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Using a spread of PG(3, p) and certain projective two-weight codes, we give a
general construction of Hadamard difference sets in groups H_(Zp)4, where H is
either the Klein 4-group or the cyclic group of order 4, and p is an odd prime. In
the case p#3 (mod 4), we use an ovoidal fibration of PG(3, p) to construct
Hadamard difference sets, this construction includes Xia's construction of
Hadamard difference sets as a special case. In the case p#1 (mod 4), we construct
new reversible Hadamard difference sets by explicitly constructing the two-weight
codes needed in our general construction method. Using a well-known composition
theorem, we conclude that there exist Hadamard difference sets with parameters
(4m2, 2m2&m, m2&m), where m=2a3b52c1 132c 2 172c3p2

1p2
2 } } } p2

t with a, b, c1 , c2 , c3

positive integers and where each pj is a prime congruent to 3 modulo 4, 1� j�t.
� 1997 Academic Press

1. INTRODUCTION

Let G be a finite group of order v. A k-element subset D of G is called
a (v, k, *) difference set in G if the list of ``differences'' d1d &1

2 , d1 , d2 # D,
d1 {d2 , represents each nonidentity element in G exactly * times. Using
multiplicative notation for the group operation, D is a (v, k, *) difference
set in G if and only if it satisfies the following equation in Z[G],

DD(&1)=(k&*) 1G+*G,

where D=�d # D d, D(&1)=�d # D d &1, and 1G is the identity element of G.
D is called reversible if D(&1)=D.

In the case G is an abelian group, using the Fourier inversion formula,
we have the following standard lemma in the theory of difference sets.

Lemma A. Let G be an abelian group of order v. A k-subset D is a
(v, k, *) difference set in G if and only if |/(D)|=- k&* for every nontrivial
character / of G. Furthermore, D=D(&1) if and only if /(D)=/(D) for
every character / of G.
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The difference sets considered in this paper have parameters

(v, k, *)=(4m2, 2m2&m, m2&m).

These difference sets are called Hadamard difference sets (HDS), since their
\1 incidence matrices are Hadamard matrices. Alternative names used by
other authors are Menon difference sets and H-sets.

The central problem in the study of HDS is for each integer m, which
groups of order 4m2 contain a Hadamard difference set. This problem
remains open, for abelian groups and non-abelian groups as well. However,
considerable progress has been made on the construction of Hadamard dif-
ference sets in recent years. For example, in 1992, Xia [10] constructed
Hadamard difference sets in groups H_Z4

p 1
_Z4

p2
_ } } } _Z4

pt
, where H is

either the Klein 4-group or the cyclic group of order 4, and each pj is a
prime congruent to 3 modulo 4, 1� j�t. Smith [8] constructed a non-
abelian reversible Hadamard difference set in the group (a, b, c | a5=b5=
c4=[a, b]=cac&1a&2=cbc&1b&2=1) . In October, 1995, Van Eupen and
Tonchev [5] constructed a reversible Hadamard difference set in
Z2_Z2 _(Z5)4, which is the first example of an abelian Hadamard dif-
ference set with the order divisible by a prime congruent to 1 modulo 4.

In this paper, we first give a general construction method for Hadamard
difference sets in groups H_(Zp)4, where H is either group of order 4 and
p is an odd prime, by assuming the existence of certain projective two-
weight codes. This method applies to both cases that p#3 (mod 4) and
p#1 (mod 4). In section 3, we explain Xia's construction by using our
general construction method. This was actually done by Xiang and Chen
in [11]. We include this section here for the convenience of the reader. In
Section 4, we use an ovoidal fibration of PG(3, p) (see [1, 4, 6]) and
spreads associated with it to construct Hadamard difference sets in
H_(Zp)4, where H is either group of order 4 and p is a prime congruent
to 3 modulo 4. This construction includes Xia's construction of Hadamard
difference sets as a special case. In Section 5, we explicitly construct those
projective two-weight codes needed in our general construction for HDS
when p=5, 13, 17. Using a well-known composition theorem of Hadamard
difference sets (for example, see [7, 9]), we conclude that there exist
Hadamard difference sets with parameters (4m2, 2m2&m, m2&m), where
m=2a3b52c 1132c2 172c 3 p2

1p2
2 } } } p2

t with a, b, c1 , c2 , c3 positive integers and
where each pj is a prime congruent to 3 modulo 4, 1� j�t.

2. THE CONSTRUCTION

We begin with the definition of a projective (n, k, h1 , h2) set in
PG(k&1, q), where q is a power of prime p.
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Definition. A projective (n, k, h1 , h2) set O is a proper, nonempty set of
n points of the projective space PG(k&1, q) with the property that every
hyperplane meets O in h1 points or h2 points.

Let O=[( y1), ( y2) , ..., ( yn)] be a set of n points in PG(k&1, q).
Associated with PG(k&1, q) is the k-dimensional vector space W=Vk(q).
Let 0=[v # W | (v) # O] be the set of vectors in W corresponding to O.
For w # GF(q)k, define an additive character of GF(q)k as

/w : x [ !Tr(w } x), x # GF(q)k,

where ! is a primitive pth root of unity and Tr is the trace from GF(q) to
GF( p). It is easy to see that /w , w # GF(q)k, are all the additive characters
of GF(q)k.

For any nontrivial additive character /w of GF(q)k, we have

/w(0)=(q&1)|w= & [ y1 , y2 , ...., yn]|+(&1)(n&|w= & [ y1 , y2 , ..., yn]| )

=q |w= & [ y1 , y2 , ..., yn] |&n,

where w==[ y # GF(q)k | y } w=0], and y } w is the usual dot product.
Hence we have the following lemma.

Lemma 2.1. O is a projective (n, k, h1 , h2) set if and only if /w(0)=
qh1&n or qh2&n, for every nontrivial additive character /w , w # GF(q)k.

Also we mention that projective (n, k, h1 , h2) sets are equivalent to
projective two-weight codes and certain strongly regular Cayley graphs.
We refer the reader to the survey papers [3, 7] for more detailed discussion
of these three objects.

Let 73=PG(3, p) denote projective 3-space over GF( p), where p is an
odd prime. A spread of 73 is any collection of p2+1 pairwise disjoint lines
of 73 , necessarily partitioning the points of 73 . A partial spread in 73 is a
set of lines no two of which intersect. Also, for convenience, we will call a
subset C of 73 type Q if C is a projective (( p4&1)�4( p&1), 4, ( p&1)2�4,
( p+1)2�4) set.

Theorem 2.2. Assume that S=[L1 , L2 , ..., Lp 2+1] is a spread of 73 . If
there exist two subsets C0 , C1 of type Q in 73 such that |C0 & Li |=
( p+1)�2, 1�i�s, and |C1 & Lj |=( p+1)�2, (s+1)� j�2s, where
s=( p2+1)�2, then there exists a Hadamard difference set in H_(Zp)4,
where H is either the Klein 4-group or the cyclic group of order 4; in the first
case, the Hadamard difference set obtained is reversible.

Proof. Let C2=(L1 _ L2 _ } } } _ Ls)"C0 , C3=(Ls+1 _ Ls+2 _ } } } _

L2s)"C1 . We first prove that C2 , C3 are also two subsets of type Q in 73 .
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Associated with 73 is the four-dimensional vector space W=V4( p) over
GF( p). Let C0=[w # W | (w) # C0], C2=[w # W | (w) # C2].

Since C0 is a set of type Q in 73 , by Lemma 2.1 we have /(C0)=
( p2&1)�4& p2 or ( p2&1)�4, for every nontrivial additive character / of W.
We will use W* to denote the additive character group of W, and define
U=[/ # W* | /(C0)=( p2&1)�4& p2], V=[/ # W* | /(C0)=( p2&1)�4].

Let L1=[w # W | (w) # �s
i=1 Li]. Since [L1 , L2 , ..., Ls] is a partial

spread, we have

/(L1)={
&

p2+1
2

,

p2&1
2

,

if / # N1 ;

if / # T1 ,

where N1=[/ # W*"[/0] | / is nontrivial on every Li , 1�i�s] and
T1=[/ # W*"[/0] | / is trivial on exactly one Li for some i, 1�i�s].

We contend that T1 & U=<.
For each Lj , 1� j�2s, which is now viewed as a two-dimensional sub-

space of W, let L=
j =[/ # W* | / is trivial on Lj]. Then |L=

j |=|W�Lj |= p2.
For 1� j�s, we define :j=|(L=

j "[/0]) & U|, ;j=|(L=

j "[/0]) & V|. Then
:j+;j= p2&1.

For every / # L=

j , we have /(C0)=/(C0"(C0 & Lj))+|C0 & Lj |. Therefore,

:

/ # Lj
=

/(C0)= :

w # C0"(C0 & Lj )

:

/ # Lj
=

/(w)+ p2 |C0 & Lj |.

Noting that �/ # Lj
= /(w)=0 if there is a / # L=

j such that /(w){1, we have
�/ # L j

= /(C0)= p2 |C0 & Lj |. That is, ( p4&1)�4+:j (( p2&1)�4& p2)+
;j ( p2&1)�4= p2 |C0 & Lj |. Simplifying this we get

1& p2

2
+;j=|C0 & Lj |.

Since |C0 & Lj |=( p2&1)�2 for every j, 1� j�s, we have ;j= p2&1,
:j=0, 1� j�s. Hence, T1 & U=<.

For any nontrivial / # W*, /(C2)=/(L1)&/(C0). Since T1 & U=<, we
have

/(C2)={
p2&1

4
& p2,

p2&1
4

,

if / # N1 & V ;

if / # (N1 & U ) _ (T1 & V ).

This shows that C2 is a set of type Q in 73 .
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Similarly, define C1=[w # W | (w) # C1], C3=[w # W | (w) # C3]. Let
L2=[w # W | (w) # �2s

i=s+1 Li]. Since C1 is a set of type Q in 73 and
[Ls+1 , Ls+2 , ..., L2s] is a partial spread, we have

/(C1)={
p2&1

4
&p2,

p2&1
4

,

if / # X,

if / # Y,

and

/(L2)={
&

p2+1
2

,

p2&1
2

,

if / # N2 ,

if / # T2 ,

where N2=T1 and T2=N1 .
By the same argument as above, we can show that T2 & X=<; hence,

/(C3)={
p2&1

4
&p2,

p2&1
4

,

if / # N2 & Y ;

if / # (N2 & X ) _ (T2 & Y ).

Assume that A is the union of any ( p2&1)�4 lines from Ls+1 , Ls+2 , ..., L2s ,
B is the union of any ( p2&1)�4 lines from L1 , L2 , ..., Ls , and we view A,
B as subsets in the vector space W (we make the convention that A, B,
when viewed as subsets in W, do not contain the zero vector). Define

D0=C0 _ A, D1=C1 _ B,

D2=C2 _ A, D3=C3 _ B.

For any nontrivial / # W*, we distinguish two cases:

(1) Ker /#Lj , for some j, 1� j�s. In this case, / # N2=T1 . Since
T1 & U=<, we have / # V. Therefore, /(D0)=( p2&1)�4+(&( p2&1)�4)=0,
and /(D2)=( p2&1)�4+(&( p2&1)�4)=0,

/(B)={
p2&

p2&1
4

,

&
p2&1

4
,

if Lj # B;

if Lj � B.
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Hence

/(D1)={0,
\p2,

if / # Y ; Lj � B, or / # X ; Lj # B;
if / # Y ; Lj # B, or/ # X ; Lj � B;

and

/(D3)={0,
\p2,

if / # Y ; Lj # B, or / # X ; Lj � B;
if / # Y ; Lj � B, or / # X ; Lj # B.

This shows that /(D0)=/(D2)=0, and only one of /(D1), /(D3) vanishes,
the other is \p2.

(2) Ker /#Lj , for some j, (s+1)� j�2s. In this case, / # N1=T2 .
Since T2 & X=<, we have / # Y. In a manner similar to that of case (1),
we can show that /(D1)=/(D3)=0 and only one of /(D0), /(D2) vanishes;
the other is \p2.

We first construct an HDS in the group Z2_Z2 _(W, +). Let us denote
the elements of Z2_Z2 by [1, a, b, ab]. Define D=D0 _ aD1 _ bD2 _

ab(W"D3). We contend that D is a reversible Hadamard difference set in
Z2_Z2 _(W, +).

Let ,�/ be an arbitrary nontrivial character of Z2_Z2 _W.
If / is trivial, , is nontrivial, then

,�/(D)=|D0 |+,(a)|D1 |+,(b)|D2 |+,(ab)|W"D3 |= p2,(ab),

so |,�/(D)|= p2.
If / is nontrivial, by the discussion in the two cases above, we have

,�/(D)=\p2 ;

hence |,�/(D)|= p2.
By Lemma A, D is a Hadamard difference set. Since �(D)=�(D) for

every nontrivial character � of Z2_Z2_W, D is reversible. In the case
the group is Z4_(Zp)4, let the elements of Z4 be [1, c, c2, c3], and
D=D0 _ cD1 _ c2D2 _ c3(W"D3). Then it is easy to show that D is a
Hadamard difference set in Z4_(W, +). This completes the proof of the
theorem. K

3. ON XIA'S CONSTRUCTION

In 1992, Xia [10] constructed Hadamard difference sets in groups
H_Z4

p1
_Z4

p 2
_ } } } _Z4

pt
, where H is either group of order 4 and each pj is

a prime congruent to 3 modulo 4, 1� j�t. Xia's construction depends on
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very complicated calculations involving cyclotomic classes of high order.
Xiang and Chen [11] have given a simpler proof for Xia's construction by
using additive characters of finite fields.

In view of Theorem 2.2, in order to construct Hadamard difference sets
in H_(Zp)4, where H is either group of order 4 and p is a prime congruent
to 3 modulo 4, all we need are a spread in 73 , and sets C0 , C1 of type Q
in 73 satisfying the conditions in Theorem 2.2.

Let p be a prime congruent to 3 modulo 4 and let ; be a primitive
element of GF( p4). We model 73 by viewing GF( p4) as four-dimensional
vector space over GF( p). Thus the points of 73 are represented by (1) ,
(;) , ..., (;( p 2+1)( p+1)&1). Let Li=[(;i) , (;( p2+1)+i) , ..., (;p( p2+1)+i)],
0�i� p2. Then it is easy to see that S=[L0 , L1 , ..., Lp 2] is a spread in 73 .
Let C0=[(1) , (;4) , (;8) , ..., (;( p2+1)( p+1)&4)], C1=[(;) , (;5) ,
(;9) , ..., (;( p2+1)( p+1)&3)]. Since p#3 (mod 4), by uniform cyclotomy
(see [2, 7]), C0 , C1 are two sets of type Q in 73 . Also it is easy to see that
|C0 & L2i|=( p+1)�2, 0�i�( p2&1)�2, and |C1 & L2i+1 |=( p+1)�2,
0�i�( p2&1)�2. Therefore by Theorem 2.2, we have

Corollary 3.1. There exists a Hadamard difference set in H_(Zp)4,
where p is a prime congruent to 3 modulo 4 and H is either the Klein 4-group
or the cyclic group of order 4. In the first case, the Hadamard difference set
constructed by Theorem 2.2 is reversible.

Using a composition theorem of Turyn [9], it is routine to construct
Hadamard difference sets in H_Z4

p1
_Z4

p 2
_ } } } _Z4

pt
, where H is either

group of order 4, and each pj is a prime congruent to 3 modulo 4, 1� j�t.

4. GENERAL CONSTRUCTION IN THE CASE p#3 (mod 4)

In this section, we give a general construction of Hadamard difference
sets in H_(Zp)4, where H is either group of order 4, and p is a prime
congruent to 3 modulo 4, by using an ovoidal fibration of PG(3, p) in
[1, 4, and 6, page 253]. We introduce the following notation as in [1, 4].

Let p be a prime congruent to 3 modulo 4. We view GF( p4) as a four-
dimensional vector space over GF( p), and, hence, the one-dimensional sub-
spaces of this vector space can be thought of as the projective points of
73=PG(3, p). Similarly, we identify the lines of 73 with the two-dimen-
sional vector subspaces of GF( p4) over GF( p). We also let (A) denote the
vector subspace generated by the set A over GF( p).

If ; is a primitive element of GF( p4), then o(;)= p4&1=
( p+1)( p&1)( p2+1) and hence ;( p+1)( p 2+1) is a primitive element of
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GF( p). We therefore identify the points of 73 with [(;t) | t=0, 1, 2, ...,
( p+1)( p2+1)&1]. If we now let 0i=[(;t) | t#i (mod p+1)], each 0i

is an ovoid (Theorem 3 of [4]) and the points of 73 are thus partitioned
into p+1 disjoint ovoids:

73=00 _ 01 _ } } } _ 0p . (V)

Moreover, each line of 73 is tangent to precisely 0 or 2 of these ovoids
(Lemma 1 and Theorem 4 of [4]). Lines of the former type will be called
``secant-type'' and those of the latter ``tangent-type''. If Ls=(;0, ;s( p+1))
denotes the line of 73 joining the points (;0) and (;s( p+1)) of 00 for any
integer s with 1�s� p2, then Ls is a secant-type line if and only if s is odd
(Theorem 4 of [4]).

If L is any line of 73 , let [L] denote the line orbit of L under the
collineation of 73 corresponding to multiplication by ;2( p+1). Also let Lp

denote the image of the line L under the collineation corresponding to the
Frobenius automorphism, and let L;d denote the image of L under multi-
plication by ;d.

We quote the following theorem and corollary from [1].

Theorem B. Using the above notation, let s be an odd integer with
1�s� p2. Consider the secant-type line Ls=(;0, ;s( p+1)) , necessarily
secant to ( p+1)�2 ovoids in the fibration (V). Then there exists a positive
integer d such that (Ls)

p ;d is a secant-type line meeting the ( p+1)�2 ovoids
of (V) missed by Ls . Moreover, if s{( p2+1)�2, d is unique modulo p+1.

Corollary C. [Ls] _ [(Ls)
p;d] is a spread of 73 . This spread is

regular precisely when s=( p2+1)�2.

Now we use the spread in Corollary C to construct Hadamard difference
sets. By Theorem 2.2, we need to come up with two sets C0 , C1 in 73 of
type Q satisfying the conditions in Theorem 2.2.

Let Ls and (Ls)
p ;d be the secant-type lines in Theorem B. We assume

that Ls is secant to 0t 1
, 0t2

, ..., 0t r , and (Ls)
p ;d is secant to 0t r+1

,
0t r+2

, ..., 0t2r , where r=( p+1)�2. By Theorem B, [t1 , t2 , ..., t2r]=[0, 1,
2, ..., p]. Since p#3 (mod 4), r is even. Let C0 be the union of any r�2
ovoids from [0t 1

, 0t2
..., 0t r], and let C1 be the union of any r�2 ovoids

from [0t r+1
, 0t r+2

, ..., 0t2r]. Then we have the following lemma.

Lemma 4.1. C0 meets every line in [Ls] in ( p+1)�2 points, and C1

meets every line in [(Ls)
p ;d ] in ( p+1)�2 points. C0 , C1 are two sets of type

Q in 73 .
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Proof. The first assertion is clear by the definition of C0 and C1 . For
the proof of the second part, we observe that every plane of 73 must meet
each of the p+1 ovoids in (V) in a point or an oval. A simple counting
argument then shows that each plane of 73 is tangent to 1 of the ovoids
in (V) and meets the other p ovoids in disjoint ovals. Let ? be an arbitrary
plane of 73 . Then |? & C0 |=1+(r�2&1)( p+1)=( p&1)2�4 if C0 contains
some 0t j such that |? & 0t j |=1, 1� j�r, and |? & C0 |=(r�2)( p+1)=
( p+1)2�4 if |? & 0t i |= p+1 for every 0t i contained in C0 . This shows
that C0 is a set of type Q in 73 . Similarly, we can show that C1 is also a
set of type Q in 73 . This completes the proof of the lemma. K

Corollary 4.2. Let [Ls] _ [(Ls)
p;d], C0 , C1 be defined as above.

Then there exists a Hadamard difference set in H_(Zp)4, where H is either
group of order 4, and p is a prime congruent to 3 modulo 4, by using the
spread [Ls] _ [(Ls)

p ;d ] and the sets C0 and C1 of type Q in 73 .

Proof. This is clear from Lemma 4.1 and Theorem 2.2. K

Remarks. (1) If we let s=( p2+1)�2, then Ls=GF( p2), L p
s =Ls , and

[Ls] _ [;Ls] is the regular spread in Section 3. Also we note that Ls meets
the ovoids 00 , 02 , 04 , ..., 0p&1 (Lemma 1 of [4]), and ;Ls meets the
ovoids 01 , 03 , 05 , ..., 0p . If we choose the union of 00 , 04 , 08 , ..., 0p&3

as C0 and the union of 01 , 05 , 09 , ..., 0p&2 as C1 , then the construction
in this section will give rise to Xia's construction.

(2) Let G=K4_P, where K4 is the Klein 4-group and P=Z4
p , p is a

prime congruent to 3 modulo 4. Two difference sets D and D$ in G are said
to be equivalent if D$= gD: for some automorphism : of G and some ele-
ment g of G. Since K4 and P have relatively prime orders, they must be
invariant under every automorphism of G. Therefore the automorphism
group of G has size |GL(2, 2)| |GL(4, p)|=6p6( p4&1)( p3&1)( p2&1)
( p&1). From Theorem 2.2 and the construction in this section, we see that
there are at least

4!
p2+1

2 \( p+1)�2
( p+1)�4+

2

\( p2+1)�2
( p2&1)�4+

2

4p4 } 6p6( p4&1)( p3&1)( p2&1)( p&1)

=
( p2+1) \( p+1)�2

( p+1)�4+
2

\( p2+1)�2
( p2&1)�4+

2

2p10( p4&1)( p3&1)( p2&1)( p&1)

pairwise inequivalent Hadamard difference sets in G.
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5. THE CASE p#1 (mod 4)

In this section, we construct sets of type Q in 73=PG(3, p) with p#1
(mod 4). Again let W be the four-dimensional vector space over GF( p)
associated with 73 . We may consider W as a direct product GF( p2)_
GF( p2).

Let g be a primitive element of GF( p2). L� will denote the line [0]_
GF( p2), and for any d in GF( p2), Ld will denote the line [(x, dxp) |
x # GF( p2)]. It is easy to verify that S=[Ld | d # GF( p2)] _ [L�] is a
spread in 73 .

We now consider the action of

T=\g2

0
0

g&2+
on the points of 73 which are now viewed as one-dimensional subspaces
over GF( p) of the four-dimensional vector space GF( p2)_GF( p2) over
GF( p).

The orbits of the action of T on the points of 73 are

(1) Four ``short'' orbits, each of length ( p+1)�2. We choose (0, 1),
(0, g), (1, 0), and (g, 0) as the representatives of these four orbits.

(2). 4( p+1) ``long'' orbits, each of length ( p2&1)�4. The repre-
sentatives of these 4( p+1) orbits can be chosen as

(1, 1), (1, g), (1, g2), ..., (1, g2p+1),

(g, 1), (g, g), (g, g2), ..., (g, g2p+1).

It is clear that each short orbit consists of ( p+1)�2 points of L0 or L� .
Next we show that each long orbit consists of ( p+1)�2 points of

( p&1)�2 lines from the set of lines [Ld | d{0, d # GF( p2)]. For example,
take the long orbit represented by (1, gi), 0�i�2p+1. Let a= gi. The
points in this orbit are represented by

(1, a) � (g2, ag&2) � } } } � (gp&3, ag3& p) �

(gp&1, ag1& p) � (gp+1, ag&1& p) � } } } � (g2p&4, ag4&2p) �

} } }

(gl, ag&l ) � (gl+2, ag&l&2) � } } } � (gl+p&3, ag&l&p+3),

where l=( p&1)2�2. Each column in the above diagram consists of
( p+1)�2 points of some line Ld , d{0, d # GF( p2); hence the orbit
represented by (1, gi) consists of ( p+1)�2 points of ( p&1)�2 lines from the
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set of lines Ld , d{0, d # GF( p2). This argument applies to any orbit
represented by (g, gi), 0�i�2p+1.

For p=5 let g be a root of x2+x+2 # GF(5)[x]. With the help of a
computer (we will give more details about the computer search at the end
of this section), we found that the union of the following orbits

(1, g), (1, g2), (1, g9), (1, g11), (g, 1), (g, g8), (1, 0)

forms a set of type Q in PG(3, 5), which we will call C0 , also the union of
the following orbits

(1, g6), (1, g8), (1, g10), (g, g5), (g, g9), (g, g10), (0, 1)

forms another set of type Q in PG(3, 5), which we denote by C1 . Let
S=[Ld | d # GF(52)] _ [L�]. We have seen that each orbit of T intersects
the lines in S in 0 or 3 points, also no two orbits of T in C0 , C1 intersect
the same line, hence C0 , C1 satisfy the conditions of Theorem 2.2. There-
fore there exists a Hadamard difference set in H_(Z5)4, where H is either
group of order 4. We state this as a corollary.

Corollary 5.1. There exists a Hadamard difference set in H_(Z5)4,
where H is either the Klein 4-group or the cyclic group of order 4; in the first
case, the Hadamard difference set is reversible.

Remark. Van Eupen and Tonchev ([5]) were the first to construct a
reversible Hadamard difference set in Z2_Z2_(Z5)4. We remark that the
structure of the Hadamard difference set in Z2_Z2_(Z5)4 constructed in
Corollary 5.1 is different from that of Van Eupen and Tonchev's Hadamard
difference set. For example, in Theorem 2.2 (hence in Corollary 5.1), we
choose A, B both as union of lines from a spread in 73 , while in Van
Eupen and Tonchev's example, one projective (36, 4, 6, 11) set in PG(3, 5)
comes from the union of six lines, the other does not.

In the case p=13, let g be a root of x2+x+2 # GF(13)[x]. With the
help of a computer, we found the following two sets of type Q in PG(3, 13).

The union of the orbits

(1, g5), (1, g6), (1, g9), (1, g13), (1, g15), (1, g17), (1, g18), (1, g24),

(g, g4), (g, g5), (g, g8), (g, g14), (g, g16), (g, g23), (1, 0)

forms a set of type Q in PG(3, 13), which we will denote by C0 . And the
union of the orbits

(1, 1), (1, g2), (1, g4), (1, g7), (1, g8), (1, g12), (1, g25), (g, g), (g, g6),

(g, g7), (g, g11), (g, g12), (g, g24), (g, g27), (0, 1)
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forms another set of type Q, which we will denote by C1 . Let
S=[Ld | d # GF(132)] _ [L�]. It is easy to see that S, C0 , C1 satisfy the
conditions in Theorem 2.2.

By Theorem 2.2, we have

Corollary 5.2. There exists a Hadamard difference set in H_(Z13)4,
where H is either the Klein 4-group or the cyclic group of order 4; in the first
case the Hadamard difference set is reversible.

When p=17, let g be a root of x2+x+3 # GF(17)[x]. With the help of
a computer, we found the following two sets of type Q in PG(3, 17). The
union of the orbits

(1, g2), (g, g), (1, g7), (g, g6), (1, g12), (g, g11), (1, g15),

(g, g14), (1, g19), (g, g18), (1, g26), (g, g25), (1, g32), (g, g31), (1, g34),

(g, g33), (1, g21), (1, g22), (1, 0)

forms a set of type Q in PG(3, 17), which we will denote by C0 . And the
union of the following orbits

(1, g5), (g, g4), (1, g6), (g, g5), (1, g9), (g, g8), (1, g10),

(g, g9), (1, g11), (g, g10), (1, g17), (g, g16), (1, g18), (g, g17), (1, g31),

(g, g30), (1, g4), (g, g20), (0, 1)

forms another set of type Q in PG(3, 17), which we will denote by C1 . Let
S=[Ld | d # GF(172)] _ [L�]. Then it is easy to check that S, C0 , C1

satisfy the conditions in Theorem 2.2.
By Theorem 2.2, we have

Corollary 5.3. There exists a Hadamard difference set in H_(Z17)4,
where H is either the Klein 4-group or the cyclic group of order 4; in the first
case, the Hadamard difference set is reversible.

Remark. We give more details about our computer search in what
follows. In order to search for sets of type Q in 73 by computer, we first
noted that T also permutes the planes in four ``short'' orbits and 4( p+1)
``long'' orbits. We formed a square nonnegative integral matrix M whose
rows were indexed by the orbits of T on the points, whose columns were
indexed by the orbits of T on the planes, and where the entry in row i and
column j was the the cardinality of the intersection of a (any) plane in
plane-orbit j with the i th orbit of points. A union of point-orbits is a set
of type Q if and only if the sum of the corresponding rows of M has entries
( p\1)2�4 only.
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For example, when p=17, the matrix M is square of order 76. The sum
of all rows was a constant vector of 307s. We searched for 19 rows (one
row corresponding to a short orbit and the others to long orbits) so that
the sum of the 19 rows had entries 64 and 81 only. Our search was not
exhaustive but simply moved from one set of 19 rows to another set by
deleting one row��with a large entry in a column where the sum exceeded
81��and randomly adding another one. This was done with Mathematica
on a PC.

Finally, using a composition theorem of Turyn [9], it is routine to
construct (4m2, 2m2&m, m2&m) Hadamard difference sets with m=
2a3b52c1 132c2 172c3p2

1p2
2 } } } p2

t , where a, b, c1 , c2 , c3 are positive integers and
each pj is a prime congruent to 3 modulo 4, 1� j�t.
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