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Abstract

The action of PGL(2,2m) on the set of exterior lines to a nonsingular conic in PG(2,2m) affords an as-
sociation scheme, which was shown to be pseudocyclic in [H.D.L. Hollmann, Association schemes, Master
thesis, Eindhoven University of Technology, 1982]. It was further conjectured in [H.D.L. Hollmann, As-
sociation schemes, Master thesis, Eindhoven University of Technology, 1982] that the orbital scheme of
P�L(2,2m) on the set of exterior lines to a nonsingular conic in PG(2,2m) is also pseudocyclic if m is an
odd prime. We confirm this conjecture in this paper. As a by-product, we obtain a class of Latin square type
strongly regular graphs on nonprime-power number of points.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a finite set. A (symmetric) association scheme with d classes on X is a partition of
X × X into sets R0,R1, . . . ,Rd (called associate classes or relations) such that

(1) R0 = {(x, x) | x ∈ X} (the diagonal relation),
(2) Ri is symmetric for i = 1,2, . . . , d ,
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(3) for all i, j, k in {0,1,2, . . . , d} there is an integer pk
ij such that, for all (x, y) ∈ Rk ,∣∣{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj

}∣∣ = pk
ij .

We denote such an association scheme by (X, {Ri}0�i�d). Elements x and y of X are called ith
associates if (x, y) ∈ Ri . The numbers pk

ij , 0 � k, i, j � d , are called the intersection parameters
of the scheme. That p0

ii exists means that there is a constant number of ith associates of any ele-
ment of X, which is usually denoted by ni . The numbers n0, n1, . . . , nd are called the valencies
(or degrees) of the scheme. We have

(1) n0 = 1, n0 + n1 + · · · + nd = |X|,
(2) pk

0j = δj,k (Kronecker delta), p0
ij = δi,j nj ,

(3) pk
ij = pk

ji , pk
ij nk = p

j
iknj .

For i ∈ {0,1, . . . , d}, let Ai be the adjacency matrix of the relation Ri , that is, the rows and
columns of Ai are both indexed by X and

(Ai)xy :=
{

1, if (x, y) ∈ Ri,

0, if (x, y) /∈ Ri.

The matrices Ai are symmetric (0,1)-matrices and

A0 = I, A0 + A1 + · · · + Ad = J,

where J is the all one matrix of size |X| by |X|.
By the definition of an association scheme, we have

AiAj =
d∑

k=0

pk
ijAk

for any i, j ∈ {0,1, . . . , d}. So A0,A1, . . . ,Ad form a basis of the commutative algebra generated
by A0,A1, . . . ,Ad over the reals (which is called the Bose–Mesner algebra of the association
scheme, see [2, p. 45]). Moreover this algebra has a unique basis E0,E1, . . . ,Ed of primitive
idempotents; one of the primitive idempotents is 1

|X|J . So we may assume that E0 = 1
|X|J . Let

mi = rankEi . Then

m0 = 1, m0 + m1 + · · · + md = |X|.
The numbers m0,m1, . . . ,md are called the multiplicities of the scheme. Since we have two
bases of the Bose–Mesner algebra, we may consider the transition matrices between them. Define
P = (pj (i))0�i,j�d (the first eigenmatrix) and Q = (qj (i))0�i,j�d (the second eigenmatrix) as
the (d + 1) × (d + 1) matrices with rows and columns indexed by 0,1,2, . . . , d such that

(A0,A1, . . . ,Ad) = (E0,E1, . . . ,Ed)P,

and

|X|(E0,E1, . . . ,Ed) = (A0,A1, . . . ,Ad)Q.

Of course, we have

P = |X|Q−1, Q = |X|P −1.
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Note that {pj (i) | 0 � i � d} is the set of eigenvalues of Aj and the zeroth row and column of P

and Q are as indicated below:

P =

⎛
⎜⎜⎝

1 n1 · · · nd

1
...

1

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎝

1 m1 · · · md

1
...

1

⎞
⎟⎟⎠ .

Before we proceed further, we give some examples of association schemes.

Example 1.1. Let X be a finite set and let G be a group acting transitively on X. We say that
G acts generously transitively on X if the orbits of the induced action of G on X × X are all
symmetric. (The orbits of G on X × X are usually called the orbitals of the action of G on X.)
It is clear that if G acts generously transitively on X, then the orbitals of G on X can be taken as
the relations of an association scheme, which will be called the orbital scheme of G on X. The
next example arises in this way.

Example 1.2. We consider cyclotomic schemes defined as follows. Let q be a prime power and let
q − 1 = ef with e > 1. Let C0 be the subgroup of the multiplicative group of Fq of index e, and
let C0,C1, . . . ,Ce−1 be the cosets of C0. We require −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq}, and
for i ∈ {1,2, . . . , e}, define Ri = {(x, y) | x, y ∈ Fq, x −y ∈ Ci−1}. Then (Fq, {Ri}0�i�e) is an e-
class symmetric association scheme (the Ri are the orbitals of the action of G on Fq , where G =
{x �→ ax +b | a ∈ C0, b ∈ Fq}). The intersection parameters of the cyclotomic scheme are related
to the cyclotomic numbers [12, p. 25]. Namely, for i, j, k ∈ {1,2, . . . , e}, given (x, y) ∈ Rk ,

pk
ij = ∣∣{z ∈ Fq | x − z ∈ Ci−1, y − z ∈ Cj−1}

∣∣ = ∣∣{z ∈ Ci−k | 1 + z ∈ Cj−k}
∣∣. (1)

The first eigenmatrix P of this scheme is the following (e + 1) by (e + 1) matrix (with the rows
of P arranged in a certain way)

P =

⎛
⎜⎜⎝

1 f · · · f

1
... P0
1

⎞
⎟⎟⎠

with P0 = ∑e
i=1 ηiC

i , where C is the e by e matrix:

C =

⎛
⎜⎜⎜⎜⎝

1
1

. . .

1
1

⎞
⎟⎟⎟⎟⎠

and ηi = ∑
β∈Ci

ψ(β), 1 � i � e, for a fixed nontrivial additive character ψ of Fq . See [1] for
more details.

Next we introduce the notion of a pseudocyclic association scheme.

Definition 1.3. Let (X, {Ri}0�i�d) be an association scheme. We say that (X, {Ri}0�i�d) is
pseudocyclic if there exists an integer t such that mi = t for all i ∈ {1, . . . , d}.
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The following theorem gives combinatorial characterizations for an association scheme to be
pseudocyclic.

Theorem 1.4. Let (X, {Ri}0�i�d) be an association scheme, and for x ∈ X and 1 � i � d , let
Ri(x) = {y | (x, y) ∈ Ri}. Then the following are equivalent:

(1) (X, {Ri}0�i�d) is pseudocyclic.
(2) For some constant t , we have nj = t and

∑d
k=1 pk

kj = t − 1, for 1 � j � d .
(3) (X,B) is a 2 − (v, t, t − 1) design, where B = {Ri(x) | x ∈ X,1 � i � d}.

For a proof of this theorem, we refer the reader to [2, p. 48] and [6, p. 84]. Part (2) in the
above theorem is very useful. For example, we may use it to prove that the cyclotomic scheme
in Example 1.2 is pseudocyclic. The proof goes as follows. First, the nontrivial valencies of the
cyclotomic scheme in Example 1.2 are all equal to f . Second, by (1) and noting that −1 ∈ C0,
we have

e∑
k=1

pk
kj =

e∑
k=1

∣∣{z ∈ C0 | 1 + z ∈ Cj−k}
∣∣ = |C0| − 1 = f − 1.

Pseudocyclic schemes can be used to construct strongly regular graphs and distance regular
graphs of diameter 3 [3], [2, p. 388]. In view of this, it is of interest to construct pseudocyclic
association schemes, as remarked by the authors of [2] (see [2, p. 389]). The cyclotomic schemes
are examples of pseudocyclic association schemes on prime-power number of points. Very few
examples of pseudocyclic association schemes on nonprime-power number of points are cur-
rently known (see [11], [2, p. 390] and [6]). One class of such examples comes from the action
of PGL(2,2m) on the set of exterior lines to a nonsingular conic in PG(2,2m). We will give a
quick review of this class of association schemes in Section 2, and also include a proof of the
pseudocyclicity of these association schemes. In [6], it was further conjectured that the orbital
scheme of P�L(2,2m) on the set of exterior lines to a nonsingular conic in PG(2,2m) is also
pseudocyclic if m is an odd prime. We will confirm this conjecture in Section 3. As a by-product,
we obtain a class of Latin square type strongly regular graphs on nonprime-power number of
points.

2. The elliptic schemes

In the rest of this paper, we always assume that q = 2m, where m is a positive integer. Let

O = {(
ξ, ξ2,1

) ∣∣ ξ ∈ Fq

} ∪ {
(0,1,0)

}
.

Then O is a nonsingular conic in PG(2, q). A line of PG(2, q) is called exterior (respectively
secant) if it meets O in 0 (respectively 2) points. Let E (respectively H) be the set of exterior
(respectively secant) lines to O. Then

|E | = q(q − 1)

2
and |H| = (q + 1)q

2
.

The subgroup of PGL(3, q) fixing O setwise is isomorphic to PGL(2, q) (cf. [5, p. 158]). Hence
PGL(2, q) acts on E and H, respectively. Moreover, it is shown in [8] that PGL(2, q) acts gen-
erously transitively on both E and H. Therefore we obtain two association schemes, one on E
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and the other on H. The association scheme on E will be called the elliptic scheme, and the
association scheme on H is called the hyperbolic scheme.

Since the point (1,0,0) is the nucleus of O (i.e., the point at which all tangent lines to O
meet), we see that each line in E ∪ H can be written as (1, x, y)⊥ = {(a0, a1, a2) ∈ F3

q | a0 +
a1x + a2y = 0} for some x, y ∈ Fq . Let Tr : Fq → F2 be the trace map. Also for e ∈ F2 we define

Te = {
x ∈ Fq | Tr(x) = e

}
,

and T∗
e = Te \{0}. Then (1, x, y)⊥ is in E (respectively H) if and only if Tr(xy) = 1 (respectively

Tr(xy) = 0). Given two lines � = (1, x, y)⊥ and m = (1, z, u)⊥, we define

ρ̂(�,m) = x2u2 + y2z2 + (x + z)(y + u).

We remark that the function ρ̂ comes from the cross-ratio of four points on a projective line
(see [8] for details). The following theorem in [8] gives a simple description of the orbitals of the
action of PGL(2, q) on E by using the function ρ̂.

Theorem 2.1. The orbitals of the action of PGL(2, q) on E are Γ0 (the diagonal class), and
Γa = {(�,m) | ρ̂(�,m) = a} for all a ∈ T∗

0 .

There is a similar description of the orbitals of PGL(2, q) on H in [8]. Since we are only
concerned with the elliptic scheme in this paper, we omit that description.

The pair (E, {Γa}) is an association scheme on E with (q−2)
2 classes. The intersection para-

meters of this scheme are computed in [8]. For a, b, c ∈ T∗
0, given (�,m) ∈ Γc , we use pc

a,b to
denote |{k ∈ E | (�, k) ∈ Γa and (k,m) ∈ Γc}|. We have:

Theorem 2.2. Let a, b, c ∈ T∗
0 . Then for any v ∈ T1,

pc
a,b =

{
1 + 2δTr(ac),1, if a + b + c = 0;∑

τ |{z ∈ Fq | z2 + z = v + ac/τ 2}|, otherwise, (2)

where the last sum is over the two elements τ ∈ Fq satisfying τ 2 + τ = a + b + c. Also for all
a ∈ T∗

0 , the valency na = q + 1.

The association scheme (E, {Γa}) is pseudocyclic. This is already known in [6]. For conve-
nience of the reader, we include a proof here.

Theorem 2.3. The association scheme (E, {Γa}) is pseudocyclic.

Proof. By Theorem 2.2, the nontrivial valencies of the association scheme (E, {Γa}) are all equal
to q + 1. By part (2) of Theorem 1.4, it suffices to prove that

∑
a∈T∗

0
pa

a,b = q for all b ∈ T∗
0.

By Theorem 2.2, for a, b ∈ T∗
0, we have

pa
a,b =

∑
τ 2+τ=b

(
1 − (−1)Tr(a/τ)

)
.

Fixing τ ∈ Fq \ {0,1} with τ 2 + τ = b, we have∑
a∈T∗

pa
a,b =

∑
a∈T∗

(
1 − (−1)Tr(a/τ) + 1 − (−1)Tr(a/(τ+1))

)

0 0
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= 2(q/2 − 1) −
∑
a∈T∗

0

(
(−1)Tr(a/τ) + (−1)Tr(a/(τ+1))

)
= 2(q/2 − 1) − (−1 − 1) = q.

This completes the proof. �
3. Pseudocyclic fusion schemes of the elliptic schemes

As we have seen in the last section, the elliptic scheme (E, {Γa}) is pseudocyclic. In this
section, we will consider the fusion scheme of (E, {Γa}) obtained by merging the classes Γa via
the Frobenius automorphism x �→ x2 of Fq . Specifically, for a ∈ T∗

0, define

Δa =
⋃
i∈Ca

Γi,

where Ca := {a, a2, a4, . . . , a2m−1}. Let R be a set of orbit representatives of T∗
0 under the action

of the Frobenius automorphism. Then Δ0 := Γ0, and Δa , a ∈ R are the orbitals of P�L(2, q)

on E . Therefore (E, {Δa}) is also an association scheme. The (nontrivial) intersection parameters
of this fusion scheme will be denoted by P c

a,b , where a, b, c ∈ R. We have for a, b, c ∈ R,

P c
a,b =

∑
e∈Ca

∑
f ∈Cb

p
g
e,f ,

where g ∈ Cc . (This is independent of the choice of g ∈ Cc .)
Now, if m is prime, then each Ca , a ∈ R, has size m, so the nontrivial valencies of the fusion

scheme (E, {Δa}) are all equal to m(q +1). Hollmann [6, p. 133] made the following conjecture.

Conjecture 3.1. If m is an odd prime, then (E, {Δa}) is pseudocyclic.

As far as we know, there is no published proof of this conjecture. There is one sentence in
[2, p. 390] stating the above conjecture as a fact. But this was not backed up by a proof.

Note that the nontrivial valencies of (E, {Δa}) are all equal to m(q + 1) when m is prime. So
in order to prove Conjecture 3.1, by part (2) of Theorem 1.4, we need to show that∑

c∈R
P b

c,c = m(q + 1) − 1, (3)

for all b ∈ R. (Here we implicitly used the fact that P b
c,c = P c

c,b since all nontrivial valencies are
equal when m is prime.) Simplifying the left-hand side of (3), we see that (3) is equivalent to

m−1∑
k=0

∑
c∈T∗

0

pb

c,c2k = m(q + 1) − 1. (4)

Now, the k = 0 term of the left-hand side of (4) is equal to q as seen in the proof of Theorem 2.3.
So in order to prove (4), we have to show that

m−1∑
k=1

∑
c∈T∗

0

pb

c,c2k = (m − 1)(q + 1), (5)

for all b ∈ T∗
0.

We will prove a stronger result:
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Theorem 3.2. Let m be an odd integer, and let k be any integer in {1,2, . . . ,m − 1} satisfying
gcd(k,m) = 1. Write σ = 2k . Then∑

c∈T∗
0

pb
c,cσ = q + 1, for all b ∈ T∗

0. (6)

The most important ingredient in our proof of Theorem 3.2 is a family of polynomials
Hα,γ (X) introduced in [7]. In fact we discovered these polynomials while working on a proof of
Theorem 3.2. We now define the polynomials Hα,γ (X) and quote the main theorem from [7].

Let m � 1 be an integer, let k be any integer in {1, . . . ,m − 1} with gcd(k,m) = 1, and let
r ∈ {1, . . . ,m − 1} be such that kr ≡ 1 (mod m). Write σ = 2k and use Tr(X) to denote the
following polynomial in F2[X]:

Tr(X) := X + X2 + · · · + X2m−1
.

For α,γ in {0,1}, we define the polynomial

Hα,γ (X) := γ Tr(X) + (α Tr(X) + ∑r−1
i=0 Xσi

)σ+1

X2
.

(Note that Hα,γ (X) is indeed a polynomial in X with coefficients in F2 and Hα,γ (0) = 0. Also
see [7] for connections between Hα,γ (X) and the Dickson polynomials.)

The following is the main theorem from [7].

Theorem 3.3. Let m,k be positive integers with gcd(k,m) = 1, let r ∈ {1, . . . ,m−1} be such that
kr ≡ 1(mod m), and let α,γ ∈ {0,1}. Then the mapping Hα,γ :x �→ Hα,γ (x), x ∈ Fq , maps T0
bijectively to T0, and maps T1 bijectively to Tr+(α+γ )m. In particular, the polynomial Hα,γ (X)

is a permutation polynomial of Fq if and only if r + (α + γ )m ≡ 1 (mod 2).

We are now ready to give the proof of Theorem 3.2.

Proof of Theorem 3.2. Recall that from Theorem 2.2, for b, c ∈ T∗
0,

pb
c,cσ =

{
1 + 2δTr(bc),1, if cσ + c + b = 0;∑

τ 2+τ=cσ +c+b |{z ∈ Fq | z2 + z = v + bc/τ 2}|, if cσ + c + b 	= 0,

where v is any element with Tr(v) = 1. Since b ∈ T∗
0 and m is odd, we can find a unique c0 ∈ T∗

0
such that cσ

0 + c0 = b. So∑
c∈T∗

0

pb
c,cσ = 1 + 2δTr(bc0),1 + 2

∑
c∈T∗

0, cσ +c+b 	=0

∑
τ 2+τ=cσ +c+b

δTr(bc/τ 2),1

= 1 + 2
∣∣{(c, τ ) ∈ F∗

q × F∗
q | τ 2 + τ = cσ + c + b, Tr(c) = 0,Tr

(
bc/τ 2) = 1

}∣∣.
For convenience, we define

Nk(b) := ∣∣{(c, τ ) ∈ F∗
q × F∗

q | τ 2 + τ = cσ + c + b, Tr(c) = 0, Tr
(
bc/τ 2) = 1

}∣∣.
Our goal is to prove that Nk(b) = q/2 for all b ∈ T∗

0.
For later use, we define the polynomial

f (X) :=
r−1∑
i=0

Xσi ∈ F2[X],

where r is an integer satisfying kr ≡ 1 (mod m).
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Since b ∈ T∗
0 and m is odd, we can write b = β +β2 with β ∈ T∗

0. Then the equation τ 2 + τ =
cσ + c + b involved in the definition of Nk(b) becomes

cσ + c = (β + τ) + (β + τ)2. (7)

Noting that m is odd, we see that for any τ ∈ Fq , there is a unique solution c ∈ T0 of (7), namely

c = f (τ + β) + r Tr(τ + β) = f (τ + β) + r Tr(τ ),

where in the last equality we used the fact that β ∈ T0. Therefore we have

Nk(b) =
{

|{τ ∈ F∗
q | b(f (τ+β)+Tr(τ ))

τ 2 ∈ T1}|, if r is odd;

|{τ ∈ F∗
q | bf (τ+β)

τ 2 ∈ T1}|, if r is even.

We will consider the r odd case and the r even case separately.

Case 1. r is odd. Let x = b/τ 2, where b = β + β2 ∈ T∗
0 and τ ∈ F∗

q . Then

Tr

(
b(f (τ + β) + Tr(τ ))

τ 2

)
= Tr

(
x

r−1∑
i=0

(
β + √

b/x
)σ i + x Tr(b/x)

)

= Tr

(
r−1∑
i=0

x2(β2 + b/x
)σ i

)
+ Tr(x)Tr(b/x)

= Tr

(
r−1∑
i=0

xσr−i (
β2 + b/x

)) + Tr(x)Tr(b/x)

= Tr
((

β2 + b/x
)(

f (x) + x2 + x
)) + Tr(x)Tr(b/x)

= Tr

(
β2

(
f (x) + f (x)

x
+ f (x)2

x2

))
+ Tr(x)Tr(b/x),

where in the last step, we used b = β + β2. Now noting that for x ∈ F∗
q ,

H0,0(x) = f (x) + f (x)

x
+ f (x)2

x2
.

(One can prove this directly, or see [7, Lemma 3.1].) Therefore, in this case, we have

Nk(b) = ∣∣{x ∈ T∗
0 | β2H0,0(x) ∈ T1

}∣∣ + ∣∣{x ∈ T1 | β2H0,0(x) + b/x ∈ T1
}∣∣. (8)

For the first summand in (8), noting that H0,0(0) = 0 and H0,0 maps T0 to T0 bijectively
(Theorem 3.3), we have∣∣{x ∈ T∗

0 | β2H0,0(x) ∈ T1
}∣∣ = ∣∣β2T∗

0 ∩ T1
∣∣ = (q/2 − 1) − ∣∣β2T∗

0 ∩ T∗
0

∣∣.
Since T∗

0 is a (q − 1, q/2 − 1, q/4 − 1) Singer difference set in the cyclic group F∗
q (see [9,

p. 378]), and β 	= 0,1, we see that |β2T∗
0 ∩ T∗

0| = q/4 − 1. Hence∣∣{x ∈ T∗
0 | β2H0,0(x) ∈ T1

}∣∣ = (q/2 − 1) − (q/4 − 1) = q/4.

For the second summand in (8), using b = β + β2, we see that

Tr
(
β2H0,0(x) + b/x

) = Tr
(
β2(H0,0(x) + 1/x + 1/x2)).
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For any x ∈ T1, we have

H1,0(x) = (1 + f (x))σ+1

x2
= 1 + f (x) + (

1 + f (x)
)
/x + (

1 + f (x)
)2

/x2

= 1 + 1/x + 1/x2 + H0,0(x).

Also by Theorem 3.3, H1,0 maps T1 bijectively to Tr+m = T0. Hence∣∣{x ∈ T1 | β2H0,0(x) + b/x ∈ T1
}∣∣ = ∣∣{x ∈ T1 | β2(H0,0(x) + 1/x + 1/x2) ∈ T1

}∣∣
= ∣∣β2T1 ∩ T1

∣∣ = q/4.

Therefore we have Nk(b) = q/4 + q/4 = q/2.

Case 2. r is even. This case is similar to Case 1 and actually easier. Let x = b/τ 2. By the same
computations as those in the r odd case, we find that

Tr

(
bf (τ + β)

τ 2

)
= Tr

(
β2H0,0(x)

)
.

By Theorem 3.3, H0,0 maps T∗
0 bijectively to T∗

0, and maps T1 bijectively to Tr = T0. Therefore,∣∣∣∣
{
τ ∈ F∗

q

∣∣∣ bf (τ + β)

τ 2
∈ T1

}∣∣∣∣
= ∣∣{x ∈ F∗

q | β2H0,0(x) ∈ T1
}∣∣

= ∣∣{x ∈ T∗
0 | β2H0,0(x) ∈ T1

}∣∣ + ∣∣{x ∈ T1 | β2H0,0(x) ∈ T1
}∣∣

= ∣∣β2T∗
0 ∩ T1

∣∣ + ∣∣β2T0 ∩ T1
∣∣ = 2

∣∣β2T∗
0 ∩ T1

∣∣ = q/2.

In summary, in both cases, we have shown that Nk(b) = q/2 for all b ∈ T∗
0. The proof is

complete. �
Remark 3.4. More general results can be proved in the same fashion as above. Let e, f ∈ F2.
Define

Nk,e,f (b) := ∣∣{(c, τ ) ∈ F∗
q × F∗

q | τ 2 + τ = cσ + c + b, Tr(c) = e, Tr
(
bc/τ 2) = f

}∣∣.
Then using the same arguments as those in the proof of Theorem 3.2, we find that

Nk,0,0(b) = q/2 − 3, Nk,1,0(b) = q/2 − 1, and Nk,1,1(b) = q/2,

for all b ∈ T∗
0.

Now we can finish the proof of Conjecture 3.1.

Theorem 3.5. If m is an odd prime, then (E, {Δa}) is pseudocyclic.

Proof. Since m is prime, the nontrivial valencies of the scheme are all equal to m(q + 1). To
finish the proof, we need to prove (3) for all b ∈ R. As we have seen in the analysis before
the statement of Theorem 3.2, (3) is equivalent to (5). Since m is an odd prime, any integer
k ∈ {1,2, . . . ,m − 1} is relatively prime to m. So we can apply Theorem 3.2 to obtain
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∑
c∈T∗

0

pb
c,cσ = q + 1,

for all b ∈ T∗
0. Now (5) follows. This completes the proof. �

4. Latin square type strongly regular graphs

A strongly regular graph srg (v, k, λ,μ) is a graph with v vertices that is regular of valency k

and that has the following properties:

(1) For any two adjacent vertices x, y, there are exactly λ vertices adjacent to both x and y.
(2) For any two nonadjacent vertices x, y, there are exactly μ vertices adjacent to both x and y.

It is well known [9, p. 407] that strongly regular graphs are equivalent to two-class association
schemes. An srg (v, k, λ,μ) is said to be of Latin square type if

(v, k, λ,μ) = (
n2, t (n − 1), n + t2 − 3t, t2 − t

)
,

where 1 � t � n + 1. Any Latin square of order n gives rise to a Latin square type srg (actually
called Latin square graph in this case) with parameters (n2,3(n − 1), n − 2,6) (see [9, p. 273]).
Many examples of Latin square type srg on prime-power number of points are known [10]. In
contrast, not too many examples of Latin square type srg on nonprime-power number of points
are known.

In [3], it was shown that pseudocyclic association schemes can give rise to Latin square type
srg. We quote the following theorem from [3]. A proof can be found in [4].

Theorem 4.1. Let (X, {Ri}0�i�d) be a pseudocyclic association scheme on dt + 1 points. Then
the graph G whose vertex set is X × X, and where two distinct vertices (x, y) and (x′, y′) are
adjacent if and only if (x, x′) ∈ Ri and (y, y′) ∈ Ri for some i 	= 0, is a Latin square type srg
with parameters(|X|2, t(|X| − 1

)
, |X| + t2 − 3t, t2 − t

)
.

Using Theorem 4.1, one can obtain Latin square type srg from the pseudocyclic association
scheme (E, {Γa}) (the elliptic scheme). These srg have parameters(

1

4
q2(q − 1)2,

1

2
(q − 2)(q + 1)2,

1

2

(
3q2 − 3q − 4

)
, q(q + 1)

)
.

We note that the Latin square type srg arising from (E, {Γa}) were mentioned in [4], in which
another construction of these srg was given.

Now since we have shown that the fusion scheme (E, {Δa}) of the elliptic scheme (E, {Γa})
is also pseudocyclic when m is an odd prime. We obtain more Latin square type srg via Theo-
rem 4.1.

Theorem 4.2. Let q = 2m, where m is an odd prime. Then there exists a Latin square type srg
with parameters(

1

4
q2(q − 1)2,

1

2
m(q − 2)(q + 1)2, λ,μ

)
,

where λ = q(q−1) + m2(q + 1)2 − 3m(q + 1) and μ = m2(q + 1)2 − m(q + 1).
2
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Proof. Straightforward. �
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