
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Finite Fields and Their Applications 14 (2008) 823–833

http://www.elsevier.com/locate/ffa

New Kloosterman sum identities and equalities
over finite fields

Xiwang Cao a,b,1, Henk D.L. Hollmann c, Qing Xiang d,∗,2

a School of Mathematical Sciences, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
b State Key Laboratory of Information Security, Beijing 100049, PR China

c Philips Research Labs, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
d Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 7 November 2007; revised 6 February 2008

Available online 18 April 2008

Communicated by Gary L. Mullen

Abstract

We present some general equalities between Kloosterman sums over finite fields of arbitrary characteris-
tics. In particular, we obtain an explicit Kloosterman sum identity over finite fields of characteristic 3.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let p be a prime, Fpm be the finite field with pm elements, and F
∗
pm = Fpm \ {0}. The absolute

trace Tr : Fpm → Fp is defined by Tr(x) = x + xp + · · · + xpm−1
for x ∈ Fpm . For future use,

define Ti = {x ∈ Fpm | Tr(x) = i}, where i ∈ Fp . For a, b ∈ Fpm , the (classical) Kloosterman
sum K(a,b) is defined by
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K(a,b) =
∑

x∈F
∗
pm

ωTr(ax+ b
x
),

where ω is a fixed complex primitive pth root of unity. To simplify notation, we simply write
K(b) for K(1, b). It is easy to see that K(a,b) = K(ab) for all a ∈ F

∗
pm , and K(b) = K(bp) for

all b ∈ Fpm .
Kloosterman sums have been studied extensively in number theory. They also found many

applications in coding theory and design theory [6,8]. In general, the Kloosterman sums K(b),
b ∈ F

∗
pm , tend to be distinct up to the action of Gal(Fpm/Fp), see for example [1,2], and [10].

Indeed, it was conjectured in [10, p. 191] that the (pm − 1) Kloosterman sums K(b), b ∈ F
∗
pm ,

are distinct up to the action of Gal(Fpm/Fp) if p � 2m. A weaker version of this conjecture
was proved in [10]. However, when p is small compared with m, there exist nontrivial equalities
of the form K(a) = K(b), where b �= api

for any i ∈ {1,2, . . . ,m − 1}. It turns out that when
p = 2 there even exist nontrivial identities between Kloosterman sums, of the type K(f (c)) =
K(f (c+1)) for certain functions f . As far as we know, all known identities of this type are over
finite fields of characteristic 2 (cf. [9,3,4]). We briefly review these results.

Let c ∈ {0,1, . . . , pm − 1}. Write c = cm−1p
m−1 + · · · + c1p + c0, where ci ∈ {0,1,2,

. . . , p − 1}. We will often simply write c = cm−1cm−2 · · · c0. Define the reverse of c =
cm−1cm−2 · · · c0 as c̃ = c1 · · · cm−1c0 (so that c̃i = c−i , where the indices are read modulo m).
The weight of c is defined as w(c) = ∑m−1

i=0 ci . Given two integers c = cm−1cm−2 · · · c0 and
d = dm−1dm−2 · · ·d0 in {0,1, . . . , pm − 1}, we define a polynomial over Fpm as follows:

Lc,d(X) =
m−1∑
i=0

ciX
pi +

m−1∑
i=0

diX
(pm−2)pi ∈ Fpm [X].

Following [4], we call Lc,d(X) a Kloosterman polynomial over Fpm if the function Lc,d :
Fpm → Fpm induced by Lc,d(X) is a bijection from Ti to Ti′ for all i = 1,2, . . . , p − 1, where
i′ ∈ Fp depends on i and Lc,d(X).

When p = 2, Hollmann and Xiang [4] proved the following results.

Lemma 1.1. Let Lc(X) = ∑m−1
i=0 ciX

2i ∈ F2[X], and Ld(X) = ∑m−1
i=0 diX

2i ∈ F2[X] with w(d)

even. If Lc,d(X) = Lc(X) + Ld(X2m−2) is a Kloosterman polynomial over F2m , then the follow-
ing identity holds:

K
(
Lc̃(b)L

d̃
(b)

) = K
((

Lc̃(b) + 1
)
L

d̃
(b)

)
,

for all b ∈ F2m satisfying Lc̃(b) �= 0,1.

As an application of Lemma 1.1, the following identities were proved by constructing certain
specific Kloosterman polynomials over F2m .

Theorem 1.2. For every b ∈ F2m\F2, the following identities hold:

K
(
b3(1 + b)

) = K
(
b(1 + b)3), (1.1)

K
(
b5(1 + b)

) = K
(
b(1 + b)5), (1.2)

K
(
b8(b4 + b

)) = K
((

b4 + b
)
(1 + b)8).
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Remark 1.3. The identities (1.1) and (1.2) were first proved in [3]. Prior to [3], (1.1) was proved
in [9] for all odd m. All three identities and a few more were obtained by Kojo [5] by using
modular curves of genus zero.

In this note, we will prove some general Kloosterman sum equalities over finite fields of ar-
bitrary characteristics, including some explicit nontrivial ones in characteristic 3. We also obtain
an explicit Kloosterman sum identity in characteristic 3 that was announced previously in [4].
We first give a definition.

Definition 1.4. Let f : Fpm → Fpm be a function. For b ∈ Fpm \ Fp , u ∈ Fp , and i ∈ F
∗
p , we

define

Nf (b,u; i) = ∣∣{x ∈ Ti

∣∣ Tr
(
bf (x)

) = u
}∣∣.

Given b ∈ Fpm \ Fp , we say that f is b-balanced if Nf (b,u; i) = pm−2 for all u ∈ Fp and all
i ∈ F

∗
p . Furthermore we say that f is globally balanced if f is b-balanced for all b ∈ Fpm \ Fp .

With this definition, we have

Theorem 1.5. Let Lc(X) = ∑m−1
i=0 ciX

pi ∈ Fp[X], Ld(X) = ∑m−1
i=0 diX

pi ∈ Fp[X], and
Lc,d(X) = Lc(X) + Ld(Xpm−2). If the function Lc,d : Fpm → Fpm induced by Lc,d(X) is b-
balanced for some b ∈ Fpm \Fp such that Lc̃(b) /∈ Fp , then for all u ∈ Fp , the following equality
holds:

K
(
Lc̃(b)L

d̃
(b)

) = K
((

Lc̃(b) + u
)
L

d̃
(b)

)
.

Corollary 1.6. Let Lc(X) = ∑m−1
i=0 ciX

pi ∈ Fp[X], Ld(X) = ∑m−1
i=0 diX

pi ∈ Fp[X], and
Lc,d(X) = Lc(X) + Ld(Xpm−2). If the function Lc,d : Fpm → Fpm induced by Lc,d(X) is glob-
ally balanced, then for all b ∈ Fpm \ Fp such that Lc̃(b) /∈ Fp and all u ∈ Fp , the following
identity holds:

K
(
Lc̃(b)L

d̃
(b)

) = K
((

Lc̃(b) + u
)
L

d̃
(b)

)
.

Corollary 1.7. Let Lc(X) = ∑m−1
i=0 ciX

pi ∈ Fp[X] and Ld(X) = ∑m−1
i=0 diX

pi ∈ Fp[X]. If
Lc,d(X) = Lc(X)+Ld(Xpm−2) is a Kloosterman polynomial over Fpm , then for all b ∈ Fpm \Fp

such that Lc̃(b) /∈ Fp and all u ∈ Fp , the following identity holds:

K
(
Lc̃(b)L

d̃
(b)

) = K
((

Lc̃(b) + u
)
L

d̃
(b)

)
.

Theorem 1.8. With notation as above, we have for all b ∈ F3m \ F3,

K
(
b3, b − b3) = K

(
b3 + 1, b − b3) = K

(
b3 − 1, b − b3).

The proofs of these results will be given in Section 3. We make some preparations in Section 2.
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2. Preliminaries

We first state the well-known Hilbert’s theorem 90. A proof of this result can be found in
many places, for example in [7, p. 56].

Lemma 2.1 (Hilbert’s theorem 90). Let α ∈ Fpm . Then Tr(α) = 0 if and only if there exists an
element β ∈ Fpm such that α = βp − β .

The following lemma will be useful in our discussion.

Lemma 2.2. Let a ∈ Fpm \ Fp . Then there exists an element x ∈ T0 such that Tr(ax) �= 0.

Proof. Assume to the contrary that for all x ∈ T0, one has Tr(ax) = 0. Then viewed as polyno-
mials over Fpm ,

aX + apXp + · · · + apm−1
Xpm−1 = apm−1 ∏

u∈T0

(X − u).

By the definition of T0, we also have

X + Xp + · · · + Xpm−1 =
∏
u∈T0

(X − u),

as polynomials over Fpm . Hence we obtain

aX + apXp + · · · + apm−1
Xpm−1 = apm−1(

X + Xp + · · · + Xpm−1)
,

which implies that a = ap , i.e., a ∈ Fp , contradicting the choice of a. �
As a consequence of Lemma 2.2, we have

Corollary 2.3. With notation as above, we have

∑
x∈Ti

ωTr(ax) = 0, for all a ∈ Fpm \ Fp and for all i ∈ Fp.

Proof. Let a ∈ Fpm \ Fp . By Lemma 2.2, there is an element x0 ∈ T0 such that ωTr(ax0) �= 1. We
have

ωTr(ax0)
∑
x∈Ti

ωTr(ax) =
∑
x∈Ti

ωTr(a(x+x0)) =
∑
x∈Ti

ωTr(ax). (2.1)

Since ωTr(ax0) �= 1, we deduce from (2.1) the desired result. �
For future use, we define for a, b ∈ F

∗
pm and i ∈ Fp ,

Ki(a, b) =
∑

x∈Ti , x �=0

ωTr(ax+ b
x
).

Similar to Lemma 3.1 in [4], we have the following lemma.
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Lemma 2.4. Let a ∈ Fpm \ Fp and b ∈ Fpm . Then

Ki(a, b) = 0, ∀i ∈ F
∗
p,

if and only if K(ab) = K((a + u)b) for all u ∈ Fp .

Proof. Since a /∈ Fp , we see that for u ∈ F
∗
p , K(ab) = K((a + u)b) is equivalent to K(a,b) =

K(a + u,b). Now

K(a + u,b) =
∑

x∈F
∗
pm

ωTr((a+u)x+ b
x
)

=
∑

x∈T0\{0}
ωTr((a+u)x+ b

x
) +

∑
x∈F

∗
pm\T0

ωTr((a+u)x+ b
x
)

= K0(a, b) +
p−1∑
i=1

ωuiKi(a, b),

K(a, b) = K0(a, b) +
p−1∑
i=1

Ki(a, b).

If Ki(a, b) = 0 for i = 1,2, . . . , p − 1, then we have K(a + u,b) = K(a,b) = K0(a, b), for all
u ∈ F

∗
p . Conversely, if for all u ∈ F

∗
p , K(a + u,b) = K(a,b), then

p−1∑
i=1

ωuiKi(a, b) =
p−1∑
i=1

Ki(a, b), ∀u ∈ F
∗
p.

Adding the above equations, we have

−
p−1∑
i=1

Ki(a, b) = (p − 1)

p−1∑
i=1

Ki(a, b).

Therefore
∑p−1

i=1 Ki(a, b) = 0. Hence Ki(a, b) satisfy the following homogeneous linear system:

p−1∑
i=1

ωuiKi(a, b) = 0, ∀u ∈ F
∗
p.

The coefficient matrix of this linear system is clearly nonsingular. Hence Ki(a, b) = 0 for all
i = 0,1, . . . , (p − 1). The proof is complete. �
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3. Proofs of the main theorems

We first prove several properties of b-balanced functions.

Proposition 3.1. Let f : Fpm → Fpm be a function, b ∈ Fpm \ Fp , and let ω be a primitive pth
root of unity. Then f is b-balanced if and only if

∑
x∈Ti

ωTr(bf (x)) = 0 for all i ∈ F
∗
p.

Proof. Clearly we have

∑
x∈Ti

ωTr(bf (x)) =
p−1∑
u=0

Nf (b,u; i)ωu.

Therefore
∑

x∈Ti
ωTr(bf (x)) = 0 if and only if

p−1∑
u=0

Nf (b,u; i)ωu = 0. (3.1)

Noting that the minimal polynomial of ω over the field of rational numbers is 1 + X + X2 +
· · · + Xp−1, we see from (3.1) that

Nf (b,u; i) = Nf (b, v; i) for all u �= v ∈ Fp.

Now noting that
∑p−1

u=0 Nf (b,u; i) = pm−1, we have Nf (b,u; i) = pm−2 for all u ∈ Fp .
The converse is obvious. The proof of the proposition is complete. �

Proposition 3.2. Let f : Fpm → Fpm be a function. If for every i ∈ F
∗
p , f |Ti

is a one-to-one map
from Ti to Ti′ for some i′ ∈ F

∗
p , then f is globally balanced.

Proof. If the map f is a one-to-one map from Ti to Ti′ , where i, i′ ∈ F
∗
p , then by Corollary 2.3,

for all b ∈ Fpm \ Fp , we have

∑
x∈Ti

ωTr(bf (x)) =
∑
y∈Ti′

ωTr(by) = 0.

Hence the result now follows from Proposition 3.1. �
The next corollary gives the relationship between Kloosterman polynomials and globally bal-

anced maps.

Corollary 3.3. If Lc,d(X) is a Kloosterman polynomial over Fpm , then the function Lc,d :
Fpm → Fpm induced by Lc,d(X) is globally balanced.
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The proof of Corollary 3.3 is immediate from the definition of Kloosterman polynomial and
Proposition 3.2. We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. By Lemma 2.4, if we can show that

Ki

(
Lc̃(b),L

d̃
(b)

) = 0

for all i ∈ F
∗
p , then the conclusion of the theorem will follow. Indeed, for i ∈ F

∗
p we have,

Ki

(
Lc̃(b),L

d̃
(b)

) =
∑
x∈Ti

ωTr(Lc̃(b)x+ L
d̃
(b)

x
)

=
∑
x∈Ti

ω
Tr(

∑m−1
j=0 cj bpm−j

x+∑m−1
j=0 dj bpm−j

/x)

=
∑
x∈Ti

ω
∑m−1

j=0 cj Tr(bpm−j
x)+∑m−1

j=0 dj Tr(bpm−j
/x)

=
∑
x∈Ti

ω
∑m−1

j=0 cj Tr(bxpj
)+∑m−1

j=0 dj Tr(b/xpj
)

=
∑
x∈Ti

ωTr(bLc,d (x)).

If Lc,d is b-balanced, by Proposition 3.1, we have
∑

x∈Ti
ωTr(bLc,d (x)) = 0. Now the theorem

follows from Lemma 2.4. The proof is complete. �
Corollary 1.6 follows immediately from Theorem 1.5. Combining Corollaries 3.3 and 1.6, we

obtain Corollary 1.7. In order to prove Theorem 1.8, we first construct an explicit Kloosterman
polynomial over F3m .

Lemma 3.4. For every positive integer m, the polynomial L1,5(X) = X − X3m−2 + X3(3m−2) is
a Kloosterman polynomial over F3m .

We will present two proofs of this lemma. The first proof shows that the systematic way of
proving such results as developed in [4] (see, for example, the proof of Theorem 4.1 in [4]) works
here too. The second proof is a simple direct proof.

The first proof of Lemma 3.4. It is obvious that Tr(L1,5(x)) = Tr(x) for all x ∈ F3m . Let

L1,5 :x �→ x − x3m−2 + x3(3m−2)

be the map from F3m to itself induced by L1,5(X). We will show that L1,5 is a bijection from Ti

to Ti for i = 1 and 2.
If there exist x, y ∈ Ti , i = 1 or 2, x �= y, such that

L1,5(x) = L1,5(y),
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then

F(x, y) := x3y3 + x2y2 − (x − y)2 = 0. (3.2)

Since Tr(x) = Tr(y) and x �= y, there exists an element z ∈ F3m such that y = z3 − z + x, z /∈ F3.
Let

P(x, z) := x2 + (
z3 − z

)
x − (

z2 + z
)
.

Then it follows from (3.2) that

P(x, z)P (x, z + 1)P (x, z − 1) = 0.

So P(x, z) = 0, or P(x, z + 1) = 0, or P(x, z − 1) = 0. We will only consider the case where
P(x, z) = 0 since the substitution z �→ z − 1 (respectively z �→ z + 1) changes P(x, z + 1)

(respectively P(x, z−1)) into P(x, z). Therefore, we assume that x ∈ Ti (i = 1 or 2) is a solution
of the quadratic polynomial

P(X,z) = X2 + (
z3 − z

)
X − (

z2 + z
)
. (3.3)

The discriminant of (3.3) is z(z+ 1)(z2 + z+ 2)2. It follows that z(z+ 1) = δ2 for some δ ∈ F3m .
Hence x = (z3 −z)±(δ3 −δ). It follows that Tr(x) = 0, contradicting the assumption that x ∈ Ti ,
i = 1 or 2. The proof of the lemma is complete. �
The 2nd proof of Lemma 3.4. Let α ∈ Ti , where i = 1 or 2. If there exists x ∈ Ti such that
x − 1/x + 1/x3 = α, then

x4 − αx3 − x2 + 1 = 0.

Therefore in order to prove the lemma, we only need to show that the polynomial X4 − αX3 −
X2 + 1 ∈ F3m [X] has at most one solution in F3m .

Assume to the contrary that the above polynomial has two solutions a, b ∈ F3m . We have

X4 − αX3 − X2 + 1 = (X − a)(X − b)
(
X2 + AX + B

)

where A,B ∈ F3m . Comparing the coefficients of X3,X2 and so on, we have

A − (a + b) = −α, (3.4)

ab − (a + b)A + B = −1, (3.5)

abA − (a + b)B = 0, (3.6)

abB = 1. (3.7)

From (3.7), we find that B = 1/ab. From (3.6), we find that A = a+b

a2b2 . Multiplying both sides of

(3.5) by (a+b)
ab

, we find that

A + (a + b) = (a + b)3

a3b3
− (a + b)

ab
.
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Table 1
Traces of the elements of F

∗
27

i βi Tr i βi Tr i βi Tr i βi Tr i βi Tr

0 100 0 1 010 0 2 001 2 3 210 0 4 021 2
5 212 1 6 111 2 7 221 2 8 202 1 9 110 0

10 011 2 11 211 2 12 201 2 13 200 0 14 020 0
15 002 1 16 120 0 17 012 1 18 121 2 19 222 1
20 112 1 21 101 2 22 220 0 23 022 1 24 122 1
25 102 1

Therefore Tr(A) = −Tr(a + b). Now from (3.4), we see that Tr(A) = Tr(α), which by assump-
tion is nonzero. It follows that a + b �= 0. Now rewrite (3.5) as

ab + a2b2 + a3b3 = (a + b)2. (3.8)

Noting that (3.8) can be rewritten as (a + b)2 = ab(ab − 1)2, we have

A = a + b

a2b2
= (ab − 1)4

(a + b)3
= ab − 1

a + b
− (ab − 1)3

(a + b)3
.

Therefore Tr(A) = 0, contradicting our assumption that Tr(α) �= 0. The proof is complete. �
We are now ready to give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let L1(X) = X and L5(X) = −X+X3. Then L1̃(X) = X and L5̃(X) =
−X + X3m−1

. If b ∈ F3m \ F3, then L1̃(b) = b /∈ F3. By Lemma 3.4, L1,5(X) is a Kloosterman
sum polynomial over F3m . It follows from Theorem 1.5 that

K
(
b,−b + b3m−1) = K

(
b + 1,−b + b3m−1) = K

(
b − 1,−b + b3m−1)

.

Substituting b by b3 yields the desired result. �
Finally we present an example to illustrate that there exist c, d ∈ {0,1, . . . , pm − 1} and b ∈

Fpm \ Fp such that Lc,d is b-balanced but Lc,d(X) is not a Kloosterman polynomial.

Example 3.5. Let β be a primitive element of F33 satisfying β3 − β + 1 = 0. The elements of
F27 together with their traces are listed in Table 1.

Let

E1 = {5,8,15,17,19,20,23,24,25}, E2 = {2,4,6,7,10,11,12,18,21}.
Then βj ∈ Ti if and only if j ∈ Ei , for i = 1,2 and j = 1,2, . . . ,25.

Let Lc(X) = X,Ld(X) = −X9, where c = 1 and d = 18. Then Lc̃(X) = X,L
d̃
(X) = −X3,

and Lc,d(X) = X − X−9. Taking b = β14, one can easily check that

(
Tr

(
bLc,d(x)

)∣∣x ∈ T1
) = (2,2,0,0,1,1,1,0,2),(

Tr
(
bLc,d(x)

)∣∣x ∈ T2
) = (0,0,2,2,2,0,1,1,1).

Therefore, Lc,d(X) is b-balanced.
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Table 2
b-Balanced functions of the form L1,d (x) = x + k1x−25 + k2x25∗3 + k3x25∗9 on F27

(k1k2k3) b (k1k2k3) b (k1k2k3) b (k1k2k3) b (k1k2k3) b

(100) NO (120) – (011) ±β (221) −β (112) NO
(200) ±β (220) NO (111) – (002) −β (212) β

(010) NO (001) NO (211) NO (102) – (022) NO
(110) ±β (101) β (021) – (202) NO (122) ±β

(210) GB (201) – (121) NO (012) – (222) –
(020) −β

Now, we have Lc̃(b)L
d̃
(b) = β + 2β2 = β17,Lc̃(b)L

d̃
(b) + L

d̃
(b) = 2 + 2β + 2β2 = β19.

By Theorem 1.5, we have

K
(
Lc̃(b)L

d̃
(b)

) = K
((

Lc̃(b) + 1
)
L

d̃
(b)

)
,

that is, K(β17) = K(β19). (In fact, K(β17) = K(β19) = 2.)
Note that β17 is not conjugate to β19, hence this equation represents a nontrivial result.
Putting b′ = β2, one can check that

(
Tr

(
b′Lc,d(x)

)∣∣x ∈ T1
) = (2,1,0,0,2,2,1,2,1),(

Tr
(
b′Lc,d(x)

)∣∣x ∈ T2
) = (0,0,1,2,2,1,2,1,2).

Therefore, Lc,d is not b′-balanced. Thus Lc,d is not globally balanced and so it is not a Kloost-
erman polynomial.

In Table 2 we list all polynomials of the form L1,d (X) = X+k1X
25 +k2X

25∗3 +k3X
25∗9 with

k1, k2, k3 in F3, indicating whether the induced functions L1,d : F27 → F27 are globally balanced
(GB), b-balanced for some b’s (we list the cycleleaders that produce nontrivial equations), or not
balanced (NO).

From Table 2, we see that there is only one Kloosterman polynomial of the form L1,d (X) =
X + k1X

25 + k2X
25∗3 + k3X

25∗9 with k1, k2, k3 in F3. However, there are many b-balanced
functions induced by polynomials of this form. From Theorem 1.5, we can obtain many equalities
between Kloosterman sums by using b-balanced functions, and many of these are nontrivial.

The behavior in Table 2 appears to be typical for finite fields of characteristic p = 3. For
other values of p the situation seems to be different. We did further computations for the case
p = 5, m = 3, covering all polynomials Lc,d(X), and for the cases p = 5, m � 5, p = 7, m � 4,
and p = 11, m = 3, covering all polynomials L1,d (X). Unfortunately, except for the case p = 5,
m = 5, all b-balanced functions Lc,d that we found turn out to satisfy L

d̃
(b) = 0; in the case

p = 5, m = 5, we found various b-balanced functions L1,d for which L
d̃
(b) �= 0 (for example

L1,9(x)), however none of these produced a nontrivial Kloosterman equality. More extensive
computations are needed to draw further conclusions; but at present we cannot rule out the pos-
sibility that no nontrivial Kloosterman equalities can be produced by this method for p � 5.
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