm −
q2m−2− εqm−1), where θm = (qm−ε)(qm−1+ε)

q−1 and ε = 1 or −1 depending on whether
Q is hyperbolic or elliptic.

See [37] for a generalization of (1) in Example 4.19 and [13] for a difference of two
quadrics construction.

Let N = (qn − 1)/(q − 1), and let γ be a primitive element of Fqn . We identify
the points of PG(n − 1, q) with ZN as follows: View Fqn as an n-dimensional space
over Fq, and use Fqn as the underlying vector space of PG(n − 1, q). We identify the
projective point 〈γi〉 with i ∈ ZN . Then, all hyperplanes in PG(n− 1, q) are given by

Hi := {〈γj〉 |Trqn/q(γ
i+j) = 0, j ∈ ZN}, i ∈ ZN .

Now letM be a set of points of PG(n− 1, q), and define

D := {xy : y ∈ F∗q , 〈x〉 ∈ M} ⊆ Fqn .

Then, we have

ψFqn
(γiD) =

∑
y∈Fq

∑
x∈M

ζ
Trqn/q(γ

ixy)
p − |M| = q|Hi ∩M| − |M|.

Hence, M is a set of type (a, b) in PG(n − 1, q) if and only if the character values
of D take exactly two values qa − |M| and qb − |M|, i.e., Cay(Fqn , D) is strongly
regular with parameters (qn, (q − 1)|M|, λ, µ), where λ and µ can be computed from
a, b, |M|, q, and n.

There are many known constructions of projective two-intersection sets. See, e.g.,
[23, 24, 25, 27, 30, 36, 33, 60, 80, 79, 84, 85], for recent constructions of projective
two-intersection sets.

Many projective two-intersection sets arise from m-ovoids and i-tight sets in clas-
sical polar spaces. Conversely, projective two-intersection sets with certain special
properties can give rise to m-ovoids and i-tight sets. Many recent constructions of m-
ovoids and i-tight sets came about via constructions of projective 2-intersection sets
satisfying special properties, see, e.g. [45, 7].
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Let V = Fnq be an n-dimensional vector space over Fq and f be a non-degenerate
sesquilinear or non-singular quadratic form defined on V . A finite classical polar
space associated with the form f is the geometry consisting of subspaces of PG(n −
1, q) induced by the totally isotropic subspaces with relation to f . A polar space S
contains totally isotropic points, lines, planes, etc. The (totally isotropic) subspaces of
maximum dimension are called maximals of S. The rank of S is the vector dimension
of its maximals.

There are three types of finite classical polar spaces; Orthogonal polar spaces (parabolic
quadric Q(2r, q), hyperbolic quadric Q+(2r − 1, q), elliptic quadric Q−(2r − 1, q));
symplectic polar spaces (W(2r−1, q)); and Hermitian polar spaces (H(2r, q2), H(2r−
1, q2)). See Table 2 for polar spaces and their ranks and forms f . (In Table 2,
f(x0, x1) = ax2

0 + bx0x1 + cx2
1 is an irreducible quadratic form in two indetermi-

nates.)

Table 2. Classical polar spaces

Polar space dimension rank form

Q(2r, q) n = 2r + 1 r x2
0 + x1x2 + · · ·+ x2r−1x2r

Q+(2r − 1, q) n = 2r r x0x1 + · · ·+ x2r−2x2r−1

Q−(2r − 1, q) n = 2r r − 1 f(x0, x1) + x2x3 + · · ·+ x2r−2x2r−1

W(2r − 1, q) n = 2r r x0y1 + y0x1 + · · ·+ x2r−2y2r−1 + x2r−1y2r−2

H(2r, q2) n = 2r + 1 r xq+1
0 + · · ·+ xq+1

2r

H(2r − 1, q2) n = 2r r xq+1
0 + · · ·+ xq+1

2r−1

Let S be a polar space of rank r over Fq. Anm-ovoid is a setM of points of S such
that every maximal of S meetsM in exactly m points. For example, the whole point
set of S itself is a qr−1

q−1 -ovoid. For two mj-ovoidsMj , j = 1, 2, ifM2 ⊆ M1, then
M1 \M2 is an (m1−m2)-ovoid. On the other hand, ifM1 andM2 are disjoint, then
M1 ∪M2 is an (m1 +m2)-ovoid.

For a point P of a polar space S, the set P⊥ of points of S collinear with P is the
intersection of the tangent hyperplane at P with S. Let M be an m-ovoid of S. It
is known that |P⊥ ∩ M| takes exactly two values according to P ∈ M or not [5].
Furthermore, if S is either H(2r, q2), Q−(2r − 1, q), or W(2r − 1, q), the sizes of
H ∩M, where H are nontangent hyperplanes, can also be computed exactly. In fact,
the following theorem is known.

Theorem 4.20. ([5, Theorem 11]) Let S be one of the polar spaces H(2r, q2), Q−(2r−
1, q), or W(2r − 1, q) and letM be an m-ovoid in S. ThenM is a projective two-
intersection set in the ambient projective space of S; in other words, lettingD = {xy :
y ∈ F∗q , 〈x〉 ∈ M} and V be the underlying vector space of S, the graph Cay(V,D) is
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an srg with negative Latin square type parameters (u2, s(u+1),−u+s2+3s, s2+s),
where (u, s) = (q2r+1,m(q2 − 1)), (qr,m(q − 1)), or (qr,m(q − 1)) according as
S = H(2r, q2), Q−(2r − 1, q), or W(2r − 1, q), respectively.

Remark 4.21.
(1) A partial converse to the above theorem holds. That is, ifM is a projective two-
intersection set in the ambient projective space of S, andM satisfies certain condi-
tions, thenM is an m-ovoid in S. We refer the reader to [7] for the precise statement
of the partial converse. This partial converse provides an approach to constructing
m-ovoids in the polar spaces mentioned in Theorem 4.20.

(2) A (q + 1)/2-ovoid in Q−(5, q) can be interpreted as a set of lines in H(3, q2) con-
taining exactly half of the lines on every point via the duality of generalized quadran-
gles. Such a set of lines in H(3, q2) is called a hemisystem, which was first studied by
Segre [91]. Constructions of hemisystems can be found in [4, 7, 29, 63].

To obtain a similar theorem for srgs of Latin square type, we need to introduce the
concept of i-tight sets. Let S be a polar space of rank r > 2 over Fq. An i-tight set is
a setM of points of S such that

|P⊥ ∩M| =

{
i q

r−1−1
q−1 + qr−1, if P ∈M,

i q
r−1−1
q−1 , otherwise.

For example, each maximal is a 1-tight set. In [5], it was shown that if a set M of
points in a polar space S meets P⊥ in exactly two different sizes according to P ∈M
or not, thenM is either an m-ovoid or an i-tight set for some m or i. Similarly to the
situation with m-ovoids, the following basic properties hold. For two ij-tight setsMj

in S, j = 1, 2, ifM2 ⊆ M1, thenM1 \ M2 is an (i1 − i2)-tight set. On the other
hand, ifM1 andM2 are disjoint, thenM1∪M2 is an (i1+i2)-tight set. Furthermore,
if S is either H(2r − 1, q2), Q+(2r − 1, q), or W(2r − 1, q), the size of H ∩M for
nontangent hyperplanes can be also computed exactly. In fact, the following theorem
is known.

Theorem 4.22. ([5, Theorem 12]) Let S be one of the polar spaces H(2r − 1, q2),
Q+(2r − 1, q), or W(2r − 1, q) and let M be an i-tight set in S. Then M is a
projective two-intersection set in the ambient projective space of S; In other words,
letting D := {xy : y ∈ F∗q , 〈x〉 ∈ M} and V be the underlying vector space of S, the
graph Cay(V,D) is an srg with Latin square type parameters (u2, s(u− 1), u+ s2 −
3s, s2 − s), where (u, s) = (q2r, i), (qr, i), or (qr, i) according as S = H(2r− 1, q2),
Q+(2r − 1, q), or W(2r − 1, q), respectively.

Remark 4.23.
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(1) Again, a partial converse to the above theorem holds. For the detailed statement,
see [45]. This partial converse provides an approach to constructing Cameron-Liebler
lines classes in PG(3, q) (see definition below).

(2) A tight set in Q+(5, q) can be interpreted as a set L of lines in PG(3, q) such that
the size of L ∩ S is constant for all spread S via the Klein correspondence. Such a
set of lines in PG(3, q) is called a Cameron-Liebler line class, which was first studied
by Cameron and Liebler [19]. Constructions of Cameron-Liebler line classes can be
found in [16, 32, 45, 50, 88].

Known results on m-ovoids and i-tight sets are surveyed in [5, 6]. See [22, 26, 28,
34, 78, 71] for recent constructions of m-ovoids and i-tight sets.
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