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Abstract Let n ≥ r ≥ s ≥ 0 be integers and F a family of r -subsets of [n]. Let WF
r,s

be the higher inclusion matrix of the subsets in F vs. the s-subsets of [n]. When F
consists of all r -subsets of [n], we shall simply writeWr,s in place ofWF

r,s . In this paper
we prove that the rank of the higher inclusion matrix Wr,s over an arbitrary field K is
resilient. That is, if the size of F is “close” to

(n
r

)
then rankK (WF

r,s) = rankK (Wr,s),
where K is an arbitrary field. Furthermore, we prove that the rank (over a field K ) of
the higher inclusion matrix of r -subspaces vs. s-subspaces of an n-dimensional vector
space over Fq is also resilient if char(K ) is coprime to q.

Keywords Higher inclusion matrix · Rank · Representation of GL(n, q) ·
Specht module

1 Introduction

Let n ≥ r ≥ s ≥ 0 be integers, and let [n] = {1, 2, . . . , n}. Given a family F of
r -subsets of [n], we define the higher inclusion matrix WF

r,s to be the (0, 1)-matrix
with rows indexed by the r -subsets R in F , columns indexed by the s-subsets S of
[n], and with (R, S)-entry equal to one if and only if S ⊆ R. When F = ([n]

r

)
, that is,
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F consists of all r -subsets of [n], we shall omit the superscript and simply write Wr,s

in place of WF
r,s .

The higher inclusion matrices WF
r,s have played an important role in the theory of

t-designs ([10,21]) and in extremal combinatorics ([1,7]). For applications to integral
t-designs, Wilson [21] found a diagonal form of Wr,s . As a consequence, he obtained
the rank of Wr,s over any field K . Specifically, if n ≥ r + s, and K is any field, then

rankK (Wr,s) =
∑

j∈Y

((
n

j

)
−

(
n

j − 1

))
,

where Y = { j : 0 ≤ j ≤ s,
(r− j
s− j

) �=K 0}. In the above rank formula,
( n
−1

)
should be

interpreted as zero. We remark that the above result on the rank of Wr,s includes the
result of Gottlieb [8] and the result of Linial and Rothchild [18] as special cases.

Higher inclusionmatrices have also provenvery useful in applications of linear alge-
braicmethods in extremal combinatorics (see [1]). For example, the following classical
result in extremal combinatorics, known as the Lovász version of the Kruskal–Katona
theorem [14,17], can be proved by using properties of higher inclusion matrices. Let
F be a family of r -subsets of [n]. The s-shadow of F , denoted by ∂rsF , consists of
all s-subsets of [n] that are contained in some element of F .

Theorem 1 (Lovász [19]) Let F be a family of r-subsets of [n] such that |F | = (x
r

)
,

where x is a real number greater than or equal to r . If s < r then |∂rsF | ≥ (x
s

)
, and

equality holds if and only if x is an integer and there exists a subset X of [n] of size x
such that F = (X

r

)
.

The above theorem can be proved in several different ways. Keevash [15] showed
that Theorem 1 follows immediately from the following result on the rank of higher
inclusion matrices.

Theorem 2 (Keevash [15]) For every r > s > 0 there is a number nr,s so that if F
is a family of r-subsets of [n] with |F | = (x

r

) ≥ nr,s then rankQ(WF
r,s) ≥ (x

s

)
, and

equality holds if and only if x is an integer and there exists a subset X of [n] of size x
such that F = (X

r

)
.

To see how Theorem 1 follows from Theorem 2 (for large x), one simply observes
that rankQ(WF

r,s) is less than or equal to the number of nonzero columns ofWF
r,s (which

is the size of the s-shadow of F). In order to prove Theorem 2, Keevash [15] showed
that the rank of the matrix Wr,s is resilient or robust, that is, one can remove “many”
rows (in an arbitrary way) of Wr,s without lowering its rank.

Theorem 3 (Keevash [15]) Suppose 0 ≤ s ≤ r and 2r + s ≤ n. If F is a family of
r-subsets of [n] with |([n]

r

)\F | ≤ (n
s

)−1( n
r−s

)
then rankQ(WF

r,s) = (n
s

)
.

Keevash [16]went further to askwhether Theorem3 remains true under the assump-
tion that |([n]

r

)\F | <
(n−s
r−s

)
. This question was answered in the affirmative by Grosu,

Person and Szabó [9] for n large (compared with r and s). In the end of [9], the authors
remarked that rank resilience property of the higher inclusion matrices has not been
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studied over fields of positive characteristic. In this paper we prove that the rank of
Wr,s is resilient over any field K . In fact, the following theorem shows that if the
size of F is close to

(n
r

)
then rankK (WF

r,s) = rankK (Wr,s) for an arbitrary field K .
To simplify notation, for any family F of r -subsets of [n], we use Fc to denote the
complement of F in

([n]
r

)
. Our first main result is stated below.

Theorem 4 Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subsets of [n], and
K be any field. If |Fc| ≤ n−1

r then rankK (WF
r,s) = rankK (Wr,s).

Our second main result in this paper is about rank resilience property of the higher
inclusion matrices of r -subspaces vs. s-subspaces of an n-dimensional vector space
over Fq .

Definition 5 Let V be an n-dimensional vector space overFq , where q = pt is a prime
power. Let n ≥ r ≥ s ≥ 0 be integers and F a family of r -dimensional subspaces of
V . The higher inclusion matrix of r -subspaces vs. s-subspaces, denoted byWF

r,s(q), is
the (0, 1)-matrix with rows indexed by the r -dimensional subspaces R of V , columns
indexed by the s-dimensional subspaces S of V , and with the (R, S)-entry equal to one
if and only if S ⊆ R. In the case when F = [V

r

]
, that is, F consists of all r -subspaces

of V , we shall omit the superscript and simply write Wr,s(q).

The ranks of the matrices Wr,s(q) have also been studied. However, the results are
not as complete as in the set case. It was proven byKantor [13] that if s ≤ min{r, n−r}
then theQ-rank ofWr,s(q) is

[n
s

]
(the number of s-dimensional subspaces in V ). Later,

Frumkin and Yakir [6] proved that if char(K ) �= p, and n ≥ r + s then the K -rank of
Wr,s(q) is given by a q-analogue of Wilson’s formula. Indeed,

rankK (Wr,s(q)) =
∑

j∈Y

([
n

i

]
−

[
n

i − 1

])
, (1)

where Y = {i : 0 ≤ i ≤ s,
[r−i
s−i

] �=K 0}. When the characteristic of K is equal to
p, the problem of finding the K -rank of Wr,s(q) is open in general. However, under
the additional condition that s = 1, Hamada [11] gave a formula for the p-rank of
Wr,1(q).

It is important to remark that although there are at least five different proofs ([2,4–
6,21]) of Wilson’s rank formula, only the proof by Frumkin and Yakir [6] has been
generalized tofind a formula for the rankof thematrixWr,s(q)over K whenchar(K ) �=
p. This is an indication that proving q-analogues of classical results in extremal set
theory is often a difficult task.

In this paper, we prove that the K -rank ofWr,s(q) is also resilient when char(K ) �=
p. Let F be a family of r -subspaces of V . We denote by Fc the complement of F in[V
r

]
.

Theorem 6 Let V be an n-dimensional vector space over Fq . Assume that 0 ≤ s <

r ≤ n/2. Let F be a family of r-subspaces of V and K a field with char(K ) �= p. If
|Fc| ≤ n

r − 1 then rankK (WF
r,s(q)) = rankK (Wr,s(q)).
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The techniques we use to prove Theorems 4 and 6 are completely different from
those used by Keevash in [15] and Grosu, Person and Szabó in [9]. The main tool
we use to prove Theorem 4 is Bier’s bases which give a diagonal form of the higher
inclusion matrixWr,s . These bases were found by Bier in [2]. We will show that if the
size of F is close to

(n
r

)
then Bier’s bases also give an almost diagonal form for the

matrix WF
r,s . This fact will be used to compute the rank of WF

r,s .
The proof of Theorem 6 is more difficult. One difficulty is that there is no known

q-analogue of the Bier basis for us to use. To overcome this difficulty we use some
results from representation theory of GL(n, q). The work of James [12] and Frumkin
and Yakir [6] explicitly shows a connection between the rank of higher inclusion
matrices and the Specht modules ofGL(n, q). In fact, Frumkin andYakir [6] proposed
a uniform approach to finding ranks of both Wr,s and Wr,s(q). The basic idea is
that Wr,s and Wr,s(q) are matrices associated with an Sn- and a GL(n, q)-module
homomorphisms, respectively. From this point of view, one can use some properties
of the Specht modules of GL(n, q) to prove that the column space ofWF

r,s(q) contains
at least rankK (Wr,s(q)) linearly independent vectors if the size ofFc is small enough.
To be specific, the properties of the Specht modules that we use are the Submodule
Theorem (see Theorem 12) and the standard bases for the GL(n, q)-Specht modules
S(n−r,r), with r ≤ n/2, that were found by Brandt, Dipper, James and Lyle in [3].
Once we prove the result on the column space of WF

r,s(q), Theorem 6 follows easily
since the rank of WF

r,s(q) is clearly bounded above by the rank of Wr,s(q).

2 Rank resilience: the set case

2.1 Bier’s bases

Let K be an arbitrary field. For any 0 ≤ r ≤ n, we denote by Mr the K -vector space
spanned by the r -subsets of [n]. Hence, the set of r -subsets of [n] forms a “canonical”
basis of Mr . Let ϕ j,r : M j → Mr be the linear transformation such that, for every
j-subset A of [n],

ϕ j,r (A) =
∑

A⊆R

R,

where the sum is over all r -subsets containing A; the definition of ϕ j,r is then extended
to all elements of M j by linearity. Note that Wr, j is the matrix of ϕ j,r with respect to
the canonical bases of M j and Mr .

For any j-subset A of [n], with 0 ≤ j ≤ r , we denote by 〈A〉r the image of A under
the linear map ϕ j,r . In [4], Frankl defined the rank of a subset of [n].
Definition 7 (Frankl [4]) Let A be a subset of [n]. One associates a walk w(A) on the
x-y plane with A. The walk w(A) goes from the origin to (n − |A|, |A|) by steps of
length one, with the i-th step going east or north according as i /∈ A or i ∈ A. The
rank of A, denoted by rk(A), is defined as |A| − � where � is the largest integer such
that w(A) reaches the line y = x + �.
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From the above definition, it follows that if A is a j-subset of [n] then its rank is at
most min{ j, n − j}. For every 0 ≤ j ≤ n/2, we define

S( j) =
{
A ∈

([n]
j

)
: rk(A) = j

}
.

Note that the elements of S( j) are in one-to-one correspondence to the standard
tableaux of shape (n − j, j). This is one way to see that |S( j)| = (n

j

) − ( n
j−1

)
. There-

fore, for 0 ≤ r ≤ n/2, we have | ∪r
j=0 S( j)| = (n

r

)
, which is precisely the dimension

of the vector space Mr . The following theorem gives a basis of Mr indexed by the
elements of S( j) with j ranging from 0 to r .

Theorem 8 (Bier [2]) Let 0 ≤ r ≤ n/2. The vectors in ∪r
j=0{〈A〉r : A ∈ S( j)} form

a K-basis of Mr .

We will refer to the basis given in Theorem 8 as the Bier basis of Mr . For the sake
of completeness we give the details of Bier’s proof of Theorem 8.

Lemma 9 (Bier [2]) Let r be a positive integer. For any j-subset A of [n] with j < r ,

(
r − j

�

)
〈A〉r +

�∑

i=1

(−1)i
(
r − j − i

� − i

) ∑

Ti

〈Ti 〉r = 0 for all � = 1, . . . , r − j (2)

where the inner sum is over all Ti with |Ti | = j + i and A ⊂ Ti .

Proof Let R be any r -subset containing A. In the first term on the left-hand side of
(2), R appears

(r− j
�

)
times. Moreover, in each sum

∑〈Ti 〉r , R appears
(r− j

i

)
times.

Therefore, R appears in the left-hand side of (2) exactly

(
r − j

�

)
+

�∑

i=1

(−1)i
(
r − j − i

� − i

)(
r − j

i

)
=

�∑

i=0

(−1)i
(
r − j

i

)(
r − j − i

� − i

)

times. The above sum is easily seen to be zero by the principle of inclusion and
exclusion. �
Proof of Theorem 8 We will show that for any 0 ≤ t ≤ r

spanK {〈A〉r : A∈ S( j), 0≤ j ≤ t}=spanK {〈A〉r : A a j-subset of [n], 0≤ j ≤ t}.
(3)

The conclusion of the theorem follows immediately from (3) because by taking t = r
we see that the vectors in the set on the left-hand side of (3) span Mr and since
| ∪r

j=0 S( j)| = (n
r

)
, they form a basis.

We will prove (3) by induction. Let us start with some definitions that we will use.
For any set A = {a1 < · · · < a j } with r(A) < |A|, there exists a unique integer
m = mA, 1 ≤ m ≤ j such that am < 2m and ai ≥ 2i for all i > m. On the other
hand, if r(A) = |A| then ai ≥ 2i for all i ; so m = mA = 0 in this case.
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To prove (3) it is enough to show that

spanK {〈A〉r : A a j-subset of [n], 0 ≤ j ≤ s} ≤ spanK {〈A〉r : A ∈ S( j), 0 ≤ j ≤ t}
(4)

for all s ranging from 0 to t .
The proof of (4) is done by induction on s and on the parameter m defined above

for any subset of [n]. Note that the base case, i.e., the case where s = 0, is trivially
true. Now, let s be given with 0 < s ≤ t and suppose by induction hypothesis that the
following holds:

(a). 〈B〉r ∈ spanK {〈A〉r : A ∈ S( j), 0 ≤ j ≤ t}, for all B, |B| < s.
(b). 〈B〉r ∈ spanK {〈A〉r : A ∈ S( j), 0 ≤ j ≤ t}, for all B, |B| = s and mB < m 1.

Using these assumptions we will show that

〈B〉r ∈ spanK {〈A〉r : A ∈ S( j), 0 ≤ j ≤ t} (5)

for any subset B with |B| = s and mB = m, which is enough to prove (4).
Let B = I ∪ X with

I = {b1 < b2 < · · · < bm} and X = {bm+1 < · · · < bs}
such that bm < 2m and bi ≥ 2i for all bi ∈ X (so |B| = s and mB = m). For any
U ⊆ I we define

[U ∪ X ] =
∑

U⊆J

〈J ∪ X〉r

where the sum is taken over all sets J = { j1 < j2 < · · · < jm} with jm < 2m
containing the set U . Notice that J ∪ X is an s-subset with mJ∪X = m.

Claim (i). Let U be a proper subset of I then

[U ∪ X ] ∈ spanK {〈A〉r : A ∈ S( j), 0 ≤ j ≤ t}
To prove the claim, applying Lemma 9 with A = U ∪ X and � = m − |U |, we

obtain

(
k − |U ∪ X |

�

)
〈U ∪ X〉r +

�∑

i=1

(−1)i
(
k − |U ∪ X | − i

� − i

) ∑

Ti

〈Ti 〉r = 0.

Rewriting the above equation, we have

�−1∑

i=0

(−1)i
(
k − |U ∪ X | − i

� − i

) ∑

Ti

〈Ti 〉r = (−1)�+1
∑

T�

〈T�〉r

1 We may assume (b) because for every s-subset B with mB = 0 we have that B ∈ S( j); therefore,
〈B〉r ∈ spanK {〈A〉r : A ∈ S( j), 0 ≤ j ≤ t}.
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The terms on the left-hand side of the above equation are contained in spanK {〈A〉r :
A ∈ S( j), 0 ≤ j ≤ t} by induction hypothesis since the sets Ti have cardinality strictly
less than s. We can rewrite the term on the right as

∑

T�

〈T�〉r =
∑

T�:mT�<m

〈T�〉r +
∑

T�:mT�=m

〈T�〉r

The first term on the right of the above equation belongs to spanK {〈A〉r : A ∈
S( j), 0 ≤ j ≤ t} by induction hypothesis. Now, because [U ∪ X ] = ∑

T�:mT�=m〈Tl〉r ,
we conclude that

[U ∪ X ] =
�−1∑

i=0

(−1)i+�+1
(
r − |U ∪ X | − i

� − i

) ∑

Ti

〈Ti 〉k −
∑

T�:mT�<m

〈T�〉k

which proves Claim (i).

Claim (ii). For any I ⊂ {1, 2, . . . , 2m − 1} with |I | = m,

∑

U⊆I

(−1)|U |[U ∪ X ] = 0.

Claim (ii) can be proved as follows. By definition we have,

∑

U⊆I

(−1)|U |[U ∪ X ] =
∑

U⊆I

(−1)|U | ∑

U⊆J

〈J ∪ X〉r (6)

Consider any set R ∈ ([n]
r

)
. We want to count how many times the subset R

appears in the expression (6). We assume that X ⊆ R and |R ∩ {1, 2, . . . , 2m − 1}|
is at least m (otherwise, R does not appear in (6)). Define �1 = |R ∩ I | and �2 =
|(R\I ) ∩ {1, . . . , 2m − 1}|. We see that R appears in (6) exactly

(
�1

0

)(
�1 + �2

m

)
−

(
�1

1

)(
�1 + �2 − 1

m − 1

)
+ · · · =

m∑

i=0

(−1)i
(

�1

i

)(
�1 + �2 − i

m − i

)

times. Now the sum on the right-hand side of the above equation is equal to 0 by the
principle of inclusion and exclusion. This proves Claim (ii).

We will apply Claims (i) and (ii) to prove (5). By definition it is clear that 〈B〉r =
[I ∪ X ]. Hence, it follows from Claim (ii) that

〈B〉r = [I ∪ X ] = (−1)m+1
∑

U⊂I

(−1)|U |[U ∪ X ]

Therefore, (5) follows from Claim (i). �
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2.2 Proof of Theorem 4

In this subsection we use the Bier bases to prove the resilience property of ranks of the
higher inclusion matrices Wr,s over an arbitrary field K . The following simple result
from linear algebra will be needed.

Lemma 10 Let u1, . . . , um be linearly independent vectors of a K -vector space U.
Let z1, . . . , zm be vectors in U such that span{u1, . . . , um}∩ span{z1, . . . , zm} = {0}.
Then u1 + z1, . . . , um + zm are linearly independent vectors in U.

By definition of ϕs,r , it is easy to see that for 0 ≤ s ≤ r ≤ n/2, we have

ϕs,r (〈A〉s) =
(
r − j

s − j

)
〈A〉r

for every A ∈ S( j) with j = 0, 1, . . . , s. Therefore, the matrix of ϕs,r with respect
to the Bier basis {〈A〉s : A ∈ S( j), 0 ≤ j ≤ s} of Ms and the Bier basis {〈A〉r :
A ∈ S( j), 0 ≤ j ≤ r} of Mr has a diagonal form. This proves that dimK (im(ϕs,r )) is
equal to

∑

j∈Y
|S( j)| =

∑

j∈Y

((
n

j

)
−

(
n

j − 1

))

where Y = { j : 0 ≤ j ≤ s,
(r− j
s− j

) �=K 0}. This is precisely the K -rank formula given
by Wilson [21] for the matrix Wr,s .

Let Sn denote the symmetric group on [n], and let σ ∈ Sn . For any r -subset A of
[n] we define σ(A) = {σ(a) : a ∈ A}. Similarly, if F is a family of r -subsets then
σ(F) = {σ(A) : A ∈ F}. The next lemma shows that we have a lot of freedom in the
way we can remove rows from Wr,s without lowering its K -rank.

Lemma 11 Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subsets of [n]. If
there exist some σ ∈ Sn such that σ(Fc) ⊆ S(r) then rankK (WF

r,s) = rankK (Wr,s).

Proof First, assume that Fc ⊆ S(r). We define the following linear map from Ms to
Mr

ϕF
s,r (S) =

∑

S⊂R

R −
∑

T∈F c,S⊂T

T, for all S ⊂ [n], |S| = s,

where in the first sum R runs over all r -subsets of [n] containing S, and in the second
sum T runs over all r -subsets of [n] containing S such that T ∈ Fc. It is clear from
definition that dimK (imϕF

s,r ) = rankK (WF
r,s).

Note that for every j-subset A with 0 ≤ j ≤ s and rk(A) = j we have

ϕF
s,r (〈A〉s) =

(
r − j

s − j

)
〈A〉r −

∑

T∈F c,A⊂T

(
r − j

s − j

)
T (7)
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Recall that by assumption Fc ⊆ S(r), so any T ∈ Fc is actually a basis element of
the Bier basis of Mr . Thus the matrix of ϕF

s,r with respect to the Bier bases of M
r and

Ms is almost diagonal.
Let W be the subspace of Mr spanned by the following set of linearly independent

vectors
{(

r − j

s − j

)
〈A〉r : A ∈ S( j), j ∈ Y

}
,

where Y = { j : 0 ≤ j ≤ s,
(r− j
s− j

) �=K 0}. It is clear from the definition of the Bier
basis of Mr that

W ∩ span

⎧
⎨

⎩

∑

T∈F c,A⊂T

(
r − j

s − j

)
T : A ∈ S( j), j ∈ Y

⎫
⎬

⎭
= {0}.

Therefore, by Lemma 10 and (7) we conclude that the vectors in

⋃

j∈Y

{
ϕF
s,r (〈A〉s) : A ∈ S( j)

}

are linearly independent. This implies that

dimK (imϕF
s,r ) ≥

∑

j∈Y

((
n

j

)
−

(
n

j − 1

))

Hence, Lemma 11 follows from the trivial upper bound rankK (WF
r,s) ≤ rankK (Wr,s)

and Wilson’s rank formula.
Now, ifFc

� S(r) then by assumption there exists σ ∈ Sn such that σ(Fc) ⊆ S(r).
We use σ to define the following invertible linear transformations,

�σ
r : Mr → Mr

R �→ σ(R)
,

�σ
s : Ms → Ms

S �→ σ(S)

From the above definitions it follows that

ϕF
s,r = (�σ

r )−1 ◦ ϕσ(F)
s,r ◦ �σ

s

Thus, dimK (imϕF
s,r ) = dimK (imϕ

σ(F)
s,r ). The proof of Lemma 11 is now complete. �

Now, we apply Lemma 11 to prove Theorem 4.

Proof of Theorem 4 In order to apply Lemma 11, wewill show that when |Fc| ≤ n−1
r ,

it is always possible to find σ ∈ Sn such that σ(Fc) ⊆ S(r). First, note that the case
where n = 2r is completely trivial because in that case Fc contains at most one r -
subset by the assumption that |Fc| ≤ n−1

r . Secondly, note that it is enough to prove
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Theorem 4 for all n of the form αr + 1, with α ≥ 2. In fact, the result for other values
of n follows immediately from the result in the cases where n is of the form αr + 1,
α ≥ 2.

Recall that an r -subset A of [n] is in S(r) if and only if the path associated with
A does not cross the main diagonal; this latter condition in turn is equivalent to the
following: for every i = 1, . . . , 2r we have that |A ∩ [i]| ≤ � i

2�.
Given n = αr +1 the critical case occurs whenFc consists of α disjoint r -subsets.

Even in this case there exists σ ∈ Sn such that σ(Fc) ⊆ S(r). For example, for α = 2
it is possible to map the two r -subsets in Fc to the r -subsets {2, 4, 6, . . . , 2r} and
{3, 5, 7, . . . , 2r + 1} which are contained in S(r). The conclusion of the theorem now
follows from Lemma 11. �

3 Rank resilience: the vector space case

The goal of this section is to prove Theorem 6. Throughout this section, V is an
n-dimensional vector space over Fq , where q = pt is a prime power.

3.1 The GL(n, q)-module Mr
q

In this section, we assume that K is a field of characteristic coprime to q = pt ,
containing a primitive pth root of unity. For every 0 ≤ r ≤ n, we denote by Mr

q
the K -vector space spanned by the r -dimensional subspaces of V . Hence, the set of
r -dimensional subspaces forms a “canonical” basis of Mr

q .
LetGL(n, q) be the group of all invertible linear transformations from V to V . Each

element of GL(n, q) induces a permutation on the set of r -dimensional subspaces of
V . Thus, Mr

q is a GL(n, q)-permutation module for 0 ≤ r ≤ n.

The Specht module S(n−r,r) is the submodule of Mr
q defined by

S(n−r,r) =
⋂

0≤ j<r

{
ker φ : φ ∈ HomGL(n,q)(M

r
q , M

j
q )

}
,

where HomGL(n,q)(Mr
q , M

j
q ) is the set of all GL(n, q)-module homomorphisms from

Mr
q to M j

q . We remark that the Specht modules S(n−r,r) over the complex are irre-
ducible; for K of positive characteristics, the Specht modules are not necessarily
irreducible. In [12], James proved that the dimension of S(n−r,r) over K is equal to[n
r

] − [ n
r−1

]
. He also proved the following important result about Specht modules.

Theorem 12 (The Submodule Theorem) Let 〈·, ·〉 be the inner product on Mr
q such

that for any two r-dimensional subspaces X,Y of V we have that 〈X,Y 〉 = 1 if X = Y
and 0, otherwise. If W is a GL(n, q)-submodule of Mr

q then either S(n−r,r) ⊆ W or

W ⊆ (S(n−r,r))⊥, where (S(n−r,r))⊥ is the orthogonal complement of S(n−r,r) with
respect to 〈·, ·〉.
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Recently, Brandt et al. [3] found a basis of S(n−r,r) which is indexed by the standard
tableaux of shape (n − r, r). We will recall some definitions and results from [3] to
describe this “standard basis”.

Let 0 ≤ r ≤ n − r . Consider a rectangular r × (n − r) array of boxes, which are
depicted in the following figure.

... · · ·

· · ·
...

n − r

r

It is well known that every r -subset A of [n] corresponds to a path connecting the
top left corner with the right bottom corner of the above array of boxes. Specifically,
the i-th step is S (south) or E (east) according as i ∈ A or i /∈ A. For example, the
r -subsets contained in S(r) correspond to the paths that do not cross the main diagonal
of the array of boxes. We denote by P(n − r, r) the set of all paths connecting the
top left with the bottom right corner of an r × (n − r) array of boxes. Then by the
correspondence described above, |P(n − r, r)| = (n

r

)
.

Example 13 Let n = 5 and r = 2. Consider the path marked in red in the following
figure.

The path, denoted by π , is ESESE where E stands for east and S for south. Hence,
the 2-subset of [5] corresponding to π is {2, 4}.

We impose the reverse lexicographic order on the set P(n − r, r) of paths. For
example, the elements of P(2, 2) are ordered in the following way:

SSEE < SESE < SEES < ESSE < ESES < EESS.

Given any path π ∈ P(n − r, r) we can fill the boxes below π by using elements
from Fq , and we use c(π) to denote the number of such fillings. For example, for
n = 7 and r = 3,

a1
a2 a3
a4 a5 a6

where ai ∈ Fq , π = ESESESE , and c(π) = q6. The following well-known result
establishes a bijection between these objects and the r -dimensional subspaces of V .
A proof can be found in [3].
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Lemma 14 (Brandt et al. [3]) Choosing a path π ∈ P(n − r, r) and then filling the
boxes below the path with elements of Fq is a way of encoding an r-dimensional
subspace of V . Every such subspace can be uniquely encoded in this way.

The above lemma shows that
∑

π∈P(n−r,r) c(π) = [n
r

]
. The proof of Lemma 14

associates the reduced echelon form of a subspace to a path π and a filling for that
path. For example, if a 3-dimensional vector subspace of F

7
q has the following reduced

echelon form

⎛

⎝
a 1 0 0 0 0 0
b 0 1 0 0 0 0
c 0 0 d 1 0 0

⎞

⎠

then the path and filling corresponding to this vector subspace is,

a
b
c d

with π = ESSESEE .

Note that here the steps where π makes a SOUTH move correspond to the columns
which contain a leading one in the reduced echelon form of the 3-dimensional sub-
space. For any r -subspace X of V we will denote by π(X) the path corresponding to
X .

Definition 15 (Brandt et al. [3]) Suppose that v ∈ Mr
q , and write

v =
∑

X∈[Vr ]
cX X, where cX ∈ K .

(1) For each path π ∈ P(n − r, r), let

v(π) =
∑

X :π(X)=π

cX X.

(2) If v �= 0, then let greatest(v) denote the greatest2 path π ∈ P(n − r, r) such that
v(π) �= 0.

(3) If v �= 0, then let top(v) = v(greatest(v)).
(4) If U is a subspace of Mr

q and π ∈ P(n − r, r), then let

U (π) = {u(π) : 0 �= u ∈ U and greatest(u) = π} ∪ {0}.

A couple of remarks are in order. First note that for any π ∈ P(n − r, r), we have
Mr

q(π) = {∑X :π(X)=π cX X | cX ∈ K }. Secondly, we have

2 Greatest with respect to the reverse lexicographic order imposed on P(n − r, r)
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Mr
q =

⊕

π∈P(n−r,r)

Mr
q(π)

Let θ be an additive character of Fq [20]. Suppose that X and L are r -dimensional
subspaces of V such that π(X) = π(L). Let χL be the linear character on Mr

q defined
by

χL(X) =
r∏

i=1

n−r∏

j=1

θ(li, j xi, j )

where li, j and xi, j denote the (i, j)-entries in the filling corresponding to L and X ,
respectively (here we are assuming that the boxes above the path are filled with zeros).
Using the character χL we define the following element of Mr

q

eL =
∑

X :π(X)=π(L)

χL(−X)X

for every L ∈ [V
r

]
. Furthermore, the orthogonality relations for linear characters imply

that the sets
{
eL : L ∈

[
V

r

]}
and

{
eL : L ∈

[
V

r

]
with π(L) = π

}

form a basis of Mr
q and Mr

q(π), respectively.

Definition 16 (Brandt et al. [3]) Let π ∈ P(n− r, r) be a path connecting the top left
with the bottom right corner of an array of boxes of size r by n − r . Label the corners
of the array by ordered pairs (i, j) with i = 1, . . . , r + 1 and j = 1, . . . , n − r + 1.
For every corner (i, j), we define r(i, j) = j − i . Let X be an r -dimensional subspace
of V such that π(X) = π . We say that X is good if its associated filling of the boxes
to the south of π with elements of Fq is good: for each corner (i, j) through which the
path π passes, the matrix with bottom left and top right corners having coordinates
(r + 1, 1) and (i, j), respectively, has rank at most r(i, j). If X is not good then we
say it is bad.

Note that by Definition 16 if a path π ∈ P(n−r, r) crosses the main diagonal of the
array of boxes (that is, the r -subset corresponding to π does not belong to S(r)) then
there is no good r -dimensional subspace X with π(X) = π . The reason is simple: If
π ∈ P(n − r, r) crosses the main diagonal, then there is a corner (i, j), with i > j ,
through which π passes; for that corner, we have r(i, j) = j − i < 0; hence there is
no good filling below the path π . It follows that if L is a good r -dimensional subspace
of V then π(L) ∈ S(r). The next theorem gives a “standard basis” for the Specht
module S(n−r,r).

Theorem 17 (Brandt et al. [3]) For each good r-dimensional subspace L of V there
exists a vector zL ∈ Mr

q with top(zL) = eL such that zL , with L running through the

set of good r-dimensional subspaces of V , form a basis of S(n−r,r).
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As was remarked earlier, every path π ∈ P(n − r, r) that does not cross the main
diagonal corresponds to a unique r -subset in S(r). Thus, by abuse of notation we
will denote also by S(r) the set of paths that do not cross the main diagonal. Since
the elements of S(r) are in one-to-one correspondence with the standard tableaux of
shape (n − r, r), it follows that Theorem 17 provides a basis of S(n−r,r) which is
indexed by the standard tableaux of shape (n − r, r); that is the reason why the basis
in Theorem 17 is called a standard basis.

To prove Theorem 6 we will need to introduce another submodule of Mr
q . For

0 ≤ j ≤ r , define the linear transformation ϕ j,r : M j
q → Mr

q as follows. For any
j-dimensional subspace X of V , define

ϕ j,r (X) =
∑

X⊆R

R,

where the sum runs over all the r -dimensional subspaces containing X ; the definition
of ϕ j,r is then extended to all elements of M j

q by linearity. We remark that ϕ j,r is

not only a linear map, but also a GL(n, q)-module homomorphism from M j
q to Mr

q
since for any g ∈ GL(n, q) we have g · ϕ j,r = ϕ j,r · g. To simplify notation, for
any j-dimensional subspace X of V , with j ≤ r , we denote by 〈X〉r the image of X
under ϕ j,r . Note that the subspace inclusion matrix Wr, j (q) is the matrix of ϕ j,r with

respect to the canonical bases of M j
q and Mr

q . It follows from the results in Frumkin
and Yakir [6] that

dimK (im(ϕ j,r )) =
∑

i∈Y

([
n

i

]
−

[
n

i − 1

])
, (8)

where Y = {i : 0 ≤ i ≤ j,
[r−i
j−i

] �=K 0}. Consider the following subspace of Mr
q ,

Ur−1 = ϕ0,r (M
0
q ) + ϕ1,r (M

1
q ) + · · · + ϕr−1,r (M

r−1
q ).

That is Ur−1 is the column space of

[
Wr,0(q) | Wr,1(q) | · · · | Wr,r−1(q)

]
.

Note thatUr−1 is aGL(n, q)-submodule of Mr
q . This module was studied by Frumkin

and Yakir [6], in which it was shown that the dimension over K of Ur−1 is
[ n
r−1

]
.

3.2 Proof of Theorem 6

In this subsection we will give the proof of Theorem 6. Our approach will be similar to
the one used in the proof of Theorem 4. However, since we do not have a q-analogue
of the Bier basis of Mr

q we will use the results from representation theory that were
introduced in Sect. 3.1.
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For π ∈ P(n − r, r), define the leading term of π to be the number of E moves
before the first S move. We define

S(r)− = {π ∈ P(n − r, r) : the leading term of π < r},

and

S(r)+ = {π ∈ P(n − r, r) : the leading term of π ≥ r}.

From definition we have

S(r) = S(r)− ∪̇ S(r)+

Also, if π ∈ S(r)+, every filling of π is good since for any corner (i, j) through
which π passes, r(i, j) is automatically greater than or equal to the rank of the matrix
with bottom left and top right corners having coordinates (r + 1, 1) and (i, j). As a
preparation, we first prove the following lemma.

Lemma 18 Let K be a field of characteristic coprime to q = pt and containing a
primitive pth root of unity. With notation as above, we have

Ur−1 ∩
⊕

π∈S(r)+
Mr

q(π) = {0}.

Proof We will use the inner product 〈·, ·〉 defined on Mr
q given in Theorem 12. Since

dim(S(n−r,r)) > dim(Ur−1),we see by theSubmoduleTheorem thatUr−1 is contained
in (S(n−r,r))⊥. Thus, for any z ∈ S(n−r,r) and any v ∈ Ur−1 we have 〈z, v〉 = 0.

As we remarked above any r -dimensional subspace L of V with π(L) ∈ S(r)+ is
good. Therefore, if π ∈ S(r)+ then the vectors in the set {eL : L good and π(L) = π}
form a basis of Mr

q(π). Combining this fact with Theorem 17, we conclude that the

Specht module S(n−r,r) contains a vector wL such that top(wL) = L for each L with
π(L) ∈ S(r)+.

Given any vector v ∈ Mr
q we can use the canonical basis of Mr

q to represent v as a
column vector (that is, we index the coordinates of the column vector by r -subspaces
of V ). We arrange the canonical basis with respect to the reverse lexicographic order.
Therefore, on the top we have the subspaces associated with the paths in S(r)+, then
the subspaces whose associated paths are in S(r)−, and finally the ones associated
with paths in P(n − r, r)\S(r).

Now, given an arbitrary basis of Ur−1, we consider the basis elements represented
as column vectors with respect to the canonical basis. Applying column operations to
the basis vectors we can get a new basis of Ur−1 in reduced echelon form such that
the leading ones appear from left to right and from the bottom to the top.

We claim that no leading ones of this new basis appear on a row indexed by a
subspace L with π(L) ∈ S(r)+. Note that this is enough to prove the conclusion of
the lemma.

123

Author's personal copy



J Algebr Comb

To prove our claim we proceed by contradiction. Suppose that after column oper-
ations one of the basis vectors v′ of Ur−1 has a leading one in a row indexed by a
subspace L with π(L) ∈ S(r)+. Then, 〈v′, wL 〉 = 1 which is a contradiction because
Ur−1 ⊆ (S(n−r,r))⊥. �

Nowweprove a vector space analogue ofLemma11. To state the resultwe introduce
some notation. For any g ∈ GL(n, q) and any family F of r -subspaces of V we
denote by g(F) the family of r -subspaces {g(X) : X ∈ F}. Furthermore, consider
the following set of r -dimensional vector subspaces of V :

S(r)+q =
{
X ∈

[
V

r

]
: π(X) ∈ S(r)+

}

That is, S(r)+q is the set of r -subspaces of V whose associated paths are in S(r)+.

Lemma 19 Suppose 0 ≤ s < r ≤ n/2. LetF be a family of r-dimensional subspaces
of V and K a field with char(K ) �= p. If there exists g ∈ GL(n, q) such that g(Fc) ⊆
S(r)+q then

rankK (WF
r,s(q)) = rankK (Wr,s(q)).

Proof Without loss of generality we may assume that K contains a primitive pth root
of unity. Indeed, if K does not contain a primitive p-th root of unity then we can
extend K to a larger field and this does not change the rank of the matrices Wr,s(q) or
Wr,s(q)F .

First, assume that Fc ⊆ S(r)+q . Consider the following subspaces of Ms
q ,

Wj = ϕ0,s(M
0
q ) + ϕ1,s(M

1
q ) + · · · + ϕ j,s(M

j
q ). (9)

for j = 0, 1, . . . , s. It is clear that

W0 ⊂ W1 ⊂ · · · ⊂ Ws (10)

Furthermore, the dimension of Wj over K was shown to be
[n
j

]
in [6]. Therefore, it

follows from Eqs. (9) and (10) that Ms
q has a basis with the following property: For

each j from 0 to s,
[n
j

] − [ n
j−1

]
of the elements of the basis are of the form 〈X〉s with

X ∈ [V
j

]
. For j = 0, 1, . . . , s, we denote by Bj a set of j-dimensional subspaces of

V with cardinality
[n
j

] − [ n
j−1

]
chosen in such a way that
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s⋃

j=0

{〈X〉s : X ∈ Bj
}

is a basis of Ms
q .

By the definition of ϕs,r and straightforward computations, we have

ϕs,r (〈X〉s) =
[
r − j

s − j

]
〈X〉r (11)

for all X ∈ Bj with j ranging from 0 to s.
Let Ys = { j : 0 ≤ j ≤ s such that

[r− j
s− j

] �=K 0} and Zs = { j : 0 ≤ j ≤
s such that

[r− j
s− j

] =K 0}. Equations (8) and (11) imply that the set

⋃

j∈Zs

{〈X〉s : X ∈ Bj
}

forms a basis of the kernel of ϕs,r . Therefore, the set

⋃

j∈Ys

{〈X〉r : X ∈ Bj
}

(12)

forms a basis for the image of ϕs,r ; so in particular these vectors are linearly indepen-
dent in Mr

q .
Now, we proceed in the same way as in the proof of Lemma 11. Consider the

following linear transformation from Ms
q to Mr

q

ϕF c

s,r (S) =
∑

S⊆R

R −
∑

T∈F c,S⊆T

T

where R runs over all r -dimensional subspaces of V containing S, and T runs over all
r -dimensional subspaces ofV containing S such that T ∈ Fc. It is clear fromdefinition
that dimK (imϕF c

s,r ) = rankKWF
r,s(q). Furthermore, note that for every X ∈ Bj with

0 ≤ j ≤ s we have

ϕF c

s,r (〈X〉s) =
[
r − j

s − j

]
〈X〉r −

∑

T∈F c,X⊆T

[
r − j

s − j

]
T .

Note that the vectors in

{[
r − j

s − j

]
〈X〉r : X ∈ Bj with 0 ≤ j ≤ s

}

123

Author's personal copy



J Algebr Comb

are linearly independent. Moreover, for every X ∈ Bj with 0 ≤ j ≤ s, the vector
∑

T∈F c,X⊆T

[
r − j

s − j

]
T is contained in Ur−1. Therefore, it follows from Lemmas 10

and 18 that the vectors in

⋃

j∈Y

{
ϕF c

s,r (〈X〉s) : X ∈ Bj

}

are linearly independent in Mr
q . Therefore

∑

j∈Y

([
n

j

]
−

[
n

j − 1

])
≤ dimK (imϕF c

s,r )

Hence,Lemma19 follows from the trivial upper bound rankKWF
r,s(q) ≤ rankKWr,s(q)

and the q-analogue of Wilson’s rank formula for Wr,s(q).
Now, if Fc

� S(r)+q , then by assumption there exists g ∈ GL(n, q) such that
g(Fc) ⊆ S(r)+q . As in the proof of Lemma 11, we can use g to define the following
invertible linear transformations,

�
g
r : Mr

q → Mr
q

R �→ g(R)
,

�
g
s : Ms

q → Ms
q

S �→ g(S)

From the above definitions, it follows that

ϕF c

s,r = (�
g
r )

−1 ◦ ϕ
g(F c)
s,r ◦ �

g
s

Hence dimK (imϕF c

s,r ) = dimK (imϕ
g(F c)
s,r ). The proof of the lemma is now complete.

�
In the statement of the following corollary, for an r -dimensional subspace X of

V , we denote also by π(X) the unique r -subset of [n] corresponding to the path in
P(n − r, r) associated with X .

Corollary 20 Suppose that 0 ≤ s < r ≤ n/2. Let F be a family of r-subspaces of V
satisfying that

|∪X∈F cπ(X)| ≤ n − r (13)

Then rankK (WF
r,s(q)) = rankK (Wr,s(q)).

Proof By Lemma 19 it is enough to show that there exists g ∈ GL(n, q) such that
g(Fc) ⊆ S(r)+q . Recall that every r -dimensional subspace of V can be represented by
a unique r by nmatrix in reduced echelon form. The condition

∣∣⋃
X∈F c π(X)

∣∣ ≤ n−r
implies that there are at least r columns that do not contain a leading one for any of the
subspaces in Fc. Let i1 < i2 < · · · < il be the indices of the columns corresponding
to the leading ones of all subspaces in Fc. By assumption we have that l ≤ n − r ; so
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there exists a permutation sending il → n, il−1 → n − 1, . . . , i1 → n − l + 1 where
n − l + 1 > r .

This implies that there exists a linear transformation g ∈ GL(n, q) sending every
X ∈ Fc to a subspace g(X) such that none of the leading ones of the reduced echelon
form of g(X) appears in the first r columns; hence g(X) ∈ S(r)+q for every X ∈ Fc.
The proof of the corollary is now complete. �

Theorem 6 is an immediate consequence of Corollary 20 because any family of
r -subspaces F of V satisfying that |Fc| ≤ n

r − 1 clearly satisfies (13).

4 Concluding remarks

In this paper, we have proved two variations of Keevash’s result (Theorem 3). First, we
show that the rank of the subset-inclusion matrixWF

r,s is resilient over any field. More
precisely, if a family F of r -subsets of [n] satisfies the condition that |Fc| ≤ n−1

r ,
then rankK (WF

r,s) = rankK (Wr,s) for any field K . Note that a less restrictive bound
on |Fc| was obtained in [9] when K is a field of characteristic zero. More precisely,
if char(K ) = 0 and n is large, it was shown in [9] that rankK (WF

r,s) = rankK (Wr,s)

for all families F of r -subsets of [n] satisfying that |Fc| <
(n−s
r−s

)
. Therefore, the

following question arises naturally: does Theorem 4 remain true under the assumption
that |Fc| <

(n−s
r−s

)
?

Secondly, we prove a q-analogue of Theorem 3: If the size of a family F
of r -dimensional subspaces of F

n
q is close enough to

[n
r

]
then rankK (WF

r,s(q)) =
rankK (Wr,s(q)) for any field K of characteristic coprime to q.

The condition in Theorem 6 on the size ofFc is somewhat restrictive. For example,
if we remove all the r -subspaces containing a particular s-subspace the rank over the
rationals of WF

r,s(q) has to decrease at least by one. So a natural question is: does
Theorem 6 remain true under the assumption |Fc| <

[n−s
r−s

]
?
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