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We give two “lifting” constructions of strongly regular Cayley
graphs. In the first construction we “lift” a cyclotomic strongly
regular graph by using a subdifference set of the Singer difference
sets. The second construction uses quadratic forms over finite
fields and it is a common generalization of the construction of
the affine polar graphs [7] and a construction of strongly regular
Cayley graphs given in [15]. The two constructions are related
in the following way: the second construction can be viewed as
a recursive construction, and the strongly regular Cayley graphs
obtained from the first construction can serve as starters for the
second construction. We also obtain association schemes from the
second construction.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we assume that the reader is familiar with the theory of strongly regular graphs and
difference sets. For the theory of strongly regular graphs, our main references are [5] and [18]. For
the theory of difference sets, we refer the reader to Chapter 6 of [4]. Strongly regular graphs (srgs)
are closely related to other combinatorial objects, such as two-weight codes, two-intersection sets in
finite geometry, and partial difference sets. For these connections, we refer the reader to [5, p. 132]
and [7,22].

Let Γ be a simple and undirected graph and A be its adjacency matrix. A very useful way to check
whether Γ is strongly regular is by using the eigenvalues of A (which are usually called eigenvalues
of Γ ). For convenience, we will call an eigenvalue of Γ restricted if it has an eigenvector which is
not a multiple of the all-ones vector 1. Note that for a k-regular connected graph, the restricted
eigenvalues are simply the eigenvalues different from k.
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Theorem 1.1. For a simple k-regular graph Γ of order v, not complete or edgeless, with adjacency matrix A,
the following are equivalent:

1. Γ is strongly regular with parameters (v,k, λ,μ) for certain integers λ, μ,
2. A2 = (λ − μ)A + (k − μ)I + μ J for certain real numbers λ, μ, where I , J are the identity matrix and

the all-ones matrix, respectively,
3. A has precisely two distinct restricted eigenvalues.

One of the most effective methods for constructing srgs is by the Cayley graph construction. For
example, the Paley graph P(q), which is strongly regular, is a well-known class of Cayley graphs on
the finite field Fq; that is, the vertices of P(q) are the elements of Fq , and two vertices are adjacent
if and only if their difference is a nonzero square. The parameters of P(q) are (v,k, λ,μ) = (4t + 1,

2t, t − 1, t), where q = 4t + 1 is a prime power. More generally, let G be an additively written group
of order v , and let D be a subset of G such that 0 /∈ D and −D = D , where −D = {−d | d ∈ D}. The
Cayley graph on G with connection set D , denoted by Cay(G, D), is the graph with the elements of G
as vertices; two vertices are adjacent if and only if their difference belongs to D . In the case where
Cay(G, D) is strongly regular, the connection set D is called a (regular) partial difference set. The survey
of Ma [22] contains much of what is known about partial difference sets and about connections with
strongly regular Cayley graphs.

A classical method for constructing strongly regular Cayley graphs on the additive groups of finite
fields is to use cyclotomic classes of finite fields. Let p be a prime, f a positive integer, and let q = p f .
Let e > 1 be an integer such that e|(q − 1), and γ be a primitive element of Fq . Then the cosets

C (e,q)

i = γ i〈γ e〉, 0 � i � e − 1, are called the cyclotomic classes of order e of Fq . Many authors have
studied the problem of determining when a union D of cyclotomic classes forms a partial difference
set. We call Cay(Fq, D) a cyclotomic strongly regular graph if D is a single cyclotomic class of Fq and
Cay(Fq, D) is strongly regular. Extensive work has been done on cyclotomic srgs, see [2,6,14,16,17,19,
21,23,25–27]. (Some of these authors used the language of cyclic codes in their investigations instead
of strongly regular Cayley graphs or partial difference sets. We choose to use the language of srgs
here.) The Paley graphs are primary examples of cyclotomic srgs. Also, if D is the multiplicative group
of a subfield of Fq , then it is clear that Cay(Fq, D) is strongly regular. These cyclotomic srgs are
usually called subfield examples. Next, if there exists a positive integer t such that pt ≡ −1 (mod e),
then Cay(Fq, D) is strongly regular. See [2]. These examples are usually called semi-primitive. Schmidt
and White made the following conjecture on cyclotomic srgs.

Conjecture 1.2. (See [26].) Let Fp f be the finite field of order p f , e| p f −1
p−1 with e > 1, and C0 = C (e,p f )

0 with
−C0 = C0 . If Cay(Fp f , C0) is strongly regular, then one of the following holds:

(1) (subfield case) C0 = F∗
pd where d| f ,

(2) (semi-primitive case) −1 ∈ 〈p〉 � (Z/eZ)∗ ,
(3) (exceptional case) Cay(Fp f , C0) has one of the eleven sets of parameters given in Table 1.

The Schmidt–White conjecture remains widely open. There are some results on the conjecture
under the condition [(Z/eZ)∗ : 〈p〉] = 2 in [26].

A strongly regular graph is said to be of Latin square type (respectively, negative Latin square type) if
(v,k, λ,μ) = (n2, r(n − ε), εn + r2 − 3εr, r2 − εr) and ε = 1 (respectively, ε = −1). Typical examples
of srgs of Latin square type or negative Latin square type come from nonsingular quadrics in the
projective space PG(m − 1,q), where m is even. It seems that we know more examples of srgs of
Latin square type than srgs of negative Latin square type, see [10]. Our first main result in this paper
is a construction of negative Latin square type strongly regular Cayley graphs Cay(Fq2 , D) by lifting
a cyclotomic strongly regular graph on Fq . The construction relies on the Davenport–Hasse lifting
formula on Gauss sums.
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Table 1
Eleven sporadic examples.

No. e p f [(Z/eZ)∗ : 〈p〉]
1 11 3 5 2
2 19 5 9 2
3 35 3 12 2
4 37 7 9 4
5 43 11 7 6
6 67 17 33 2
7 107 3 53 2
8 133 5 18 6
9 163 41 81 2

10 323 3 144 2
11 499 5 249 2

In our second main theorem, we will give a recursive construction of strongly regular Cayley
graphs by using quadratic forms over finite fields under the assumption that certain strongly regular
Cayley graphs exist on a ground field. This construction generalizes the following two constructions.

Theorem 1.3. (See [7].) Let Q : V = Fn
q → Fq be a nonsingular quadratic form, where n is even and q is

an odd prime power, and let D = {x ∈ Fn
q | Q (x) is a nonzero square in Fq}. Then, Cay(V , D) is a strongly

regular graph (which is the so-called affine polar graph).

Feng et al. [15] gave the following construction using uniform cyclotomy.

Theorem 1.4. Let p be a prime, e > 2, q = p2 jr , where r � 1, e|(p j + 1), and j is the smallest such positive
integer. Let Q : V = Fn

q → Fq be a nonsingular quadratic form, where n is even, and let D
C (e,q)

i
= {x ∈ Fn

q |
Q (x) ∈ C (e,q)

i } for 0 � i � e − 1. Then, Cay(V , D
C (e,q)

i
) is strongly regular for all i, 0 � i � e − 1.

The strongly regular Cayley graphs obtained in Section 3 can be used as starters for the second
construction. In this way, we obtain a few infinite families of strongly regular Cayley graphs with Latin
square type or negative Latin square type parameters. Furthermore, we discuss association schemes
related to the second construction and obtain several new association schemes.

2. Background on Gauss sums and strongly regular Cayley graphs

Let p be a prime, f a positive integer, and q = p f . The canonical additive character ψ of Fq is
defined by

ψ : Fq →C∗, ψ(x) = ζ
Trq/p(x)
p ,

where ζp = exp( 2π i
p ) is a complex primitive p-th root of unity and Trq/p is the trace from Fq to Fp .

All complex characters of (Fq,+) are given by ψa , where a ∈ Fq . Here ψa is defined by

ψa(x) = ψ(ax), ∀x ∈ Fq. (2.1)

For a multiplicative character χe of order e of Fq , we define the Gauss sum

G f (χe) =
∑
x∈F∗

q

χe(x)ψ(x).

From the definition we see clearly that G f (χe) ∈ Z[ζep], the ring of algebraic integers in the cyclo-
tomic field Q(ζep). Let σa,b be the automorphism of Q(ζep) defined by
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σa,b(ζe) = ζ a
e , σa,b(ζp) = ζ b

p ,

where gcd (a, e) = gcd (b, p) = 1. Below we list several basic properties of Gauss sums [3]:

(i) G f (χe)G f (χe) = q if χe is nontrivial;
(ii) G f (χ

p
e ) = G f (χe);

(iii) G f (χ
−1
e ) = χe(−1)G f (χe);

(iv) G f (χe) = −1 if χe is trivial;
(v) σa,b(G f (χe)) = χ−a

e (b)G f (χ
a
e ).

In general, explicit evaluations of Gauss sums are very difficult. There are only a few cases where
the Gauss sums have been evaluated. The most well-known case is the quadratic case, i.e., the e = 2
case. The next simple case is the so-called semi-primitive case (also known as uniform cyclotomy or
pure Gauss sum), where there exists an integer j such that p j ≡ −1 (mod e), where e is the order of
the multiplicative character involved. The explicit evaluations of Gauss sums in these cases are given
in [3]. The next interesting case is the index 2 case where the subgroup 〈p〉 generated by p ∈ (Z/eZ)∗
is of index 2 in (Z/eZ)∗ and −1 /∈ 〈p〉. In such a case, it is known that e can have at most two odd
prime divisors. Many authors have investigated this case, see [29] for a complete solution to the
problem of evaluating index 2 Gauss sums. Recently, these index 2 Gauss sums were used in the
construction of new infinite families of strongly regular graphs and skew Hadamard difference sets.
See [14,16].

Now we recall the following well-known lemma in algebraic graph theory (see e.g., [5]).

Lemma 2.1. Let (G,+) be an abelian group and D a subset of G such that 0 /∈ D and D = −D. Then, the
restricted eigenvalues of Cay(G, D) are given by ψ(D), ψ ∈ Ĝ \ {ψ0}, where Ĝ is the character group of G
and ψ0 is the trivial character.

Let q be a prime power and let C (e,q)

i = γ i〈γ e〉, 0 � i � e − 1, be the cyclotomic classes of order e
of Fq , where γ is a fixed primitive element of Fq . In order to check whether a candidate subset D =⋃

i∈I C (e,q)

i is a connection set of a strongly regular Cayley graph, by Theorem 1.1 and Lemma 2.1, it
suffices to show that ψ(aD) = ∑

x∈D ψ(ax), a ∈ F∗
q , take exactly two values, where ψ is the canonical

additive character of Fq . Note that the sum ψ(aD) can be expressed as a linear combination of Gauss
sums (cf. [16]) by using the orthogonality of characters:

ψ(aD) = 1

e

∑
χ∈C⊥

0

G f
(
χ−1)∑

i∈I

χ
(
aγ i), (2.2)

where C⊥
0 is the subgroup of F̂∗

q consisting of all χ which are trivial on C (e,q)
0 . Thus, the computations

needed to check whether a candidate subset D = ⋃
i∈I C (e,q)

i is a connection set of a strongly regular
Cayley graph are essentially reduced to evaluating Gauss sums. However, as previously said, evaluating
Gauss sums explicitly is very difficult. In Section 3 of this paper, we will give a construction of strongly
regular graphs by “lifting” a cyclotomic srg. To prove that our construction indeed gives rise to srgs,
we do not evaluate the Gauss sums involved; instead, we use the Davenport–Hasse lifting formula
stated below.

Theorem 2.2. (See [3].) Let χ be a nontrivial multiplicative character of Fq = Fp f and let χ ′ be the lift of χ

to Fq′ = Fp f s , i.e., χ ′(α) = χ(Normq′/q(α)) for α ∈ Fq′ , where s � 2 is an integer. Then

G f s
(
χ ′) = (−1)s−1(G f (χ)

)s
.
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3. Lifting cyclotomic strongly regular graphs via subdifference sets

In this section, we give a construction of strongly regular Cayley graphs by “lifting” a cyclotomic
strongly regular graph via a subdifference set of the Singer difference sets. We start by reviewing
a construction of the Singer difference sets.

Let p be a prime, f � 1, m � 3 be integers and q = p f . Let L be a complete system of coset
representatives of F∗

q in F∗
qm . We may assume that L is chosen in such a way that Trqm/q(x) = 0 or 1

for any x ∈ L. Let

L0 = {
x ∈ L

∣∣ Trqm/q(x) = 0
}

and L1 = {
x ∈ L

∣∣ Trqm/q(x) = 1
}
.

Then,

H0 = {
x ∈ F∗

qm/F∗
q

∣∣ x ∈ L0
}

is a Singer difference set.
Note that any nontrivial multiplicative character χ of exponent (qm − 1)/(q − 1) of F∗

qm induces
a character of the quotient group F∗

qm /F∗
q , which will be denoted by χ also. Moreover, every char-

acter of F∗
qm /F∗

q arises in this way. By a result of Yamamoto [28], for any nontrivial multiplicative
character χ of exponent (qm − 1)/(q − 1) of F∗

qm , we have

χ(H0) = G f m(χ)/q.

Now, let C0(:= C (e,qm)
0 ) be a subgroup of F∗

qm of index e. Assume that e|(qm − 1)/(q − 1). Then

C0 = C0/F
∗
q � F∗

qm/F∗
q .

Let S be a complete system of coset representatives of C0 in F∗
qm /F∗

q , and G = {sC0 | s ∈ S} � F∗
qm /C0.

For convenience, we will write the elements sC0 of G as s̃. Then, by assumption, [F∗
qm : C0] divides

(qm − 1)/(q − 1); that is, e = |G||(qm − 1)/(q − 1).
From now on, we assume that Cay(Fqm , C0) is strongly regular. Then |H0 ∩ sC0|, s ∈ S , take exactly

two values. (See [7] or [26].) It follows that |H0 ∩ sC0| − |H0 ∩ C0| = 0 or δ, where δ is a nonzero
integer. For any nontrivial multiplicative character χ of Fqm of exponent e, we have

χ(H0) =
∑
s∈S

|H0 ∩ sC0|χ(s̃)

=
∑
s∈S

(|H0 ∩ sC0| − |H0 ∩ C0|
)
χ(s̃)

= δ
∑
s∈S ′

χ(s̃),

where

S ′ = {
s ∈ S: |H0 ∩ sC0| − |H0 ∩ C0| = δ

}
. (3.1)

Thus
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∑
s∈S ′

χ(s̃) = χ(H0)

δ
= G f m(χ)

δq
. (3.2)

It follows that δ is a power of p, and S̃ ′ := {s̃ | s ∈ S ′} ⊂ G is an (e, |S ′|, λ′)-difference set, which is
usually called a subdifference set of H0. See Section 6 of [26]. The term “subdifference set” was first
introduced by McFarland [24].

Let γ be a primitive element of Fq2m and let ω = Normq2m/qm (γ ) = γ qm+1, which is a primitive

element of the subfield Fqm of Fq2m . Let C (e,q2m)

j = γ j〈γ e〉 and C (e,qm)

j = ω j〈ωe〉 = ω j C0.

Theorem 3.1. Assume that F∗
q � C0 � F∗

qm is a subgroup such that [F∗
qm : C0] = e and Cay(Fqm , C0) is strongly

regular. Let I = {0 � i � e − 1 | ωi ∈ S ′}, where S ′ is defined in (3.1) and ω stands for the coset ωF∗
q . Let

D =
⋃
i∈I

C (e,q2m)

i .

Then Cay(Fq2m , D) is an (n2, r(n + 1),−n + r2 + 3r, r2 + r) negative Latin square type strongly regular graph
with n = qm and r = (qm − 1)|I|/e.

Proof. Let ψ1 be the canonical additive character of Fq2m and let χ ′
e be a multiplicative character of

order e of Fq2m . The restricted eigenvalues of Cay(Fq2m , D) are ψ1(γ
a D), 0 � a � e − 1. By (2.2), in

order to show that Cay(Fq2m , D) is strongly regular, we compute the sums

Ta = e · ψ1
(
γ a D

) + |I| =
e−1∑
x=1

G2 f m
(
χ ′ −x

e

)∑
i∈I

χ ′ x
e

(
γ a+i),

where a = 0,1, . . . , e − 1. Since e|(qm − 1), χ ′
e must be the lift of a character, say χe , of Fqm . By the

Davenport–Hasse lifting formula, we have

Ta = −
e−1∑
x=1

χe
x(ωa)G f m

(
χ−x

e

)
G f m

(
χ−x

e

)∑
i∈I

χ x
e

(
ωi).

By the definition of I , we have

∑
i∈I

χ x
e

(
ωi) =

∑
s∈S ′

χ x
e (s̃) = G f m(χ x

e )

δq
.

Hence

Ta = − 1

δq

e−1∑
x=1

χ x
e

(
ωa)G f m

(
χ−x

e

)
G f m

(
χ−x

e

)
G f m

(
χ x

e

)

= −qm−1

δ

e−1∑
x=1

χ x
e

(
ωa)G f m

(
χ−x

e

)
, (3.3)

where in the last step we used the fact that G f m(χ x
e )G f m(χ−x

e ) = χ x
e (−1)qm . By the assumption that

Cay(Fqm , C (e,qm)
0 ) is strongly regular, we have

∑e−1
x=1 χ x

e (ωa)G f m(χ−x
e ), a = 0,1, . . . , e − 1, take exactly

two values, namely, −qδ|I| and −qδ(|I|− e) by [26, Corollary 3.2]. We conclude that Ta , 0 � a � e − 1,
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take exactly two values too. Therefore Cay(Fq2m , D) is also a strongly regular graph with restricted
eigenvalues |I|(qm − 1)/e and |I|(qm − 1)/e − qm . �

Applying Theorem 3.1 to the known cyclotomic srgs in the statement of Conjecture 1.2, we obtain
many strongly regular Cayley graphs. We first apply Theorem 3.1 to the semi-primitive examples. In
this case, we have |I| = |S ′| = 1 by [11, p. 23].

Corollary 3.2. Let p be a prime, e � 2, qm = p2 jr , where m = 2 jr, r � 2, e|(p j + 1), and j is the smallest such
positive integer. Then there exists an (n2, r(n + 1),−n + r2 + 3r, r2 + r) strongly regular Cayley graph with
n = qm and r = (qm − 1)/e.

The proof is straightforward. We omit it. Next we apply Theorem 3.1 to the subfield examples.

Corollary 3.3. Let q be a prime power, m � 3 a positive integer and a any positive divisor of m. Then there
exists an (n2, r(n + 1),−n + r2 + 3r, r2 + r) strongly regular Cayley graph with n = qm and r = qm−a − 1.

Proof. We apply Theorem 3.1 to the subfield examples of cyclotomic srgs. We use the same notation
as in the statement and proof of Theorem 3.1. Then, by [11, p. 23], we have C0 = F∗

qa , e = qm−1
qa−1 and

|I| = |S ′| = qm−a−1
qa−1 . The corollary now follows from Theorem 3.1. �

Remark 3.4. In the case where q = 2 and a = 1, the parameters of the strongly regular Cayley graphs
obtained in Corollary 3.3 are

(
22m,

(
2m + 1

)(
2m−1 − 1

)
,2m−1(2m−1 − 1

) − 2,2m−1(2m−1 − 1
))

.

Then, the set D ∪ {0} clearly forms a difference set with parameters (22m,2m−1(2m − 1),2m−1 ×
(2m−1 − 1)), which is a Hadamard difference set in the elementary abelian 2-group of order 22m .
This difference set was first discovered in [12, p. 105]. The corresponding bent function is a mono-
mial quadratic bent function.

Finally, we apply Theorem 3.1 to the eleven sporadic examples of cyclotomic srgs. In this case, the
values of k := |S ′| are given in [26, Table II].

Corollary 3.5. There exists a (q2, r(q + 1), λ,μ) negative Latin square type strongly regular Cayley graph,
where r = k(q − 1)/e, in each of the following cases:

(q, e,k) = (
35,11,5

)
,
(
59,19,9

)
,
(
312,35,17

)
,
(
79,37,9

)
,
(
117,43,21

)
,
(
1733,67,33

)
,(

353,107,53
)
,
(
518,133,33

)
,
(
4181,163,81

)
,
(
3144,323,161

)
,
(
5249,499,249

)
.

4. Strongly regular Cayley graphs from quadratic forms

Let V be an n-dimensional vector space over Fq . A function Q : V → Fq is called a quadratic form
if

(i) Q (αv) = α2 Q (v) for all α ∈ Fq and v ∈ V ,
(ii) the function B : V × V → Fq defined by B(u, v) = Q (u + v) − Q (u) − Q (v) is bilinear.

We say that Q is nonsingular if the subspace W of V with the property that Q vanishes on W and
B(v, w) = 0 for all v ∈ V and w ∈ W is the zero subspace (equivalently, we say that Q is nonsingular
if it cannot be written as a form in fewer than n variables by any invertible linear change of variables).
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If Fq has odd characteristic or V is even-dimensional over an even-characteristic field Fq , then Q is
nonsingular if and only if B is nondegenerate [8, p. 14]. But this is not necessarily true in general.
Now assume that n is even if q is even, and n is arbitrary otherwise. Then, Q : V = Fn

q → Fq is
a nonsingular quadratic form if and only if the associated polar form B(x, y) = Q (x+ y)− Q (x)− Q (y)

is nondegenerate; the characters φb , b ∈ V , of (V ,+) defined by

φb(x) = ψ1
(

B(b, x)
)
, ∀x ∈ V , (4.1)

where ψ1 is the canonical additive character of Fq , are all the complex characters of the abelian group
(V ,+). We can linearly extend the characters φb to the group ring C[V ]: for A = ∑

g∈V ag g ∈ C[V ],
we define φb(A) = ∑

g∈V agφb(g).
It is well known that a nonsingular quadratic form on V = Fn

q , where n is even, is equivalent to
either

x1x2 + x3x4 + · · · + xn−1xn, (4.2)

or

x1x2 + x3x4 + · · · + xn−3xn−2 + (
ax2

n−1 + bxn−1xn + cx2
n

)
, (4.3)

where ax2
n−1 + bxn−1xn + cx2

n is irreducible over Fq .
A nonsingular quadratic form equivalent to (4.2) (resp. (4.3)) is called hyperbolic (resp. elliptic).

Lemma 4.1. (See [20, Theorem 3.2].) Let q = p f , where p is a prime and f � 1 is an integer, and let Q be
a nonsingular quadratic form on V = Fn

q with n = 2m even. Then

∑
x∈V

ψ1
(

Q (x)
) = εqm,

where ε = 1 or −1 according as Q is hyperbolic or elliptic.

We first prove the following lemma.

Lemma 4.2. Let q = p f , where p is prime and f a positive integer. For e|(q − 1), let C (e,q)

i = ωi〈ωe〉 and

C (e,q2)

i = γ i〈γ e〉, 0 � i � e − 1, denote the cyclotomic classes of order e of Fq and Fq2 , respectively, where γ
is a fixed primitive element of Fq2 and ω = Normq2/q(γ ). Then, it holds that

e−1∑
a=0

ψ1
(
ωa+i C (e,q)

0

)
ψ1

(
ω−a+sC (e,q)

0

) = −ψ ′
1

(
γ i+sC (e,q2)

0

)
,

where ψ1 and ψ ′
1 are the canonical additive characters of Fq and Fq2 , respectively.

Proof. Let χ ′
e be a multiplicative character of order e of Fq2 . Since e|(q − 1), χ ′

e must be the lift of
a character, say χe , of Fq . Then, by the orthogonality of characters and the Davenport–Hasse lifting
formula on Gauss sums, we have
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e−1∑
a=0

ψ1
(
ωa+i C (e,q)

0

)
ψ1

(
ω−a+sC (e,q)

0

)

= 1

e2

e−1∑
x=0

e−1∑
y=0

G f
(
χ x

e

)
G f

(
χ

y
e
)
χ−x

e

(
ωi)χ−y

e
(
ωs)( e−1∑

a=0

χ
−x+y
e

(
ωa))

= 1

e

e−1∑
x=0

G f
(
χ x

e

)2
χ−x

e

(
ωi+s)

= −1

e

e−1∑
x=0

G2 f
(
χ ′

e
x)

χ ′
e
−x(

γ i+s)
= −ψ ′

1
(
γ i+sC (e,q2)

0

)
.

The proof of the lemma is now complete. �
For each u ∈ Fq , define Du = {x ∈ V | Q (x) = u}, and we use the same Du to denote the corre-

sponding group ring element
∑

z∈Du
z ∈ C[V ]. For a subset X of Fq , we write D X = ∑

x∈X Dx , which
is viewed as an element of C[V ]. Now, we give the following key lemma.

Lemma 4.3. Let q = p f be a prime power and n = 2m be an even positive integer. Let Q : V = Fn
q → Fq

be a nonsingular quadratic form. For any e|(q − 1), let C (e,q)

i = ωi〈ωe〉 and C (e,q2)

i = γ i〈γ e〉, 0 � i � e − 1,
denote the cyclotomic classes of order e of Fq and Fq2 , respectively, where γ is a fixed primitive element of Fq2

and ω = Normq2/q(γ ). Then, for any 0 �= b ∈ V ,

φb(D
C (e,q)

i
) =

{
−εqm−1 q−1

e , if Q (b) = 0,

−εqm−1ψ ′
1(γ

i+sC (e,q2)
0 ), if Q (b) ∈ C (e,q)

s for 0 � s � e − 1,

and

φb(D0) =
{

εqm−1(q − 1), if Q (b) = 0,

−εqm−1, if Q (b) �= 0,

where ε = 1 or −1 according as Q is hyperbolic or elliptic, φb is defined in (4.1), and ψ ′
1 is the canonical

additive character of Fq2 .

Proof. We compute the values of φb(D
C (e,q)

i
). For b ∈ V \ {0}, we have

q · φb(D
C (e,q)

i
) =

∑
y∈C (e,q)

i

∑
x∈V

φb(x)
∑
u∈Fq

ψ1
(
u
(

Q (x) − y
))

=
∑
x∈V

∑
u∈Fq

ψ1
(

B(b, x) + u Q (x)
)
ψu

(−C (e,q)

i

)
=

∑
x∈V

∑
u∈F∗

q

ψ1
(

B(b, x) + u Q (x)
)
ψu

(−C (e,q)

i

) + q − 1

e

∑
x∈V

ψ1
(

B(b, x)
)
.

Since
∑

x∈V ψ1(B(b, x)) = 0 and B(b, x) + u Q (x) = −u−1 Q (b) + u Q (x + u−1b) for u ∈ F∗
q , we have
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q · φb(D
C (e,q)

i
) =

∑
x∈V

∑
u∈F∗

q

ψ1
(−u−1 Q (b) + u Q

(
x + u−1b

))
ψu

(−C (e,q)

i

)
. (4.4)

By Lemma 4.1 and 4.2, we obtain

q · φb(D
C (e,q)

i
) = εqm

∑
u∈F∗

q

ψ1
(−u−1 Q (b)

)
ψu

(−C (e,q)

i

)

= εqm
e−1∑
a=0

(q−1)/e−1∑
c=0

ψ1
(
ω−a−ce Q (b)

)
ψ1

(
ωa+ceC (e,q)

i

)

= εqm
e−1∑
a=0

ψ1
(
ωa+i C (e,q)

0

) (q−1)/e−1∑
c=0

ψ1
(
ω−a−ce Q (b)

)
=

{
−εqm q−1

e , if Q (b) = 0,

εqm ∑e−1
a=0 ψ1(ω

a+i C (e,q)
0 )ψ1(ω

−a+sC (e,q)
0 ), if Q (b) ∈ C (e,q)

s for 0 � s � e − 1

=
{

−εqm q−1
e , if Q (b) = 0,

−εqmψ ′
1(γ

i+sC (e,q2)
0 ), if Q (b) ∈ C (e,q)

s for 0 � s � e − 1.

Similarly, for b ∈ V \ {0}, we have

q · φb(D0) =
{

εqm(q − 1), if Q (b) = 0,

−εqm, if Q (b) �= 0.

The proof is now complete. �
Now we give the main theorem of this section.

Theorem 4.4. Let q be a prime power, e > 1 be an integer dividing q − 1, and I be a subset of {0,1, . . . , e − 1}.

Let γ be a fixed primitive element of Fq2 and ω = Normq2/q(γ ). Let C (e,q2)

i = γ i〈γ e〉 and E = ⋃
i∈I C (e,q)

i .

Assume that Cay(Fq2 ,
⋃

i∈I C (e,q2)

i ) is a negative Latin square type srg. Let Q : V = Fn
q → Fq be a nonsingular

quadratic form, where n = 2m, and let ε = 1 or −1 according as Q is hyperbolic or elliptic. Then, the Cayley
graph Cay(V , D E ) is a strongly regular graph of Latin square type or negative Latin square type according as
ε = 1 or −1, whose restricted eigenvalues are −εqm−1|I|(q − 1)/e and −εqm−1(|I|(q − 1)/e − q).

Proof. By assumption, Cay(Fq2 ,
⋃

i∈I C (e,q2)

i ) is an srg of negative Latin square type. Its parameters

are (q2, r(q + 1),−q + r2 + 3r, r2 + r), where r = |I|(q − 1)/e. The restricted eigenvalues of this srg
are r and r − q. It follows from Lemma 4.3 that φb(D E ) = ∑

i∈I φb(D
C (e,q)

i
), b ∈ V \ {0}, take exactly

two values, namely −εqm−1|I|(q − 1)/e and −εqm−1(|I|(q − 1)/e − q). Thus Cay(V , D E ) is strongly
regular. �
Remark 4.5.

(i) One can see that under the same assumptions as in Theorem 4.4, Cay(V , D E ∪ (D0 \ {0})) is

also strongly regular since Cay(Fq2 ,
⋃

i∈I C (e,q2)

i ) is a negative Latin square type srg, where I =
{0,1, . . . , e − 1} \ I . Furthermore, it is well known that Cay(V , D0) is also strongly regular with
Latin square type or negative Latin square type parameters according to ε = 1 or −1 [7].
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(ii) The most important condition in Theorem 4.4 is that Cay(Fq2 ,
⋃

i∈I C (e,q2)

i ) is strongly regular. This

condition is trivially satisfied in the following case: let e = 2 and I = {0}; then Cay(Fq2 , C (2,q2)
0 ) is

obviously strongly regular with negative Latin square parameters. In this case, the srg Cay(V , D E )

obtained from Theorem 4.4 is exactly the affine polar graph. We thus have recovered Theorem 1.3.

The strongly regular Cayley graphs obtained in Section 3 satisfy the assumptions of Theorem 4.4,

namely, e divides q −1 and Cay(Fq2 ,
⋃

i∈I C (e,q2)

i ) is a negative Latin square type srg. Thus, we can use
the srgs obtained in Section 3 as starters to obtain new ones. We first consider the semi-primitive
case. Let p be a prime, e > 2, q = p2 jr , where r � 1, e|(p j + 1), and j is the smallest such positive
integer. In this case, E is chosen as the dual of the semi-primitive cyclotomic strongly regular Cayley
graph Cay(Fq, C (e,q)

0 ). Then, |E| = (q − 1)/e by [11, p. 23]. (Here, replace qm in Corollary 3.2 with q.)
By applying Theorem 4.4 to srgs arising from Corollary 3.2, we have the following corollary.

Corollary 4.6. Let p be a prime, e > 2, q = p2 jr , r � 2, e|(p j + 1), and j is the smallest such positive
integer. Then there exists a (q2m, r(qm − ε), εq + r2 − 3εr, r2 − εr) strongly regular Cayley graph with
r = qm−1(q − 1)/e.

We have thus recovered Theorem 1.4. Next we consider the subfield case. Let q = pst and e = pst−1
ps−1 .

Here, E is chosen as the dual of the subfield cyclotomic strongly regular Cayley graph Cay(Fq, C (e,q)
0 ).

Then, |E| = ps(t−1) − 1 by [11, p. 23]. (We replaced n = qm and r = qm−a − 1 in Corollary 3.3 with
n = pst and r = ps(t−1) − 1 respectively.) Then, we have the following corollary.

Corollary 4.7. There exists a (p2stm, (pstm − ε)r, εpstm + r2 − 3εr, r2 − εr) strongly regular Cayley graphs
for any prime p and positive integers s, t, and m, where ε = ±1 and r = pst(m−1)(ps(t−1) − 1).

Finally, we consider the exceptional case. Let q, e and k be as those in Corollary 3.5. In this case,
E is chosen as the dual of exceptional cyclotomic strongly regular Cayley graphs Cay(Fq, C (e,q)

0 ). Then,

|E| = (q−1)
e · k. (Note that the number k is the size of the subdifference set corresponding to the

cyclotomic srg Cay(Fq, C (e,q)
0 ), see [26, Table II].) Hence, we obtain the following corollary.

Corollary 4.8. There exists a (q2m, r(qm − ε), εqm + r2 − 3εr, r2 − εr) strongly regular Cayley graph for any
m � 1, where ε = ±1 and r = qm−1 · (q−1)

e · k, in each of the following cases:

(q, e,k) = (
35,11,5

)
,
(
59,19,9

)
,
(
312,35,17

)
,
(
79,37,9

)
,
(
117,43,21

)
,
(
1733,67,33

)
,(

353,107,53
)
,
(
518,133,33

)
,
(
4181,163,81

)
,
(
3144,323,161

)
,
(
5249,499,249

)
.

Thus, Theorem 4.4 not only recovers known Theorems 1.3 and 1.4 but also gives several new
infinite series of strongly regular Cayley graphs.

5. Remarks on association schemes

The results on srgs obtained in Section 4 have implications on association schemes. Let X be
a finite set. A (symmetric) association scheme with d classes on X consists of sets (binary relations)
R0, R1, . . . , Rd which partition X × X and satisfy

(1) R0 = {(x, x) | x ∈ X};
(2) Ri is symmetric for all i;
(3) for any i, j,k ∈ {0,1, . . . ,d} there is an integer pk

i, j such that given any pair (x, y) ∈ Rk



K. Momihara, Q. Xiang / Finite Fields and Their Applications 26 (2014) 86–99 97
∣∣{z ∈ X
∣∣ (x, z) ∈ Ri, (z, y) ∈ R j

}∣∣ = pk
i, j.

Note that each of the symmetric relations Ri can be viewed as an undirected graph Gi = (X, Ri).
Then, the graphs Gi , 1 � i � d, decompose the complete graph with vertex set X . An srg with vertex
set X and its complement form an association scheme on X with two classes.

Let (X, {Ri}d
i=0) be a symmetric association scheme. For each i, 0 � i � d, let Ai denote the adja-

cency matrix of Gi = (X, Ri). Then Ai A j = ∑d
k=0 pk

i, j Ak and Ai A j = A j Ai , for all 0 � i, j � d. It follows
that A0, A1, . . . , Ad generate a commutative algebra (over the reals) of dimension d + 1, which is
called the Bose–Mesner algebra of the scheme (X, {Ri}d

i=0). The Bose–Mesner algebra has a unique set
of primitive idempotents E0 = (1/|X |) J , E1, . . . ,Ed , where J is the all-ones matrix. Thus, the algebra
has two bases, {Ai | 0 � i � d} and {Ei | 0 � i � d}. We denote by P the base-change matrix such that

(A0, A1, . . . , Ad) = (E0,E1, . . . ,Ed) · P .

The entries in the i-th column of P are the eigenvalues of Ai , 0 � i � d. The matrix P is called the
first eigenmatrix (or character table) of the association scheme.

Given a d-class commutative association scheme (X, {Ri}0�i�d), we can take union of classes to
form graphs with larger edge sets (this process is called a fusion). It is not necessarily guaranteed
that the fused collection of graphs will again form an association scheme on X . If an association
scheme has the property that any of its fusions is also an association scheme, then we call the as-
sociation scheme amorphic. A well-known and important example of amorphic association schemes
is given by the cyclotomic association schemes on Fq when the cyclotomy is uniform [2]. For a par-
tition Λ0 = {0}, Λ1, . . . ,Λd′ ⊆ {1,2, . . . ,d}, let RΛi = ⋃

k∈Λi
Rk . The following simple criterion, called

the Bannai–Muzychuk criterion, is very useful for deciding whether (X, {RΛi }d′
i=0) forms an associa-

tion scheme or not. Let P be the first eigenmatrix of the association scheme (X, {Ri}d
i=0). Then,

(X, {RΛi }d′
i=0) forms an association scheme if and only if there exists a partition �i , 0 � i � d′ , of

{0,1, . . . ,d}, with �0 = {0} such that each (�i,Λ j)-block of P has a constant row sum. Moreover,
the constant row sum of the (�i,Λ j)-block is the (i, j) entry of the first eigenmatrix of the fusion
scheme. (For a proof, see [1].)

From now on, we use the same notation and assumptions as those in Lemma 4.3. Let Gi =
Cay(V , Ti), where Ti = {i,−i} ∈ V ∗/{1,−1}, and R0 = {(x, x) | x ∈ V }, Ri = E(Cay(V , Ti)). Then, it is
obvious that (V , {Ri}|V

∗/{1,−1}|
i=0 ) forms a commutative association scheme. Let P be the first eigenma-

trix of this scheme. The (i, j) entry of the principal part of P (the matrix obtained by removing the
first row and column from P ) of the scheme is given by χi(T j), where both the rows and columns
are labeled by the elements of V ∗/{1,−1}. Write E1 = D0 \ {0} and Es+2 = D

C (e,q)
s

, where D0 and

D
C (e,q)

s
are defined by D0 = {x ∈ V | Q (x) = 0} and D

C (e,q)
s

= {x ∈ V | Q (x) ∈ C (e,q)
s }. Since Ei = −Ei for

1 � i � e + 1, the subsets (Λi = �i :=)Ei/{1,−1} ⊆ V ∗/{1,−1}, 1 � i � e + 1, are well defined. Then,
the row sums of the (�i,Λ j)-block are given by χb(E j), b ∈ Ei . On the other hand, Lemma 4.3 implies
that for each pair i, j, the sum χb(E j) is constant for all b ∈ Ei . Thus, by the Bannai–Muzychuk cri-

terion, the partition gives a fusion scheme of (V , {Ri}|V
∗/{1,−1}|

i=0 ). In summary, we have the following
result.

Theorem 5.1. Let q = p f be a prime power and n = 2m be an even positive integer. Let Q : V = Fn
q → Fq

be a nonsingular quadratic form. For any e|(q − 1), let C (e,q)

i = ωi〈ωe〉, 0 � i � e − 1, denote the cyclo-
tomic classes of order e of Fq. Then the decomposition of the complete graph on V by Cay(V , D0 \ {0}) and
Cay(V , D

C (e,q)

i
), 0 � i � e − 1, gives an (e + 1)-class association scheme.

Next, we give a general sufficient condition for a fusion of the association scheme in Theorem 5.1
to be an association scheme.
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Theorem 5.2. Let q = p f be a prime power and n = 2m be an even positive integer. Let Q : V = Fn
q → Fq

be a nonsingular quadratic form. For any e|(q − 1), let C (e,q)

i = ωi〈ωe〉 and C (e,q2)

i = γ i〈γ e〉, 0 � i � e − 1,
denote the cyclotomic classes of order e of Fq. Assume that there exists a partition Ai , 1 � i � d, of {i | 0 �
i � e − 1} such that the decomposition of the complete graph of Fq2 by Cay(Fq2 ,

⋃
�∈Ai

C (e,q2)
� ), 1 � i � d, is

a fusion scheme of the e-class cyclotomic scheme on Fq2 . Then, the decomposition of the complete graph on V
by Cay(V , D0 \ {0}) and Cay(V , D⋃

�∈Ai
C (e,q)

�

), 1 � i � d, gives a (d + 1)-class association scheme.

The above theorem follows immediately from Lemma 4.3. This can be seen as follows. By the as-

sumption that the graph decomposition by Cay(Fq2 ,
⋃

�∈Ai
C (e,q2)

� ), 1 � i � d, gives a fusion scheme
of the e-class cyclotomic scheme on Fq2 , there exists a partition Λh , 1 � h � d, of {i | 0 � i � e − 1}
such that for each 1 � h, i � d, ψ ′

1(γ
s ⋃

�∈Ai
C (e,q2)

� ) are constant for all s ∈ Λh , i.e., φb(D⋃
�∈Ai

C (e,q)

i
) are

constant for all b ∈ V such that Q (b) ∈ ⋃
�∈Λh

C (e,q)
� by Lemma 4.3. Similarly, φb(D⋃

�∈Ai
C (e,q)

i
) are con-

stant for all b ∈ V such that Q (b) = 0. Furthermore, φb(D0) is determined according to Q (b) = 0 or
not. Thus, by the Bannai–Muzychuk criterion, the conclusion of Theorem 5.2 follows. We also remark
that if the assumed association scheme of Fq2 is amorphic, then so is the resulting scheme on V .

The condition of the above theorem is trivially satisfied in the following case. Let p be a prime,
e > 2, q = p2 jr , r � 2, e|(p j + 1), and j is the smallest such positive integer. In this case, since the
e-class cyclotomic association scheme on Fq2 is amorphic, any fusion of the scheme in Theorem 5.1
forms an association scheme. This recovers Corollary 2.4 of [15]. Also, quite recently, an infinite family
of (primitive and non-amorphic) three-class association schemes on F26s satisfying the assumption of
Theorem 5.2 was found [13, Theorem 7 (i)].

Finally, the following theorem of van Dam [9] allows us to put the result of Theorem 4.4 in Sec-
tion 4 in the context of association schemes.

Theorem 5.3. Let {G1, G2, . . . , Gd} be a decomposition of the complete graph on a set X, where each Gi is
strongly regular. If Gi are all of Latin square type or all of negative Latin square type, then the decomposition is
a d-class amorphic association scheme on X.

By using Theorem 4.4 and part (i) of Remark 4.5 in conjunction with Theorem 5.3, we have the
following:

Corollary 5.4. Under the same assumptions as in Theorem 4.4, the strongly regular decomposition Cay(V , D E ),
Cay(V , DF

∗
q\E ), Cay(V , D0 \ {0}) yields a 3-class amorphic association scheme.
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