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Abstract The group PGL(2, q) has an embedding into PGL(3, q) such that it acts
as the group fixing a nonsingular conic in PG(2, q). This action affords a coherent
configuration R(q) on the set L(q) of non-tangent lines of the conic. We show that
the relations can be described by using the cross-ratio. Our results imply that the
restrictions R+(q) and R−(q) of R(q) to the set L+(q) of secant (hyperbolic) lines
and to the set L−(q) of exterior (elliptic) lines, respectively, are both association
schemes; moreover, we show that the elliptic scheme R−(q) is pseudocyclic.

We further show that the coherent configurations R(q2) with q even allow certain
fusions. These provide a 4-class fusion of the hyperbolic scheme R+(q2), and 3-class
fusions and 2-class fusions (strongly regular graphs) of both schemes R+(q2) and
R−(q2). The fusion results for the hyperbolic case are known, but our approach here
as well as our results in the elliptic case are new.

Keywords Association scheme . Coherent configuration . Conic . Cross-ratio .

Exterior line . Fusion . Pseudocyclic association scheme . Secant line . Strongly
regular graph . Tangent line

1. Introduction

Let q be a prime power. The 2-dimensional projective linear group PGL(2, q) has an
embedding into PGL(3, q) such that it acts as the group G fixing a nonsingular conic

O = Oq = {(ξ, ξ 2, 1) | ξ ∈ Fq} ∪ {(0, 1, 0)}
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in PG(2, q) setwise, see e.g. [8, p. 158]. Such a conic consists of q + 1 points forming
an oval, that is, each line of PG(2, q) meets O in at most two points. Lines meeting
the oval in two points, one point, or no points at all are called secant (or hyperbolic)
lines, tangent lines, and exterior (or elliptic) lines, respectively. There is precisely one
tangent through each point of an oval; moreover, if q is even, then all tangent lines
pass through a unique point called the nucleus of the oval, see e.g. [8, p. 157].

It turns out that the group G acts generously transitively on both the set L+ of
hyperbolic lines and the set L− of elliptic lines. Thus we obtain two (symmetric)
association schemes, one on L+ and the other on L−. We will refer to these schemes
as the hyperbolic scheme and the elliptic scheme, respectively.

Our aim in this paper is to investigate these two association schemes simultaneously.
Also investigated here is a particular fusion of these schemes when q is even. In fact, the
hyperbolic and elliptic schemes are contained in the coherent configuration obtained
from the action of G on the set L = L+ ∪ L− of all non-tangent lines of the conic
O, and the fusions of the two schemes arise within a certain fusion of this coherent
configuration.

These schemes as well as their fusions are not completely new, but our treatment
will be new. For q even, the elliptic schemes were first introduced in [9], as a family of
pseudocyclic association schemes on non-prime-power number of points. The hyper-
bolic schemes, and the particular fusion discussed here for q an even square, turn out
to be the same as the schemes investigated in [3]. The fact that the particular fusion
in the hyperbolic case again produces association schemes has been proved by direct
computations in [6], by geometric arguments in [5], and by using character theory
in [14]. The fusion schemes for q an even square in the elliptic case seem to be new.

The contents of this paper are as follows. In Section 2 we introduce the definitions
and notations that are used in this paper. Then, in Section 3 we introduce the embedding
of PGL(2, q) as the subgroup G = G(O) of PGL(3, q) fixing the conic O in PG(2, q).

With each non-tangent line we can associate a pair of points, representing its in-
tersection with O in the hyperbolic case, or its intersection with the extension Oq2 of
O to a conic in PG(2, q2) in the elliptic case. In Section 4 we show that the orbits of
G on pairs of non-tangent lines can be described with the aid of the cross-ratio of the
two pairs of points associated with the lines. These results are then used to give (new)
proofs of the fact that the group action indeed affords association schemes on both
L+ and L−. Moreover, these results establish the connection between the hyperbolic
scheme and the scheme investigated in [3].

In Section 5 we develop an expression to determine the orbit to which a given pair
of lines belongs in terms of their homogeneous coordinates.

From Section 6 on we only consider the case where q is even. In Section 6 we
derive expressions for the intersection parameters of the coherent configuration R(q)
on the non-tangent lines L of the conic O; so in particular we obtain expressions for
the intersection parameters of both the hyperbolic and elliptic association schemes
simultaneously. We also include a proof of the result from [9] that the elliptic schemes
are pseudocyclic. In [11] we will prove that the schemes obtained from the elliptic
scheme by fusion with the aid of the Frobenius automorphism of the underlying finite
field Fq for q = 2r with r prime are also pseudocyclic.

Then in Section 7 we define a particular fusion of the coherent configuration. The
results of the previous section are used to show that this fusion is in fact again a
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coherent configuration, affording a four-class scheme on the set of hyperbolic lines
and a three-class scheme on the set of elliptic lines. The parameters show that the
restriction of these schemes to one of the classes produces in fact a strongly regular
graph, with the same parameters as the Brouwer-Wilbrink graphs (see [2]) in the
hyperbolic case and as the Metz graphs (e.g., [2]) in the elliptic case. This will be
discussed in Section 8. In fact, the graphs are isomorphic to the Brouwer-Wilbrink
graphs (in the hyperbolic case) and the Metz graphs (in the elliptic case). For the
hyperbolic case, this was conjectured in [3] and proved in [5]; for the elliptic case,
this was conjectured for q = 4 in [9], and will be proved for general even q in [10].

2. Definitions and notation

2.1. Coherent configurations

As a general reference for the material in this section, see, e.g., [1, 4, 7]. A coherent
configuration is a pair (X,R) where X is a finite set andR is a collection {R0, . . . , Rn}
of subsets of X × X satisfying the following conditions:

1. R is a partition of X × X ;
2. there is a subset Rdiag of R which is a partition of the diagonal {(x, x) | x ∈ X};
3. for each R in R, its transpose R� = {(y, x) | (x, y) ∈ R} is again in R;
4. there are integers pk

i j , for 0 ≤ i, j, k ≤ n, such that for all (x, y) ∈ Rk ,

|{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ R j }| = pk
i j .

The numbers pk
i j are called the intersection numbers of the coherent configuration.

Each relation Ri can be represented by its adjacency matrix Ai , a matrix whose
rows and columns are both indexed by X and

Ai (x, y) =
{

1, if (x, y) ∈ Ri ;

0, otherwise.

In terms of these matrices, and with I , J denoting the identity matrix and the all-one
matrix, respectively, the axioms can be expressed in the following form:

1. A0 + A1 + · · · + An = J ;
2.

∑m
i=0 Ai = I , where Rdiag = {R0, . . . , Rm};

3. for each i , there exists i∗ such that A�
i = Ai∗ ;

4. for each i, j ∈ {0, 1, . . . , n}, we have

Ai A j =
n∑

k=0

pk
i j Ak .

As a consequence of Properties 2 and 4, the span of the matrices A0, A1, . . . , An

over the complex numbers is an algebra. It follows from Property 3 that this algebra
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is semi-simple, and so is isomorphic to a direct sum of full matrix algebras over the
complex numbers.

The sets Y ⊆ X such that {(y, y) | y ∈ Y } ∈ R are called the fibres of R; according
to Property 2, they form a partition of X . The coherent configuration is called homo-
geneous if there is only one fibre. In that case one usually numbers the relations of R
such that R0 is the diagonal relation.

Remark 1. The existence of the numbers pk
d,k and pk

k,d for all diagonal relations Rd ∈
Rdiag implies that for each relation Rk ∈ R there are fibres Y, Z such that Rk ⊆ Y × Z .

A coherent configuration is called symmetric if all the relations are symmetric. As
a consequence of the above remark, a symmetric coherent configuration is homoge-
neous. Usually, a symmetric coherent configuration is called a (symmetric) association
scheme. In this paper, we will call a coherent configuration weakly symmetric if the
restriction of the coherent configuration to each of its fibres is symmetric, that is, each
of its fibres carries an association scheme.

A fusion of a coherent configuration R on X is a coherent configuration S on X
where each relation S ∈ S is a union of relations from R.

As a typical example of coherent configuration, if G is a permutation group on a
finite set X , then the orbits of the induced action of G on X × X form a coherent
configuration; it is homogeneous precisely when G is transitive, and an association
scheme if and only if G acts generously transitively on X , that is, for all x, y ∈ X ,
there exists g ∈ G such that g(x) = y and g(y) = x . The coherent configuration is
weakly symmetric precisely when G is generously transitive on each of its orbits on
X .

2.2. Association schemes

In the case of an association scheme, Properties 2 and 3 are replaced by the stronger
properties:

2′. A0 = I ; and
3′. each Ai is symmetric.

As a consequence of these properties, the matrices A0 = I, A1, . . . , An span an algebra
A over the reals (which is called the Bose-Mesner algebra of the scheme). This algebra
has a basis E0, E1, . . . , En consisting of primitive idempotents, one of which is 1

|X | J .

So we may assume that E0 = 1
|X | J . Let μi = rank Ei . Then

μ0 = 1, μ0 + μ1 + · · · + μn = |X |.

The numbers μ0, μ1, . . . , μn are called the multiplicities of the scheme.
Define P = (Pj (i))0≤i, j≤n (the first eigenmatrix) and Q = (Q j (i))0≤i, j≤n (the sec-

ond eigenmatrix) as the (n + 1) × (n + 1) matrices with rows and columns indexed
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by 0, 1, 2, . . . , n such that

(A0, A1, . . . , An) = (E0, E1, . . . , En)P,

and

|X |(E0, E1, . . . , En) = (A0, A1, . . . , An)Q.

Of course, we have

P = |X |Q−1, Q = |X |P−1.

Note that {Pj (i) | 0 ≤ i ≤ n} is the set of eigenvalues of A j and the zeroth row and
column of P and Q are as indicated below.

P =

⎛⎜⎜⎜⎜⎝
1 v1 · · · vn

1

...

1

⎞⎟⎟⎟⎟⎠ , Q =

⎛⎜⎜⎜⎜⎝
1 μ1 · · · μn

1

...

1

⎞⎟⎟⎟⎟⎠
The numbers v0, v1, . . . , vn are called the valencies (or degrees) of the scheme.

Example 2.1. We consider cyclotomic schemes defined as follows. Let q be a prime
power and let q − 1 = e f with e ≥ 1. Let C0 be the subgroup of the multiplica-
tive group of Fq of index e, and let C0, C1, . . . , Ce−1 be the cosets of C0. We
require −1 ∈ C0. Define R0 = {(x, x) : x ∈ Fq}, and for i ∈ {1, 2, . . . , e}, define
Ri = {(x, y) | x, y ∈ Fq , x − y ∈ Ci−1}. Then (Fq , {Ri }0≤i≤e) is an e-class symmet-
ric association scheme. The intersection parameters of the cyclotomic scheme are
related to the cyclotomic numbers ([13, p. 25]). Namely, for i, j, k ∈ {1, 2, . . . , e},
given (x, y) ∈ Rk ,

pk
i j = |{z ∈ Fq | x − z ∈ Ci−1, y − z ∈ C j−1}| = |{z ∈ Ci−k | 1 + z ∈ C j−k}|. (1)

The first eigenmatrix P of this scheme is the following (e + 1) by (e + 1) matrix (with
the rows of P arranged in a certain way)

P =

⎛⎜⎜⎜⎜⎝
1 f · · · f

1

... P0

1

⎞⎟⎟⎟⎟⎠
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with P0 = ∑e
i=1 ηi Ci , where C is the e by e matrix:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

1

. . .

1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and ηi = ∑

β∈Ci
ψ(β), 1 ≤ i ≤ e, for a fixed nontrivial additive character ψ of Fq .

Next we introduce the notion of a pseudocyclic association scheme.

Definition 2.2. Let (X, {Ri }0≤i≤n) be an association scheme. We say that
(X, {Ri }0≤i≤n) is pseudocyclic if there exists an integer t such that μi = t for all
i ∈ {1, . . . , n}.

The following theorem gives combinatorial characterizations for an association
scheme to be pseudocyclic.

Theorem 2.3. Let (X, {Ri }0≤i≤n) be an association scheme, and for x ∈ X and 1 ≤
i ≤ n, let Ri (x) = {y | (x, y) ∈ Ri }. Then the following are equivalent.

(1) (X, {Ri }0≤i≤n) is pseudocyclic.
(2) For some constant t , we have v j = t and

∑n
k=1 pk

k j = t − 1, for 1 ≤ j ≤ n.
(3) (X,B) is a 2 − (v, t, t − 1) design, where B = {Ri (x) | x ∈ X, 1 ≤ i ≤ n}.

For a proof of this theorem, we refer the reader to [1, p. 48] and [9, p. 84]. Part (2) in
the above theorem is very useful. For example, we may use it to prove the well-known
fact that the cyclotomic scheme in Example 2.1 is pseudocyclic. The proof goes as
follows. First, the nontrivial valencies of the cyclotomic scheme are all equal to f .
Second, by (1) and noting that −1 ∈ C0, we have

e∑
k=1

pk
k j =

e∑
k=1

|{z ∈ C0 | 1 + z ∈ C j−k}|

= |C0| − 1 = f − 1

Pseudocyclic schemes can be used to construct strongly regular graphs and distance
regular graphs of diameter 3 ([1, p. 388]). In view of this, it is of interest to construct
pseudocyclic association schemes. For e > 1, the cyclotomic schemes discussed above
are nontrivial examples of pseudocyclic association schemes on prime power number
of points. Very few examples of pseudocyclic association schemes on non-prime-
power number of points are currently known (see [9, 12], and [1, p. 390]). The examples
from [9] can be found in Section 6. More examples of such association schemes will
be given in [11].
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3. The group PGL(2, q) as the subgroup of PGL(3, q) fixing a nonsingular
conic in PG(2, q)

Through the usual identification of Fq ∪ {∞} with PG(1, q) given by

x ↔ (x, 1)�, ∞ ↔ (1, 0)�,

the 2-dimensional projective linear group PGL(2, q) acts on Fq ∪ {∞}, with action
given by

∀A =
(

a b

c d

)
∈ PGL(2, q), and ∀x ∈ Fq ∪ {∞}, A · x = A(x) := ax + b

cx + d
(2)

For any four-tuple (α, β, γ, δ) in (Fq ∪ {∞})4 with no three of α, β, γ, δ equal, we
define the cross-ratio ρ(α, β, γ, δ) by

ρ(α, β, γ, δ) = (α − γ )(β − δ)

(α − δ)(β − γ )
,

with obvious interpretation if one or two of α, β, γ, δ are equal to ∞. For example, if
α = ∞, then we define

ρ(∞, β, γ, δ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β − δ

β − γ
, if β, γ, δ �= ∞;

1, if β = ∞ (so γ, δ �= ∞);

0, if γ = ∞ (so β, δ �= ∞);

∞, if δ = ∞ (so β, γ �= ∞).

(We will return to this interpretation later on.) Note that the cross-ratio is contained in
Fq ∪ {∞}; moreover, note that

ρ(α, β, δ, γ ) = ρ(β, α, γ, δ) = 1/ρ(α, β, γ, δ). (3)

Also, it is easily verified that

ρ(α, β, γ, δ) = 1 if and only if α = β or γ = δ. (4)

Observe that, with the above identification of Fq ∪ {∞} with PG(1, q), if vα =
(α0, α1)�, vβ = (β0, β1)�, vγ = (γ0, γ1)�, and vδ = (δ0, δ1)� are the four points in
PG(1, q) corresponding to α, β, γ and δ in Fq ∪ {∞}, respectively, then ρ(α, β, γ, δ)
can be identified with the point

((α0γ1 − α1γ0)(β0δ1 − β1δ0), (α0δ1 − α1δ0)(β0γ1 − β1γ0))�, (5)
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of PG(1, q), which can be more conveniently written as(
det(vα, vγ ) det(vβ, vδ)

det(vα, vδ) det(vβ, vγ )

)
(6)

Note that the expression in (6) is equal to the zero vector only if three of the four
vectors vα, vβ, vγ , vδ are equal, which we have excluded. Therefore, (6) allows us to
interpret the value of the cross-ratio as an element in PG(1, q).

We will need several well-known properties concerning the above action of
PGL(2, q) and its relation to the cross-ratio. A proof of the following theorem can
be found in [8, Section 6.1]. But to make the paper self-contained, we give a quick
sketch of the proof here.

Theorem 3.1. (i) The action of PGL(2, q) on Fq ∪ {∞} defined in (2) is sharply 3-
transitive.

(ii) The group PGL(2, q) leaves the cross-ratio on Fq ∪ {∞} invariant, that is, if
A ∈ PGL(2, q), then ρ(A(α), A(β), A(γ ), A(δ)) = ρ(α, β, γ, δ) for all α, β, γ, δ ∈
Fq ∪ {∞} with no three of α, β, γ, δ equal.

(iii) Moreover, if 
+ = {{α, β} | α, β ∈ Fq ∪ {∞}, α �= β}, then the action of
PGL(2, q) on 
+ × 
+ has orbits

Odiag = {({α, β}, {α, β}) | {α, β} ∈ 
+},

and

O{r,r−1} = {({α, β}, {γ, δ}) | {α, β}, {γ, δ} ∈ 
+, {α, β} �= {γ, δ}, ρ(α, β, γ, δ)

∈ {r, r−1}},

for r ∈ (Fq ∪ {∞})\{1}.

Proof: (Sketch) It is easily proved that the triple (∞, 0, 1) can be mapped to any other
triple (α, β, γ ) with α, β, γ all distinct. So PGL(2, q) acts 3-transitively on Fq ∪ {∞}.
Since PGL(2, q) has size (q2 − 1)(q2 − q)/(q − 1) = (q + 1)q(q − 1), part (i) fol-
lows.

From the representation (6) of the cross-ratio, we immediately see that PGL(2, q)
indeed leaves the cross-ratio invariant, so part (ii) holds.

We have that ρ(∞, 0, 1, δ) = δ for all δ ∈ Fq ∪ {∞}. Also, for {α, β}, {γ, δ} ∈

+, we have that ρ(α, β, γ, δ) ∈ {0, ∞} if (and only if) {α, β} ∩ {γ, δ} �= ∅. These
observations are sufficient to conclude that ρ takes on all values in Fq ∪ {∞}\{1} and
that the orbits are indeed as stated in part (iii). �

For any element ξ in some extension field Fqm of Fq , we define a point Pξ in
PG(2, qm) by

Pξ = (ξ, ξ 2, 1)�;
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furthermore, we define

P∞ = (0, 1, 0)�

and

PNuc = (1, 0, 0)�.

We will denote by Oqm the subset of size qm + 1 of PG(2, qm) consisting of the
points Pξ , where ξ ∈ Fqm ∪ {∞}. It is easily verified that for each m, the set Oqm is
a nonsingular conic in PG(2, qm), and constitutes an oval. We will mostly write O
to denote Oq and Ō to denote Oq2 . For each ξ ∈ Fqm , there is a unique tangent line
through Pξ given by

tξ = (−2ξ, 1, ξ 2)⊥ (7)

if ξ �= ∞, and

t∞ = (0, 0, 1)⊥. (8)

Note that tξ is contained in PG(2, q) if and only if ξ ∈ Fq ∪ {∞}. Also note that if q
is even, then the point PNuc is the nucleus of the conic, that is, all tangent lines to O
meet at the point PNuc.

The group PGL(2, q) can be embedded as a subgroup G of PGL(3, q) fixing O
setwise, by letting

A =
(

a b

c d

)
�→

⎛⎜⎝ ad + bc ac bd

2ab a2 b2

2cd c2 d2

⎞⎟⎠ . (9)

Indeed, we have the following.

Theorem 3.2. Under the embedding (9), the group PGL(2, q) fixes Oqm setwise for
each m; in particular, an element A ∈ PGL(2, q) maps a point Pξ on Oqm to the point
PA(ξ ), where A(ξ ) is defined as in (2).

Proof: It is easily verified that the image of A (which we will again denote by A) maps
any point Pξ = (ξ, ξ 2, 1)� to the vector ((aξ + b)(cξ + d), (aξ + b)2, (cξ + d)2)�,
which represents the point PA(ξ ). So indeed G fixes Oqm setwise. �

Remark 2. If we identify Oqm with Fqm ∪ {∞} by letting

Pξ ↔ ξ,

then G acts on Oqm in exactly the same way as PGL(2, q) acts on Fqm ∪ {∞} with the
action given in (2). In fact, it turns out that G is the full subgroup G(O) of PGL(3, q)
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fixingO setwise, see e.g. [8, p. 158]. This can be easily verified along the following line.
Assume that a matrix A in PGL(3, q) fixes O setwise. Then for each x in Fq ∪ {∞} the
image APx is on O, hence satisfies the equation X2 = Y Z . Working out this condition
results in a polynomial of degree three that has all x ∈ Fq as its roots. Therefore, for
q > 3 all coefficients of the polynomial have to be zero, implying that A must have
the form as described above. For q = 2, 3, the claim can be easily verified directly.

4. A coherent configuration containing two association schemes

The action of the subgroup G = G(O) of PGL(3, q) fixing the conic O as described
in the previous section produces a coherent configuration R = R(q) on the set L of
non-tangent lines of O in PG(2, q). Here we will determine the orbits of G(O) on
L × L, and show that we obtain association schemes on both the set L+ of hyperbolic
lines and the set L− of elliptic lines. First, we need some preparation.

In what follows, we will repeatedly consider “projective objects” over a base field
as a subset of similar projective objects over an extension field. (For example, we will
consider PG(2, q) as a subset of PG(2, q2) and PGL(2, q) as a subset of PGL(2, q2).)
In such situations it is crucial to be able to determine whether a given projective object
over the extension field is actually an object over the base field. The next theorem
addresses this question.

Theorem 4.1. Let F be a field and let E be a Galois extension of F, with Galois group
Gal(E/F). Let A be an n × m matrix with entries from E. Then there exists some
λ ∈ E\{0} such that λA has all its entries in F if and only if for all σ ∈ Gal(E/F)
there exists some μσ in E such that Aσ = μσ A.

Proof: Note that given x ∈ E, we have x ∈ F if and only if xσ = x for all σ ∈
Gal(E/F).

(i) If λ ∈ E\{0} such that λA has all its entries in F, then for σ ∈ Gal(E/F), we have
λσ Aσ = λA, hence with μσ = λ/λσ , we have Aσ = μσ A.

(ii) Conversely, suppose that Aσ = μσ A for every σ ∈ Gal(E/F). If A = 0, then we
can take λ = 1. Otherwise, let a be some nonzero entry of A. Since Aσ = μσ A, we
have that aσ = μσ a. Set λ = a−1. Then λσ = (a−1)σ = (aσ )−1, hence λ = λσμσ .
As a consequence, (λA)σ = λσ Aσ = (λ/μσ )μσ A = λA. Since this holds for all
σ ∈ Gal(E/F), we conclude that λA has all its entries in F.

�

Remark 3. The usual method to prove that some scalar multiple λA of a matrix A has
all entries in the base field is to take λ = a−1, for some nonzero entry a of A. (It is easy
to see that if such a scalar exists then this choice must work.) However, this approach
often requires a similar but distinct argument for each entry of A separately. The
above theorem can be used to avoid such cumbersome case distinction, and therefore
deserves to be better known. Although the result is unlikely to be new, we do not have
a reference.
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Consider a point P = (x, y, z)� in PG(2, q2). If some nonzero multiple λP has
all its coordinates in Fq , then we may regard P as actually belonging to PG(2, q).
Let us call such points real, and the remaining points in PG(2, q2) virtual. Similarly,
we will call a line in PG(2, q2) real if it contains at least two real points, and virtual
otherwise. It is not difficult to see that each real line  = (a, b, c)⊥ in fact contains
q + 1 real points and that  is real if and only if some nonzero multiple λ(a, b, c) has
all its entries in Fq . As a consequence, the real points in PG(2, q2) together with the
real lines in PG(2, q2) constitute the plane PG(2, q), a Baer subplane in PG(2, q2).

Now let  ∈ L be any non-tangent line to O in PG(2, q). Then  extends to a
real line in PG(2, q2) (which by abuse of notation we shall again denote by ). By
inspection of (7) and (8), we see that all tangent lines tξ to Ō = Oq2 in PG(2, q2)
are either virtual tangent lines (if ξ ∈ Fq2 \Fq ) or real tangent lines in PG(2, q) (if
ξ ∈ Fq ∪ {∞}). Therefore  cannot be a tangent to Ō, hence it must intersect Ō in
two points, Pα and Pβ , say. In fact it is easily seen that either α, β ∈ Fq ∪ {∞} (if 

is hyperbolic), or β = αq with α ∈ Fq2 \Fq (if  is elliptic). We will let L+ and L−
denote the set of hyperbolic and elliptic lines, respectively, and we will say that a line
in L+ (respectively L−) is of hyperbolic type (respectively, of elliptic type). Also, we
define


+ = {{α, β} | α, β ∈ Fq ∪ {∞}, α �= β}, 
− = {{α, β} | β = αq , α ∈ Fq2 \Fq},

and


 = 
+ ∪ 
−.

Note that according to the above remarks, for ε ∈ {−, +} there is a one-to-one
correspondence between lines in Lε and pairs in 
ε such that  ∈ Lε corresponds to
{α, β} ∈ 
ε if  ∩ Ō = {Pα, Pβ}. Also note that if  and m are two lines in L, with
corresponding pairs {α, β} and {γ, δ} in 
, respectively, and if gA is an element of
G(O) corresponding to A ∈ PGL(2, q), then gA maps  to m precisely when A maps
{α, β} to {γ, δ}, that is, if {γ, δ} = {A(α), A(β)}. So the action of G(O) on L and that
of PGL(2, q) on 
 are equivalent.

Definition 4.2. Let , m be two non-tangent lines in PG(2, q), and suppose that  ∩
Ō = {Pα, Pβ} and m ∩ Ō = {Pγ , Pδ}. We define the cross-ratio ρ(, m) of the lines
 and m as ρ(, m) = {r, r−1}, where r ∈ Fq2 ∪ {∞} is defined by

r = ρ(α, β, γ, δ).

We will now show that the cross-ratio essentially determines the orbits of G(O) on
L × L. The precise result is the following:

Theorem 4.3. Given two ordered pairs of non-tangent lines (, m) and (′, m ′) with
 �= m and ′ �= m ′, there exists an element of G(O) mapping (, m) to (′, m ′) if and
only if

(i)  and ′ are of the same type,
(ii) m and m ′ are of the same type, and
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(iii) ρ(, m) = ρ(′, m ′).

Proof: We first show that (i), (ii) and (iii) are necessary. Let α, β, γ, δ, α′, β ′, γ ′, δ′ ∈
Fq2 ∪ {∞} be such that

 ∩ Ō = {Pα, Pβ}, m ∩ Ō = {Pγ , Pδ}, ′ ∩ Ō = {Pα′ , Pβ ′ }, m ′ ∩ Ō = {Pγ ′ , Pδ′ }.

As already remarked above, there exists some element gA ∈ G(O) mapping  to
′ and m to m ′ if and only if, under the action as in (2), the associated matrix A ∈
PGL(2, q) maps {α, β} to {α′, β ′} and {γ, δ} to {γ ′, δ′}. Now any element of G(O)
obviously maps a hyperbolic line to a hyperbolic line and an elliptic line to an elliptic
line, hence (i) and (ii) are indeed necessary; and by Theorem 3.1, part (ii), after
interchanging γ ′ and δ′ if necessary, we have ρ(α, β, γ, δ) = ρ(α′, β ′, γ ′, δ′). So we
see that (iii) is also necessary.

Conversely, assume that the conditions (i), (ii) and (iii) hold. By applying Theo-
rem 3.1, part (iii), with q2 in place of q, we conclude from condition (iii) that (after in-
terchanging γ ′ and δ′ if necessary) there exists a (unique) matrix A ∈ PGL(2, q2) map-
ping α to α′, β to β ′, γ to γ ′, and δ to δ′. We have to show that actually A ∈ PGL(2, q),
that is, some nonzero multiple λA of A has all its entries in Fq . So let

A =
(

a b

c d

)
.

According to our assumptions, we first have that A maps (α, β) to (α′, β ′), that is,

aα + b

cα + d
= α′,

aβ + b

cβ + d
= β ′. (10)

We distinguish two cases.
If both α, α′ ∈ Fq ∪ {∞}, then also β, β ′ ∈ Fq ∪ {∞}. Now from (10) we conclude

that

aqα + bq

cqα + dq
= aα + b

cα + d
.

Hence α is a zero of the polynomial

FA(x) = (aq x + bq )(cx + d) − (ax + b)(cq x + dq )

= (aqc − acq )x2 + (aqd − adq + bqc − bcq )x + (bqd − bdq ).

Note that this also holds for α = ∞ if we adopt the convention that a polynomial
of degree at most two has ∞ as a zero if and only if the polynomial has actually
degree at most one. Indeed, FA has ∞ as its zero if and only if a/c = aq/cq , and
α′ = A(∞) = a/c. So we conclude that if  and ′ are both hyperbolic, then α, and
by a similar reasoning also β, are zeroes of the polynomial FA(x).

On the other hand, if both α, α′ ∈ Fq2\Fq , then also β = αq and β ′ = α′q are in
Fq2\Fq . By raising the second equation in (10) to the q-th power, we again conclude
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that

aqα + bq

cqα + dq
= aα + b

cα + d
,

hence again we have that α, and similarly αq , is a zero of the polynomial FA(x).
In summary, if A maps (α, β) to (α′, β ′), we can conclude that both α and β are

zeroes of FA; hence according to our assumptions all four of α, β, γ, δ determined
by the lines  and m are zeroes of the polynomial FA(x). Now since  �= m, we have
|{α, β, γ, δ}| ≥ 3. Consequently FA(x) is the zero polynomial, that is,

acq ∈ Fq , bdq ∈ Fq , aqd − bcq = adq − bqc ∈ Fq . (11)

Now we want to apply Theorem 4.1. With

� = aqd − bcq = adq − bqc, � = det(A) = ad − bc �= 0,

we have that

a� = a(aqd − bcq ) = aq+1d − baqc = aq�;

b� = b(adq − bqc) = abqd − bq+1c = bq�;

c� = c(aqd − bcq ) = cqad − bcq+1 = cq�;

d� = d(adq − bqc) = adq+1 − dqbc = dq�;

hence Aq� = A�, i.e., Aq = (�/�)A. By Theorem 4.1, we may now conclude that
essentially A ∈ PGL(2, q). �

Corollary 4.4. The group G(O) is generously transitive on both L+ and L−.

Proof: Let , m be two distinct lines in L. Obviously, ρ(, m) = ρ(m, ). Hence
according to Theorem 4.3, there is an element in G(O) that maps (, m) to (m, ), i.e.,
interchanges  and m, if and only if  and m are of the same type. �

Our next result relates the value of the cross-ratio ρ(, m) of two lines  and m to
their types. Let us define the subsets B0 and B1 of Fq2 ∪ {∞} by

B0 = (Fq ∪ {∞})\{1}, B1 = {x ∈ Fq2 \{1} | xq = x−1}.

Note that |B0| = |B1| = q , also the intersection of B0 and B1 is empty if q is even,
and contains only −1 if q is odd. We have the following.

Lemma 4.5. Let , m be two distinct non-tangent lines in PG(2, q), and let ρ(, m) =
{λ, λ−1}, where λ ∈ Fq2 ∪ {∞}. Then λ is contained in B0 if  and m are of the same
type, and contained in B1 if  and m are of different type.
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Proof: Easy consequence of the fact that if α, β, γ, δ ∈ Fq ∪ {∞} and ξ, η ∈ Fq2 \
Fq , then ρ(α, β, γ, δ) and ρ(ξ, ξ q , η, ηq ) are both in B0 while ρ(ξ, ξ q , γ, δ) and
ρ(α, β, η, ηq ) are both in B1. �

For ε, φ ∈ {1, −1} and for λ ∈ B0 (if ε = φ = 1), or λ ∈ B0\{0, ∞} (if ε = φ =
−1), or λ ∈ B1 (if ε �= φ), we define

R{λ,λ−1}(ε, φ) = {(, m) ∈ Lε × Lφ,  �= m | ρ(, m) = {λ, λ−1}}.

We observed earlier that ρ(, m) �= 1 and ρ(, m) = {0, ∞} if and only if  and m
are equal or intersect on O. Hence according to Theorem 4.3 and Lemma 4.5, each
of the non-diagonal orbits of G(O) on L × L, that is, each non-diagonal relation of
the coherent configuration R obtained from the action of G(O) on L × L, is actually
of the form R{λ,λ−1}(ε, φ) with the restrictions on λ as given above. Moreover, since
G(O) is transitive on both L+ and L−, we have that

|R{λ,λ−1}(ε, φ)| = |Lε |v{λ,λ−1}(ε, φ),

where the numbers v{λ,λ−1}(ε, φ) are the valencies of the coherent configuration R. In
order to finish our description of the orbits of G(O) on L × L, we will show that each
of the orbits defined above is indeed nonempty.

Theorem 4.6. We have that

v{λ,λ−1}(ε, φ) =

⎧⎪⎨⎪⎩
2(q − 1), if ε = φ = 1 and {λ, λ−1} = {0, ∞};
(q − ε)/2, if q is odd and λ = −1;

q − ε, if λ ∈ B(1−δε,φ ) and λ �= −1, 0, ∞.

(Here δ is the Kronecker delta.)

Proof: Fix a line  ∈ Lε , and let  ∩ Oq2 = {Pα, Pβ}, where {α, β} ∈ 
ε . We want
to count the number of m ∈ Lφ such that m ∩ Oq2 = {Px , Py} with {x, y} ∈ 
φ , and
ρ(, m) = {λ, λ−1}, where

λ = ρ(α, β, x, y) = (α − x)(β − y)

(α − y)(β − x)
. (12)
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Now we note the following. First, we have λ ∈ {0, ∞} if and only if {α, β} ∩ {x, y} �=
∅, that is, if and only if the corresponding lines  and m intersect on Oq2 . Hence

v{0,∞}(ε, φ) =
{

2(q − 1), if ε = φ = 1;

0, otherwise.

Next, we have x = y in (12) only if λ = 1, which is excluded. Also by interchanging x
and y, the cross-ratio λ in (12) is inverted, and the only cases where λ = λ−1 are λ = 1
(which is excluded) and λ = −1. As a consequence, for λ ∈ (B0 ∪ B1)\{0, ∞} the
number v{λ,λ−1}(ε, φ) equals the number of solutions (x, y) of (12) with {x, y} ∈ 
φ

if q is even or λ �= −1, and is equal to half of the number of such solutions if λ = −1
and q is odd.

First, let ε = 1. According to Theorem 4.3, we may assume without loss of gener-
ality that α = ∞ and β = 0, so that (12) reduces to λ = −y/(−x) = y/x . If φ = 1,
then x, y ∈ Fq ∪ {∞} and λ ∈ Fq \{0, 1}; in that case for each x ∈ Fq \{0} there is a
unique solution y ∈ Fq , so there are q − 1 solutions in total. Similarly, if φ = −1,
then x ∈ Fq2\Fq , y = xq , and λ ∈ B1. So (12) reduces to λ = xq−1, and again there
are precisely q − 1 solutions for each λ ∈ B1.

If ε = −1, then we have α ∈ Fq2\Fq and β = αq . First, if φ = 1, then x, y ∈
Fq ∪ {∞} and λ ∈ B1. In that case we see immediately from (12) that λq = 1/λ. For
each λ ∈ B1, let z and u be the unique solutions of the equations λ = (αq − z)/(α − z)
and λ = (α − u)/(αq − u), respectively. Now for y = ∞ the unique solution of (12)
is x = u; for y = z the unique solution is x = ∞, and it is easily seen that for each
y ∈ Fq \{z} there is a unique solution x ∈ Fq of (12). So there are precisely q + 1
solutions of (12) in this case. Finally, if φ = −1, then we have x ∈ Fq2\Fq , y = xq ,
and λ ∈ Fq \{0, 1}. In that case, the desired solutions of (12) satisfy

(α − x)(αq − xq ) = λ(α − xq )(αq − x),

with x ∈ Fq2\Fq and x �= α, αq . For each λ ∈ Fq \{0, 1}, this equation has at most
q + 1 solutions in Fq2\Fq . On the other hand, there are q2 − q − 2 choices of x
with x �= α, αq ; consequently, the average number of valid solutions equals (q2 −
q − 2)/(q − 2) = q + 1. Since the average number of solutions equals the maximum
number of solutions, there must be exactly q + 1 solutions for each λ ∈ Fq \{0, 1},
and the result stated for ε = φ = −1 follows. �

By combining Theorems 4.3 and 4.6 we obtain the following result.

Theorem 4.7. (i) The action of the group G(O) on L affords a weakly symmetric
coherent configuration R(q).

(ii) The restriction of R(q) to the fibre L+ of hyperbolic lines constitutes an associ-
ation scheme R+(q) (or H(q)), with q/2 classes if q is even and with (q + 1)/2
classes if q is odd. The non-diagonal relations are precisely the sets R{λ,λ−1}(1, 1)
with λ ∈ B0, with corresponding valencies v{λ,λ−1} = v{λ,λ−1}(1, 1).

(iii) The restriction of R(q) to the fibre L− of elliptic lines constitutes an asso-
ciation scheme R−(q) (or E(q)), with q/2 − 1 classes if q is even and with
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(q − 1)/2 classes if q is odd. The non-diagonal relations are precisely the sets
R{λ,λ−1}(−1, −1) with λ ∈ Fq \{0, 1}, with corresponding valencies v{λ,λ−1} =
v{λ,λ−1}(−1, −1).

We will refer to the association schemes H(q) and E(q) in part (ii) and (iii) of the
above theorem as the hyperbolic and elliptic scheme, respectively. The hyperbolic
scheme was recently investigated in [3] as a refinement (fission) of the triangular
scheme. The elliptic scheme was first described in [9] but our approach here is new.

5. An expression based on homogeneous coordinates of lines to index the
relations of R(q)

Let ε, φ ∈ {−1, 1} and let (, m) ∈ Lε × Lφ . In this section we will develop an ex-
pression ρ̂(, m) that can be used to index the relation of R(q) containing (, m), in
terms of the homogeneous coordinates of  and m.

We need some preparation. Consider the function f : Fq2 ∪ {∞} → Fq2 ∪ {∞}
defined by

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1

x + x−1
, if q is even;

1

4
+ 1

−2 + x + x−1
, if q is odd,

for x ∈ Fq2 \{0, 1}, f (1) = ∞, and f (0) = f (∞) = 0 if q is even and f (0) =
f (∞) = 1/4 if q is odd. (Note that the values of f on ∞, 0, 1 are consistent with the
general expression for f (x) when we interpret 1/0 = ∞ and handle ∞ in the usual
way.) This function has a few remarkable properties. To describe these, we introduce
some notation. For q = 2r and for e ∈ F2, let Te = Te(q) denote the collection of
elements with absolute trace e in Fq , that is,

Te = {
x ∈ Fq | Tr(x) := x + x2 + · · · + x2r−1 = e

}
For q odd, we let T0 and T1 denote the collection of nonzero squares and non-squares
in Fq , respectively, that is,

T0 = {x2 | x ∈ Fq}\{0}

and T1 = Fq \({0} ∪ T0). Note that in the case where q is even, it is well known that

T0 = {x2 + x | x ∈ Fq}

Lemma 5.1. The function f has the following properties:

(i) f (x) = f (y) if and only if x = y or x = y−1;
(ii) f (x) = ∞ if and only if x = 1;
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(iii) if q is odd, then f (x) = 0 if and only if x = −1;
(iv) f (x) ∈ Fq if and only if x ∈ B0 ∪ B1;
(v) if q is even and x ∈ Fq2 \{0, 1}, then

f (x) = 1

x + 1
+ 1

(x + 1)2
,

and if q is odd and x ∈ Fq2 \{0, 1, −1}, then

f (x) =
(

x + 2 + x−1

2(x − x−1)

)2

.

Hence for x ∈ Fq2 ∪ {∞} and e ∈ F2, we have that f (x) ∈ Te if and only if x ∈
Be\{−1}.

Proof: Note first that f (x) = f (y) if and only if x + 1/x = y + 1/y; hence part (i)
follows. Parts (ii) and (iii) are evident. To see (iv), first note that f (x)q = f (xq ),
then use part (i) to conclude that f (x) ∈ Fq ∪ {∞} if and only if xq ∈ {x, x−1}. The
expressions for f (x) in part (v) are easily verified. Since f (∞) = 0 ∈ T0 if q is even
and f (∞) = 1/22 ∈ T0 if q is odd, the expressions in (v) imply that f (x) ∈ T0 if and
only if x ∈ (Fq ∪ {∞})\{1, −1}. Now the remainder of part (v) follows from (iv). �

Next we determine the type of a line in terms of its homogeneous coordinates, and
we establish relations between the homogeneous coordinates of a line and the points
of intersection of this line with the conic Oq2 .

Lemma 5.2. Let  be a line in PG(2, q) with homogeneous coordinates  = (z, x, y)⊥,
and let  ∩ Oq2 = {Pα, Pβ}, where α, β ∈ Fq2 ∪ {∞} and α = β if  is a tangent line.
Define �() ∈ Fq ∪ {∞} by

�() =
{

xy/z2, if q is even;

1/(z2 − 4xy), if q is odd.

(i) We have that  ∈ L(−1)e if and only if �() ∈ Te, and  is a tangent line to O in
PG(2, q) if and only if �() = ∞.

(ii) If x �= 0, then

α + β = −z/x, αβ = y/x ; (13)

and if x = 0, then

α = ∞, β = −y/z. (14)
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Proof: Note first that by definition α, β are the solutions in Fq2 ∪ {∞} of the quadratic
equation

zξ + xξ 2 + y = 0.

(Here, by convention, ξ = ∞ is a solution if and only if x = 0.) Now (i) follows
from the standard theory on solutions of quadratic equations and (ii) follows from this
equation by writing it in the form x(ξ − α)(ξ − β) = 0. �

Now let (, m) ∈ Lε × Lφ be a pair of distinct non-tangent lines in PG(2, q), and
let α, β, γ, δ be such that

 ∩ Oq2 = {Pα, Pβ}, m ∩ Oq2 = {Pγ , Pδ}.

Furthermore, let  and m have homogeneous coordinates

 = (z, x, y)⊥, m = (z̄, x̄, ȳ)⊥.

In the previous section we have seen that the orbit of the action of G(O) on L × L
containing the pair (, m) is R{ρ,ρ−1}(ε, φ), where

ρ = ρ(α, β, γ, δ).

Now we define the modified cross-ratio ρ̂(, m) of the lines  and m by

ρ̂(, m) = f (ρ) =

⎧⎪⎪⎨⎪⎪⎩
1

ρ + ρ−1
, if q is even;

1

4
+ 1

−2 + ρ + ρ−1
, if q is odd.

We will now use the previous lemma to express ρ̂(, m) in terms of the homogeneous
coordinates of  and m. Let σ : Fq → T0 ∪ {0} be defined by

σ (x) =
{

x2 + x, if q is even;

x2, if q is odd.

Then the result is as follows.

Theorem 5.3. If  = (z, x, y)⊥ and m = (z̄, x̄, ȳ)⊥ are two non-tangent lines and if
� = �() and �̄ = �(m), then

ρ̂(, m) =
⎧⎨⎩

(x ȳ + x̄ y)2 + (x z̄ + x̄ z)(yz̄ + ȳz)

z2 z̄2
= σ ((x ȳ + x̄ y)/(zz̄)) + � + �̄, if q is even;

(2x ȳ + 2x̄ y − zz̄)2��̄/4 = σ (x ȳ + x̄ y − zz̄
2

)��̄, if q is odd.
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Proof: Let ρ = ρ(α, β, γ, δ) with α, β, γ and δ as given above, and let ρ̂ = f (ρ).
Initially, we will assume that x, x̄ �= 0. First we observe that

− 2 + ρ + ρ−1 = (α − β)2(γ − δ)2

(α − γ )(α − δ)(β − γ )(β − δ)
. (15)

Now (α − β)2 = (α + β)2 − 4αβ = (−z/x)2 − 4y/x , and similarly (γ − δ)2 =
(−z̄/x̄)2 − 4ȳ/x̄ , hence

(α − β)2(γ − δ)2 =
{

z2 z̄2/(x2 x̄2), if q is even;

1/(��̄x2 x̄2), if q is odd.
(16)

Moreover, straightforward but somewhat tedious computations show that

(α − γ )(α − δ)(β − γ )(β − δ)

= (αβ)2−αβ(α+β)(γ + δ)+(α+β)2γ δ+αβ(γ 2 + δ2)−(α + β)γ δ(γ + δ)+(γ δ)2

= ((x ȳ − x̄ y)2 + (x z̄ − x̄ z)(yz̄ − ȳz))/(x2 x̄2).

By combining these expressions we obtain in a straightforward way the desired
expressions for ρ̂. Finally, it is not difficult to check that the expressions for ρ̂ are also
correct in the case where one of x, x̄ is equal to zero. �

In what follows, we will use the elements of Fq to index the relations of the coherent
configuration R = R(q), and the modified cross-ratio ρ̂ to determine the relation of
a given pair of distinct non-tangent lines. For ε, φ ∈ {−1, 1} and λ ∈ Fq , we define

Rdiag(ε, ε) := {(, ) |  ∈ Lε}

and

Rλ(ε, φ) := {(, m) ∈ Lε × Lφ |  �= m, ρ̂(, m) = λ}.

Here Rdiag(1, 1) and Rdiag(−1, −1) are the two diagonal relations on the fibres L+
and L−. By Lemma 4.5, the types of  and m alone determine whether ρ̂(, m) is
contained in T0 or in T1 (except in the case where ρ̂(, m) = 0 if q is odd). This can
also be seen from Lemma 5.2 together with the expressions for ρ̂(, m) in Theorem 5.3.
In order to state the next theorem concisely, we define for e ∈ F2,

T+
e =

{
Te, if q is even,

Te ∪ {0}, if q is odd;

and T∗
0 = T0\{0}.

Now a careful inspection of Theorem 4.7 in fact shows that we have the following.
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Theorem 5.4. The non-diagonal relations Rλ(ε, φ) of the coherent configuration
R(q) are nonempty precisely when

(i) ε = φ = 1 and λ ∈ T+
0 ;

(ii) ε �= φ and λ ∈ T+
1 ; or

(iii) ε = φ = −1 and λ ∈ T∗
0 if q is even or λ ∈ T+

0 \{1/4} if q is odd.

6. The intersection parameters of R(q) in the case of even characteristic

In the rest of this paper, we always assume that q is even. Here we will determine
the intersection parameters of the coherent configuration R(q) in the case of even
characteristic. In this case, the results from the previous section can be resumed as
follows. By Lemma 5.2, a line  in PG(2, q) is non-tangent to O if and only if it
can be represented in homogeneous coordinates as  = (1, x, y)⊥ with x, y ∈ Fq ; if
� = xy ∈ Te, then  ∈ Lε with ε = (−1)e. Moreover, Theorem 5.3 implies that if
 = (1, x, y)⊥ ∈ Lε and m = (1, z, u)⊥ ∈ Lφ are two non-tangent lines with xy ∈ Te

and zu ∈ T f , then ε = (−1)e, φ = (−1) f , and

ρ̂(, m) = (xu + yz)2 + (xu + yz) + xy + zu = x2u2 + y2z2 + (x + z)(y + u).
(17)

Lemma 4.5 (or Theorem 5.4) shows that ρ̂(, m) is contained in Te+ f . The above
expression for ρ̂(, m) also implies this fact since (xu + yz)2 + (xu + yz) ∈ T0. Fur-
thermore, we recall that ρ̂(, m) = 0 precisely when  = m or when  and m are lines
in L1 that intersect on O. For later reference, we state these observations explicitly.

Lemma 6.1. Let c ∈ Fq , and e, f ∈ F2. If (, m) ∈ Rc(ε, φ) with ε = (−1)e and φ =
(−1) f , then c ∈ Te+ f . Moreover, if c = 0, then ε = φ = 1.

Corollary 6.2. Let a, b, c ∈ Fq , and let e, f, g ∈ F2. Write ε = (−1)e, φ = (−1) f ,
and θ = (−1)g. If  ∈ Lε , m ∈ Lφ , and n ∈ Lθ with ρ̂(, m) = c, ρ̂(, n) = a, and
ρ̂(n, m) = b, then Tr(c) = e + f , Tr(a) = e + g, and Tr(b) = f + g; in particular,
a + b + c ∈ T0.

In order to determine the intersection parameters ofR(q), we need to do the follow-
ing. Choose any pair (, m) ∈ Rc(ε, φ), with ε = (−1)e and φ = (−1) f , say, and then
count the number of lines n ∈ Lθ , with θ = (−1)g , say, such that (, n) ∈ Ra(ε, θ )
and (n, m) ∈ Rb(θ, φ). Now note that according to Lemma 6.1, there are such lines n
only if Tr(c) = e + f , Tr(a) = e + g, and Tr(b) = g + f , and so, in particular, only
if a + b + c ∈ T0. These observations motivate the following definitions.

For all a, b, c ∈ Fq , for all ε, φ ∈ {−1, 1}, and for all lines , m with (, m) ∈
Rc(ε, φ) (so  �= m), we define

va() = va(ε) = |{n ∈ L\{} | ρ̂(, n) = a}|, (18)

pa,b(, m) = pc
a,b(ε) = |{n ∈ L\{, m} | ρ̂(, n) = a and ρ̂(n, m) = b}|, (19)
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and

πa,b(, m) = π c
a,b(ε) = |{n ∈ L | ρ̂(, n) = a and ρ̂(n, m) = b}|. (20)

The above observations show that the numbers in (18) and (19) are valencies and
intersection parameters of R(q).

We also note that since ρ̂(, ) = 0 for all lines  ∈ L, we have the following:

Lemma 6.3. Let a, b, c ∈ Fq and let ε ∈ {−1, 1}. Then

π c
a,b(ε) = pc

a,b(ε) + δa,0δb,c + δb,0δa,c.

In what follows, we will sometimes use the symbol ∞ to indicate a diagonal relation
and write R∞(ε, ε) instead of Rdiag(ε, ε). Remark that the intersection parameters
involving a diagonal relation are p∞

a,b(ε) = δa,bva(ε), pc
∞,b(ε) = δb,c, and pc

a,∞(ε) =
δa,c.

According to Lemma 6.3, in order to obtain all intersection parameters, it is suffi-
cient to compute the numbers π c

a,b(ε) for a, b, c ∈ Fq with a + b + c ∈ T0. We begin
with the following observation.

Lemma 6.4. For all a, b, c ∈ Fq , we have π c
a,b(ε) = π c

b,a((−1)Tr(c)ε) and pc
a,b(ε) =

pc
b,a((−1)Tr(c)ε).

Proof: The number π c
a,b(ε), with ε = (−1)e, counts the number of lines n ∈ L such

that ρ̂(, n) = a and ρ̂(n, m) = b, for some pair of distinct non-tangent lines , m
with  ∈ Lε and ρ̂(, m) = c. By Corollary 6.2, we then have m ∈ Lφ with φ =
(−1) f and f = e + Tr(c); hence all these lines n, and no others, contribute to the
number π c

b,a((−1)e+Tr(c)). This proves the first equality; the other equality follows
from Lemma 6.3. �

For v ∈ Fq , we define v = (1, v, v)⊥. Note that

ρ̂(v, v+c) = c2, �(v) = v2,

for any c ∈ Fq .

Theorem 6.5. Let a, b, c ∈ Fq with a + b + c ∈ T0 and c �= 0. For each e ∈ F2 and
for each v ∈ Fq with Tr(v) = e, we have

π c
a,b(ε) =

∑
τ

|{z ∈ Fq ∪ {∞} | z2 + z = v + ac/τ 2}|

=
{

1 + 2|Te ∩ {ac}|, if a + b + c = 0;

2
∑

τ
|Te ∩ {ac/τ 2}|, if a + b + c ∈ T∗

0,
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where ε = (−1)e, and the summations are over the two elements τ ∈ Fq such that
τ 2 + τ = a + b + c. (If τ = 0, then z = ∞ is supposed to be the only solution of the
equation z2 + z = v + ac/τ 2.)

Proof: We choose  = v1/2 and m = (v+c)1/2 in the definition (20) of π c
a,b(ε). Ac-

cording to (17), we conclude that π c
a,b(ε) equals the number of lines n = (1, x, y)⊥

for which the following holds.{
ρ̂(v1/2 , n) = (v1/2(x + y))2 + v1/2(x + y) + xy + v = a

ρ̂(n, (v+c)1/2 ) = ((v + c)1/2(x + y))2 + (v + c)1/2(x + y) + xy + v + c = b
(21)

By adding the two equations, we see that (x, y) ∈ F2
q must satisfy

(c1/2(x + y))2 + c1/2(x + y) = a + b + c.

Since a + b + c ∈ T0, there are two elements τ ∈ Fq such that τ 2 + τ = a + b + c.
Noting that c �= 0 by assumption, we see that (x, y) ∈ F2

q is a solution of (21) if and
only if {

x + y = τ/c1/2

x2 + xτ/c1/2 + τv1/2/c1/2 + vτ 2/c = a + v
(22)

Now we distinguish two cases. If τ = 0 (which is possible if and only if a + b + c =
0), then (22) reduces to x2 = a + v, which has a unique solution. Otherwise, τ �= 0,
then the substitution z = xc1/2/τ + v1/2c1/2/τ 1/2 transforms (22) into the equation

z2 + z = v + ac/τ 2

with z ∈ Fq . The two cases can be conveniently combined by interpreting z = ∞ as
the only solution of the above equation when τ = 0.

To obtain the last expression, note that if z runs through Fq , then z2 + z + v runs
through Te twice. �

Corollary 6.6. Let b, c ∈ Fq with b + c ∈ T0 and c �= 0. Then for each e ∈ F2 we
have that

π c
0,b(ε) =

{
1 + 2δε,1, if b = c;

4δε,1, if b + c ∈ T∗
0;

(23)

where ε = (−1)e.

To complete the determination of the intersection parameters, we compute the
numbers π0

a,b(ε). (These numbers can also be derived from knowledge of the valencies
and the other intersection numbers by using relations between these numbers that are
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valid in any coherent configuration, but the direct approach is simple enough and more
revealing.)

Theorem 6.7. Let a, b ∈ Fq . Then π0
a,b(−1) = 0 and

π0
a,b(1) =

⎧⎪⎨⎪⎩
q + 1, if a = b = 0;

1, if a = b �= 0;

2, if a + b ∈ T∗
0.

Proof: It follows from Corollary 6.2 that the numbers π0
a,b(ε) are nonzero only if ε = 1

and Tr(a) = Tr(b). Take  = (1, 0, 0)⊥ and m = (1, 0, 1)⊥. Note that P∞ = (0, 1, 0)�

and P0 = (0, 0, 1)� are on  and P∞ and P1 = (1, 1, 1)� are on m, hence  and m
intersect on O so indeed ρ̂(, m) = 0. Now count the number of non-tangent lines
n = (1, x, y)⊥ such that

ρ̂(, n) = xy = a and ρ̂(m, n) = x2 + x + xy = b,

or, equivalently,

xy = a, x2 + x = a + b.

Now if a + b ∈ T0, then the equation x2 + x = a + b has two solutions x in Fq , and
for each x �= 0 the first equation xy = a has the unique solution y = a/x . Finally,
for x = 0 (which can occur only if a = b), there is no solution y if a �= 0 and there
are q solutions y if a = 0.

�

By combining Lemma 6.3 with our results for the numbers π c
a,b(ε) we obtain all

intersection parameters. For the sake of completeness, we also state the values of the
valencies. From Theorem 4.6, we obtain the following.

Theorem 6.8. For a ∈ Fq , we have

va(ε) =
{

2(q − 1)δε,1, if a = 0;

q − ε, if a ∈ F∗
q .

In even characteristic the elliptic association scheme E(q) has all valencies equal to
q + 1. We will use the expressions that we have derived for the intersection parameters
to show that, in fact, the elliptic scheme is pseudocyclic.
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Theorem 6.9. (i) For all b ∈ T∗
0 and ε ∈ {−1, 1}, we have that∑

a∈T∗
0

pa
a,b(ε) = q − 4δε,1.

(ii) The elliptic association scheme E(q) is pseudocyclic.

Proof: (i) Let ε = (−1)e. Using Lemma 6.3 and Theorem 6.5, we see that for b ∈ T∗
0,

we have ∑
a∈T∗

0

pa
a,b(ε) =

∑
a∈T∗

0

πa
a,b(ε)

= −4δe,0 +
∑
a∈T0

2
∑

{τ |τ 2+τ=b}
|τ 2Te ∩ {a2}|

= −4δe,0 + 2
∑

{τ |τ 2+τ=b}
|τ 2Te ∩ T0|

= −4δe,0 + 2.2.q/4

= q − 4δe,0.

(ii) The non-diagonal relations of the elliptic schemeE(q) areRc(−1, −1) with c ∈ T∗
0.

So the claim follows from part (i) together with Theorem 2.3. �

Let q = 2r and let k be an integer with gcd(k, r ) = 1. The field automorphism
τk : x �→ x2k

provides in a natural way a fusion of the coherent configuration R(q) as
follows. Let the orbits of τk on Fq be C0 = {0}, C1, . . . , Cn . Define new relations

Rfus
j (ε, φ) = ∪c∈C jRc(ε, φ).

Now since

pc
a,b(ε) = pτk (c)

τk (a),τk (b)(ε),

it follows immediately that the fusion

Rfus = {
Rfus

j (ε, φ) | j = 0, . . . , n, ε, φ ∈ {−1, 1}}
is a coherent configuration, which obviously is again weakly symmetric. The valencies
of this new coherent configuration are of the form

vfus
j (ε) =

∑
c∈C j

vc(ε).

Now consider two association schemes obtained from this configuration by restricting
to the set of hyperbolic or elliptic lines, respectively. It is not difficult to see that such
a scheme has all valencies equal precisely in the elliptic case with q = 2r and r prime.
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An old conjecture from [9] states that in this case the scheme is again pseudocyclic.
In a subsequent paper [11] we will prove this conjecture.

7. Fusion schemes in the case of even characteristic

In this section, we will assume that the field size is of the form q2 with q even. Our
aim is to show that a certain fusion of the coherent configuration R(q2) on the set
L(q2) of non-tangent lines in PG(2, q2) is again a coherent configuration. We remark
that this fusion does not seem to be induced by a group action. We will write S0 to
denote the collection of elements with absolute trace zero in Fq , that is,

S0 = T0(q);
and let

S1 = Fq \S0

denote the collection of elements with absolute trace one in Fq . Also, we will write
T0 = T0(q2) and T1 to denote the elements in Fq2 with absolute trace equal to 0 or 1,
respectively. As before, for any set U , we write U ∗ to denote the set U \{0} and Ũ to
denote the set U \{0, 1}.

We now define the following relations for two distinct lines  and m in L(q2).� R1 : ρ̂(, m) ∈ S∗
0;� R2 : ρ̂(, m) ∈ S1;� R3 : ρ̂(, m) ∈ T0\Fq ;� R4 : ρ̂(, m) = 0;� R5 : ρ̂(, m) ∈ T1.

Furthermore, we let R0 = {(, ) |  ∈ L(q2)} denote the diagonal relation. In addition,
for ε, φ ∈ {−1, 1} and k = 0, . . . , 5, we let Rk(ε, φ) denote the restriction of Rk to
Lε(q2) × Lφ(q2). For later use, we define sets Ri for i = 1, 2, . . . , 5 by

R1 = S∗
0, R2 = S1, R3 = T0\Fq , R4 = {0}, R5 = T1.

Also, we let ri = |Ri | for i = 1, . . . , 5, so that

r1 = (q − 2)/2, r2 = q/2, r3 = q(q − 2)/2, r4 = 1, r5 = q2/2.

Note that for distinct lines , m ∈ L(q2) and for k = 1, . . . , 5, we have that (, m) ∈ Rk

if and only if ρ̂(, m) ∈ Rk .
Not all the relations Rk(ε, φ) are nonempty.

Lemma 7.1. We have that Rk(ε, φ) is nonempty only if

(i) k ∈ {0, 1, 2, 3}, ε = φ;
(ii) k = 4, ε = φ = 1;
(iii) k = 5, ε �= φ.
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Proof: Since T∗
0 = R1 ∪ R2 ∪ R3, R4 = {0}, and R5 = T1, this follows directly from

Lemma 6.1. �

Each of the relations Rk(ε, φ) is a fusion (a union) of relations of the coherent con-
figuration R(q2) on L(q2). We want to show that this fusion, which we will denote by
R(q2), in fact defines a new coherent configuration. Since this coherent configuration
is again weakly symmetric, the restrictions to both L+(q2) and L−(q2) define fusions
H (q2) and E(q2) of the hyperbolic and elliptic association schemes H(q2) and E(q2)
defined earlier. In fact, the 4-class fusion H (q2) of the hyperbolic association scheme
is not new: it was first conjectured to be an association scheme in [3] and later this
conjecture was proved in [6] (by a direct proof), in [5] (by a geometric argument),
and in [14] (using characters). The 3-class fusion E(q2) of the elliptic scheme seems
to be new. We will prove these fusion results by determining the valencies and the
intersection parameters of the fusion.

For all i, j, k ∈ {1, . . . , 5}, for all c ∈ Rk , for all ε, φ ∈ {−1, 1}, and for all lines
, m with (, m) ∈ Rc(ε, φ) (so  �= m), we define

vi () = vi (ε) = |{n ∈ L(q2)\{} | ρ̂(, n) ∈ Ri }|, (24)

and

pi, j (, m) = pk
i, j (ε) = |{n ∈ L(q2)\{, m} | ρ̂(, n) ∈ Ri and ρ̂(n, m) ∈ R j }|.

(25)
Our aim in this section is to show the following.

Theorem 7.2. The numbers vi (ε) and pk
i, j (ε) are well-defined, that is, they do not

depend on the particular choice of the lines  and m. As a consequence, the relations
Rk(ε, φ) constitute a coherent configuration R(q2) which is a fusion of R(q2). The
numbers vi (ε) are the valencies of R(q2); their values are vi (ε) = ri (q2 − ε) if i �= 4
and v4(ε) = 2(q2 − 1)δε,1. The numbers pk

i, j (ε) are the intersection parameters of
R(q2); their values are given inTables 1 to 5.

We will prove this theorem through a sequence of lemmas. First note that we do
not need to compute all the intersection parameters since we have the following:

Lemma 7.3. (i) We have that pk
i,0(ε) = pk

0,i (ε) = δk,i and p0
i, j (ε) = vi (ε)δi, j .

(ii) If one of pk
i, j (ε) and pk

j,i (ε) exists, then so does the other and pk
j,i (ε) = pk

i, j (ε) if
k = 1, . . . , 4 and p5

j,i (ε) = p5
i, j (−ε).

(iii) If four of the numbers pk
i, j (ε) for j = 1, . . . , 5 exist, then so does the fifth, and

5∑
j=0

pk
i, j (ε) = vi (ε).

Proof: Part (i) and (iii) are trivial and part (ii) follows from Lemma 6.4. �
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Table 3 Intersection numbers p3
i, j (ε). Here r = q2 − 2q − 1

p3
i, j (ε) 1 2 3 4 5

1 (q2 − (ε + 4)q + 4(ε + 1))/2 q(q − ε − 2)/2 (q/2 − 1)(q2 − 2q − ε) 2(q − 2)δε,1 0

2 q(q − ε − 2)/2 q(q − ε)/2 (q2 − 2q − ε)q/2 2qδε,1 0

3 (q/2 − 1)(q2 − 2q − ε) (q2 − 2q − ε)q/2 (q3 − 4q2 + (4 − 3ε)q + 8ε)q/2 2rδε,1 0

4 2(q − 2)δε,1 2qδε,1 2rδε,1 4δε,1 0

5 0 0 0 0 v5(ε)

Table 4 Intersection numbers p4
i, j (1); here r = q2 − 2q − 1

p4
i, j (1) 1 2 3 4 5

1 (q − 2)(q − 3)/2 q(q − 2)/2 q(q − 2)2/2 q − 2 0

2 q(q − 2)/2 q(q − 1)/2 q2(q − 2)/2 q 0

3 q(q − 2)2/2 q2(q − 2)/2 q(q − 2)r/2 q(q − 2) 0

4 q − 2 q q(q − 2) q2 − 1 0

5 0 0 0 0 v5(1)

Table 5 Intersection numbers p5
i, j (ε)

p5
i, j (ε) 1 2 3 4 5

1 0 0 0 0 v1(ε)

2 0 0 0 0 v2(ε)

3 0 0 0 0 v3(ε)

4 0 0 0 0 v4(ε)

5 v1(−ε) v2(−ε) v3(−ε) v4(−ε) 0

Our next result justifies all the zero entries in these tables.

Lemma 7.4. We have that pk
i, j (ε) = 0 for i, j, k = 1, . . . , 5 in the following cases.

(i) One or three of i, j, k are equal to 5.
(ii) k = 4 and ε = −1.
(iii) i = 4 or j = 4, k = 1, 2, 3, and ε = −1.

Proof: Direct consequence of Lemma 7.1. �

As a consequence of Lemmas 7.3 and 7.4 we immediately obtain the intersection
parameters pk

i, j (ε) for k = 5.

Theorem 7.5. The numbers p5
i, j (ε) exist and are as in Table 5.
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To determine the remaining intersection parameters, we proceed as follows. For
c ∈ Fq , for ε ∈ {−1, 1}, and for A, B ⊆ Fq2 , we define

π c
A,B(ε) =

∑
a∈A,b∈B

π c
a,b(ε).

Note that by Lemma 6.3, if the numbers pk
i, j (ε) exist, then for all c ∈ Rk we have

pk
i, j (ε) =

∑
a∈Ri ,b∈R j

pc
a,b(ε) = π c

Ri ,R j
(ε) − δ4,iδ j,k − δ4, jδi,k . (26)

So to prove our claim we have to compute the numbers π c
Ri ,R j

(ε) and show that they
do not depend on the choice of c in Rk . We need the following simple results.

Lemma 7.6. Let f, g ∈ F2 and ε ∈ {−1, 1}. If A ⊆ T∗
f and B ⊆ T∗

g, then

π0
{0},{0}(ε) = δε,1(q2 + 1),

π0
{0},B(ε) = π0

B,{0}(ε) = 2|B|δε,1δg,0,

and

π0
A,B(ε) = (2|A||B| − |A ∩ B|)δε,1δ f,g.

Proof: Direct consequence of Theorem 6.7. �

Lemma 7.7. Let g, h ∈ F2 and ε ∈ {−1, 1}. If B ⊆ T∗
g and c ∈ T∗

h, then

π c
{0},{0}(ε) = 4δε,1δh,0

and

π c
{0},B(ε) = π c

B,{0}((−1)hε) = δg,h((1 − 2δε,1)δc∈B + 4|B|δε,1).

Proof: Direct consequence of Corollary 6.6. �

Using the above results, we now determine the intersection parameters involving
the relation R4.

Theorem 7.8. The intersection parameters p4
i, j (1) exist and are as in Table 4.

Proof: According to (26) and Lemma 7.6 we have that

p4
4, j (1) = π0

{0},R j
(1) − 2δ j,4

=
{

2r j , if j ∈ {1, 2, 3};
q2 − 1, if j = 4.
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This gives the values for p4
4, j as in Table 4.

Next we consider p4
i, j (1) with i, j ∈ {1, 2, 3, 5}, where we assume that either i =

j = 5 or i, j ∈ {1, 2, 3}. According to (26) and Theorem 6.7, we have that

p4
i, j (1) = π0

Ri ,R j
(1)

=
{

2rir j , if i �= j ;

ri (2(ri − 1) + 1) = ri (2ri − 1), if i = j .

In view of Lemma 7.3, this is sufficient information to obtain the remaining values for
p4

i, j (1) in Table 4. �

Theorem 7.9. The intersection parameters pk
4, j (1) and pk

i,4(1) exist and are as stated
in Theorem 7.2.

Proof: If j = k = 5 or if j, k ∈ {1, 2, 3}, and if c ∈ Rk , then using (26) and
Lemma 7.7 we find that

pk
4, j (1) = π c

{0},R j
(1) − δ j,k

=
{

4r j , if j �= k;

4r j − 2, if j = k.

This produces the values for pk
4, j (1) as claimed. The other values follow from

Lemma 7.3.
�

To complete our determination of the intersection parameters, we compute the
numbers π c

Si ,S j
(ε) for i, j ∈ {0, 1} and c ∈ F∗

q2 . Note that both S∗
i and S∗

j are one of
R1, R2. Since

π c
Si ,S j

(ε) = π c
S∗

i ,S
∗
j
(ε) + δi,0π

c
{0},S∗

j
(ε) + δ j,0π

c
S∗

i ,{0}(ε) + δi,0δ j,0π
c
{0},{0}(ε) (27)

and since we know already the numbers π c
{0},Rt

(ε), π c
Rs ,{0}(ε), and π c

{0},{0}(ε) with
s, t ∈ {1, 2}, knowing π c

Si ,S j
(ε) will enable us to find the numbers π c

Rs ,Rt
(ε).

We need some preparation. For r ∈ Fq , let us define

Sr := {x ∈ Fq2 | TrFq (x) := x + x2 + · · · + xq/2 = r}

and

Gr := {x ∈ Fq2 | xq + x = r}.
We will use the following properties.

Lemma 7.10. The above definitions of S0 and S1 coincide with the definitions of S0

and S1 given earlier. Moreover,
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(i) G0 = Fq , the sets Gr withr ∈ Fq are precisely the additive cosets of Fq in (Fq2 , +),
and Gr + Gs = Gr+s for all r, s ∈ Fq . We also have that Gr = rG1 for r ∈ F∗

q .
(ii) The map F : x �→ x2 + x maps Gr two-to-one onto Sr . In particular, we have

|Sr | = q/2, and the subsets Sr with r ∈ Fq partition T0. Also, the subsets Sr

with r ∈ Fq are the cosets of S0 in (T0, +); we have that Sr + Ss = Sr+s for all
r, s ∈ Fq .

(iii) For each r ∈ Fq we have Gr2+r = Sr ∪ Sr+1.

Proof: Part (i) follows from the fact that the map x �→ xq + x from Fq2 to itself is
Fq -linear with kernel Fq and image Fq .

Next, if x ∈ Fq2 satisfies xq + x = r , then

TrFq (x2 + x) = (x2 + x) + (x2 + x)2 + . . . + (x2 + x)q/2

= x + xq = r,

hence F maps Gr to Sr . Note that the image of Fq2 under F is T0; hence part (ii) now
follows from the fact that F is F2-linear with kernel F2 ⊆ G0.

Finally, if xq + x = r , then F(x)q + F(x) = r2 + r , hence Sr (and similarly Sr+1)
are subsets of Gr2+r . Since Sr and Sr+1 are disjoint and both have size q/2, the result
follows.

Remark that G0 = Fq , hence S0 consists of the elements in Fq with trace zero, and
since G0 = S0 ∪ S1, we have S1 = Fq \S0. So the definitions of S0 and S1 coincide
with the ones given earlier in Fq . �

Now to compute π c
Si ,S j

(ε) for ε = (−1)e with e ∈ F2, for i, j ∈ {0, 1} and for c ∈
F∗

q2 , we start with the expression

π c
Si ,S j

(ε) =
∑
a∈Si

∑
b∈S j

π c
a,b(ε)

=
∑
a∈Si

∑
b∈S j

(
δa+b+c,0 + 2

∑
τ

|Te ∩ {ac/τ 2}|
)

,

where the sum is over all τ ∈ F∗
q2 such that τ 2 + τ = a + b + c. (The last equality

was obtained by using Theorem 6.5.) Obviously, π c
Si ,S j

(ε) is nonzero only if a +
b + c ∈ T0, hence only if c ∈ T0. So assume that c ∈ S∗

k with k ∈ Fq . We will write
r = i + j + k. Now in the above expression for π c

Si ,S j
(ε), we first sum over b ∈ S j . If

b runs through S j , then by Lemma 7.10, part (ii), we have that a + b + c runs through
Sr and the sum is over all τ ∈ G∗

r . So we obtain that

π c
Si ,S j

(ε) =
∑
a∈Si

(
δr,0 + 2

∑
τ2+τ∈Sr
τ �=0

|Te ∩ {ac/τ 2}|
)

= δr,0q/2 + 2
∑
a∈Si

∑
τ∈G∗

r

|Te ∩ {ac/τ 2}|

= δr,0q/2 + 2
∑
τ∈G∗

r

|Te ∩ Si (c/τ
2)|.
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Now we have the following.

Lemma 7.11. Let i, e ∈ F2 and λ ∈ F∗
q2 . Then

|Te ∩ Siλ| =

⎧⎪⎨⎪⎩
δe,0q/2, if λ ∈ G∗

0;

δe,i q/2, if λ ∈ G1;

q/4, if λ ∈ Gr with r ∈ Fq \{0, 1}.

Proof: Since i ∈ F2, we have Si ⊂ Fq . For any s ∈ Si , we see that λs ∈ Te precisely
when e = TrFq2 /F2

(λs) = TrFq (s(λq + λ)), that is, when sμ ∈ Se, where μ = λq + λ.
Now μ = 0 if and only if λ ∈ G0, in which case for all s ∈ Si we have that sμ ∈ Se

precisely when e = 0. If μ �= 0, then the above shows that |Te ∩ Siλ| = |Se ∩ Siμ|.
Note that Se and Siμ are both hyperplanes of Fq (considered as a vector space over
F2), so the size of the intersection equals δe,i q/2 if μ = 1 (which occurs precisely
when λ ∈ G1) and q/4 otherwise. �

In order to use this result, given c ∈ S∗
k and r = k + i + j with i, j ∈ F2, we have

to determine for how many τ ∈ G∗
r we have c/τ 2 ∈ G0, and for how many τ ∈ G∗

r ,
we have c/τ 2 ∈ G1. The result is as follows.

Lemma 7.12. Let i, j ∈ F2, k ∈ Fq , r = k + i + j , let τ ∈ G∗
r , and let c ∈ S∗

k . Write
c = γ 2 + γ with γ ∈ Gk . Define τ0, τ1, and τ2 by τ 2

0 = cr/(r + 1), τ 2
1 = γ r , and

τ 2
2 = (γ + 1)r . Then

(i) τ0, τ1, and τ2 are zero if and only if r = 0;
(ii) for r �= 1 we have τ0 ∈ Gr , and for u = 1 or 2 we have τu ∈ Gr if and only if

i = j ;
(iii) c/τ 2 is contained in G0 if and only if either r = 0, or r �= 0, 1 and τ = τ0;
(iv) c/τ 2 is contained in G1 if and only if r �= 0 and τ ∈ {τ1, τ2}.

Proof: Obviously, since c �= 0 we have γ �= 0, 1; hence for u = 0, 1, 2, τu = 0 pre-
cisely when r = 0. Also, r ∈ Fq , and by Lemma 7.10 we have c ∈ Sk ⊆ Gk2+k =
Gr2+r ; hence

τ
q
0 + τ0 = ((cq + c)r/(r + 1))1/2 = ((r2 + r )r/(r + 1))1/2 = r,

so τ0 ∈ Gr . Also, since γ ∈ Gk we have that

τ
q
1 + τ1 = (r (γ q + γ ))1/2 = (rk)1/2,

so τ1 ∈ Gr if and only if k = r , that is, i = j . The same argument proves the claim
for τ2.
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Finally, let c/τ 2 ∈ Gs for some s ∈ Fq . We have to determine when s = 0 and when
s = 1. We saw above that c ∈ Gr2+r , so by definition, we have that

s = (c/τ 2)q + c/τ 2

= (c + r2 + r )/(τ + r )2 + c/τ 2

= (cr2 + (r2 + r )τ 2)/((τ (τ + r ))2.

So firstly, we have s = 0 if and only if either r = 0, or r �= 0, 1 and τ 2 = cr/(r + 1) =
τ 2

0 . Secondly, we can have s = 1 only if r �= 0. In that case, we have s = 1 if

cr2 + (r2 + r )τ 2 = (τ (τ + r ))2,

that is, if τ 4 + rτ 2 + cr2 = 0, i.e., if c = (τ 2/r )2 + τ 2/r . So this happens if τ 2/r ∈
{γ, γ + 1}, that is, if τ ∈ {τ1, τ2}. �

Corollary 7.13. Let i, j ∈ F2, let c ∈ S∗
k with k ∈ Fq , and let e ∈ F2. Writing ε =

(−1)e, we have that

π c
Si ,S j

(ε) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q((1 + ε)q − ε)/2, if k = i + j ;

q(2(2δe,i − 1) + q)/2, if k = 1 and i = j ;

q(2(2δe,i − 1) + q + ε)/2, if k �= 0, 1 and i = j ;

q2/2, if k = 0 and i �= j ;

q(q + ε)/2, if k �= 0, 1 and i �= j .

(28)

Proof: Let r = i + j + k. If we combine Lemmas 7.11 and 7.12 with the expression
for π c

Si ,S j
(ε) just before Lemma 7.11, we obtain the following. First, if r = 0, that is,

if k = i + j , then

π c
Si ,S j

(ε) = q/2 + 2((q − 1)δε,1q/2) = q(1 + 2(q − 1)δε,1)/2.

Next, if r �= 0, that is, if k �= i + j , then 0 �∈ Gr , and we obtain that

π c
Si ,S j

(ε) = 2(δk �=0,1δε,1q/2 + 2δi= jδe,i q/2 + (q − δk �=0,1 − 2δi= j )q/4)

= (δk �=0,1ε + 2δi= j (2δe,i − 1) + q)q/2,

from which the other expressions follow. �

Now we use (26) and (27) to compute the intersection numbers pt
r,s(ε) with r, s ∈

{1, 2}. For i, j ∈ F2 and k ∈ Fq , define

θ (i, j, k)(ε) = δi,0π
c
{0},S∗

j
(ε) + δ j,0π

c
S∗

i ,{0}(ε) + δi,0δ j,0π
c
{0},{0}(ε),

where c ∈ Sk and c �= 0.
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Lemma 7.14. Write ε = 2δe,0 − 1 = (−1)e. We have that

θ (i, j, k)(ε) = −ε(δi,0δ j,k + δ j,0δi,k) + δe,0(2q(δi,0 + δ j,0) − 4δi,0δ j,0).

Proof: Direct application of Lemma 7.7. �

Theorem 7.15. The intersection parameters pt
r,s(ε) with r, s ∈ {1, 2} and t ∈ {1, 2, 3}

exist and are as in Tables 1, 2, and 3.

Proof: Let r, s ∈ {1, 2} and t ∈ {1, 2, 3}. Put i = r − 1 and j = s − 1 (and consider
i and j as elements of F2). If t = 1, then we take k = 0; if t = 2, then we take k = 1;
and if t = 3, then take k to be any element in Fq \{0, 1}. Finally, let c ∈ S∗

k . Then
according to (26) and (27), we have that

pt
r,s(ε) = π c

Si ,S j
(ε) − θ (i, j, k)(ε),

where ε = (−1)e. Now we can use Corollary 7.13 and Lemma 7.14, firstly to see that
the expression at the right-hand side indeed only depends on t and not on the actual
value of k and c, and secondly to compute the value of the intersection parameters
pt

r,s(ε). In this way, we obtain the values as announced in the theorem. �

Now we can use Lemma 7.3 to find the remaining intersection numbers in Tables
1, 2 and 3. So we have proved the following.

Theorem 7.16. The intersection parameters pt
r,s(ε) with t ∈ {1, 2, 3} exist and are as

in Tables 1, 2, and 3.

This completes the proof of Theorem 7.2.
For the sake of completeness, we mention that the P- and Q-matrix of the elliptic

fusion scheme are given by

P =

⎛⎜⎜⎜⎝
1 (q − 2)(q2 + 1)/2 q(q2 + 1)/2 q(q − 2)(q2 + 1)/2

1 −(q − 1)(q − 2)/2 −q(q − 1)/2 q(q − 2)

1 −(q2 − q + 2)/2 q(q + 1)/2 −q

1 q − 1 0 −q

⎞⎟⎟⎟⎠ (29)

and

Q =

⎛⎜⎜⎜⎝
1 q(q2 + 1)/2 (q − 2)(q2 + 1)/2 q(q − 2)(q2 + 1)/2

1 −q(q − 1)/2 −(q2 − q + 2)/2 q(q − 1)

1 −q(q − 1)/2 (q − 2)(q + 1)/2 0

1 q −1 −q

⎞⎟⎟⎟⎠ . (30)

The P-matrix of the hyperbolic fusion scheme can be found in [5].
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8. Further fusions

From the values of the intersection parameters pk
i, j (ε) as computed in the previous

section we immediately see that a further fusion of the relations R1(ε, ε) and R2(ε, ε)
for ε = 1 and ε = −1 produces another weakly symmetric coherent configuration,
and thus a further 3-class association scheme on the hyperbolic lines and 2-class asso-
ciation scheme (that is, a strongly regular graph) on the elliptic lines; the intersection
parameters are given in Tables 6–9 below.

Finally, we see that a further fusion of R1(1, 1) ∪ R2(1, 1) with R4(1, 1) again
produces a weakly symmetric coherent configuration, and thus a 2-class association
scheme (that is, a strongly regular graph) on the hyperbolic lines. Some of the inter-
section parameters of this further fusion are given in Tables 10 and 11.

Table 6 Intersection numbers p{1, 2}
∗,∗ (ε)

p{1, 2}
∗,∗ (ε) {1, 2} 3 4 5

{1,2} (2 + ε)q2 − (4 + 5ε)q + 2 + 4ε q(q2 − (ε + 3)q + 2(1 + ε)) 2(2q − 3)δε,1 0

3 q(q2 − (ε + 3)q + 2(1 + ε)) (q3 − 4q2 + (4 − ε)q + 2ε)q/2 2q(q − 2)δε,1 0

4 2(2q − 3)δε,1 2q(q − 2)δε,1 4δε,1 0

5 0 0 0 v5(ε)

Table 7 Intersection numbers p3∗,∗(ε). Here r = q2 − 2q − 1

p3∗,∗(ε) {1, 2} 3 4 5

{1,2} 2q2 − (2ε + 4)q + 2(ε + 1) q3 − 3q2 − (ε − 2)q + ε 4(q − 1)δε,1 0

3 q3 − 3q2 − (ε − 2)q + ε (q3 − 4q2 + (4 − 3ε)q + 8ε)q/2 2rδε,1 0

4 4(q − 1)δε,1 2rδε,1 4δε,1 0

5 0 0 0 v5(ε)

Table 8 Intersection numbers
p4∗,∗(1). Here r = q2 − 2q − 1 p4∗,∗(1) {1, 2} 3 4 5

{1, 2} 2q2 − 5q + 3 q(q − 1)(q − 2) 2(q − 1) 0

3 q(q − 1)(q − 2) q(q − 2)r/2 q(q − 2) 0

4 2(q − 1) q(q − 2) q2 − 1 0

5 0 0 0 v5(1)

Table 9 Intersection numbers
p5∗,∗(ε) p5∗,∗(ε) {1, 2} 3 4 5

{1, 2} 0 0 0 v1(ε) + v2(ε)

3 0 0 0 v3(ε)

4 0 0 0 v4(ε)

5 v1(−ε) + v2(−ε) v3(−ε) v4(−ε) 0
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Table 10 Intersection numbers
p{1,2,4}

∗,∗ (1). Here
r = q2 − 2q − 1

p{1, 2,4}
∗,∗ (1) {1, 2, 4} 3 5

{1, 2, 4} 3q2 − q − 2 q2(q − 2) 0

3 q2(q − 2) q(q − 2)r/2 0

5 0 0 v5(1)

Table 11 Intersection numbers
p3∗,∗(1). Here r = q2 − 2q − 1 p3∗,∗(1) {1, 2, 4} 3 5

{1, 2, 4} 2q(q + 1) (q + 1)r 0

3 (q + 1)r (q3 − 4q2 + q + 8)q/2 0

5 0 0 v5(1)

So in this way we obtain two strongly regular graphs, with parameters (v, k, λ, μ)
where v = q2(q2 + ε)/2, k = (q2 − ε)(q + ε), λ = 2(q2 − 1) + εq(q − 1), and μ =
2q(q + ε). Graphs with these parameters were first described by R. Metz for ε = −1
(the elliptic case) and by Brouwer and Wilbrink for ε = 1 (the hyperbolic case), see
[2, Section 7]. The two constructions were further generalized by Wilbrink. For q = 4,
the “elliptic” graph was obtained and conjectured to be a Metz graph in [9, p. 83].

In a forthcoming paper [10] it will be shown among other things that the strongly
regular graphs obtained above are in fact isomorphic to the Metz graphs (for ε = −1)
or the Brouwer-Wilbrink graphs (for ε = 1). For ε = 1 this has already been proved
in [5]; for ε = −1 this was first conjectured in [9] for q = 4, and proved for the first
time in [10].
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