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Binary m-sequences are widely applied in navigation, radar, and communication
systems because of their nice autocorrelation and cross-correlation properties. In this
paper, we consider the cross-correlation between a binary m-sequence of length
2m!1 and a decimation of that sequence by an integer t. We will be interested in the
number of values attained by such cross-correlations. As is well known, this number
equals the number of nonzero weights in the dual of the binary cyclic code C

1,t
of

length 2m!1 with de"ning zeros a and at, where a is a primitive element in GF(2m).
There are many pairs (m, t) for which CM

1,t
is known or conjectured to have only few

nonzero weights. The three-weight examples include the following cases:
(a) t"1#2r, if m/(m, r) odd,
(b) t"22r!2r#1, if m/(m, r) odd,
(c) m"2r#1 odd, t"2r#3, and
(d) m odd, 4r,!1 modm, t"22r#2r!1.

We present a method of proving many of these known or conjectured results,
including all of the above cases, in a uni"ed way. ( 2001 Academic Press
1. INTRODUCTION

Maximal length linear feedback shift register sequences (m-sequences) are
widely employed in applications such as navigation, radar, and spread-
spectrum communication systems. These applications require pairs of binary
253
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254 HOLLMANN AND XIANG
m-sequences a and b of period 2m!1 such that their cross-correlation
function

h
a,b

(q)"
2m~2
+
i/0

(!1)ai`bi`q (1)

is small. Therefore the cross-correlation properties of binary m-sequences
have been studied extensively (see [3, 12, 17, 19, 21]). As is well known [12],
the cross-correlation of a pair of distinct m-sequences takes on at least three
values. It is thus an interesting problem to determine which pairs of m-
sequences result in cross-correlation functions with exactly three values. The
problem of determining the cross-correlation spectrum of two m-sequences,
i.e., the set of values taken by the cross-correlation function together with
a count of the number of times that each value occurs, can also be formulated
as a problem of determining the weight distribution of certain cyclic codes. In
order to explain this connection, we introduce some notation.

Let a be a primitive element of the "nite "eld GF(2m). We denote the
minimal polynomial of ai over GF(2) by m

i
(x). Let h

i
(x)"(x2m~1!1)/m

i
(x),

and let h*
i
(x)"x$%' (hi)h

i
(x~1). In what follows, we will consider various

binary linear cyclic codes of length n"2m!1. As is customary in coding
theory, we identify codewords c"(c

0
,2, c

n~1
) with polynomials c(x)"

+n~1
i/0

c
i
xi in R"GF(2)[x]/(xn!1). Let C

i
denote the binary cyclic code of

length n"2m!1 with de"ning zero ai. That is, C
i
is the code consisting of all

polynomials inRwhich are multiples of m
i
(x). Note that C

i
has dimension n!d

i
over GF(2), where d

i
is the degree of m

i
(x). The dual code CM

i
of C

i
has dimension

d
i
and consists of all multiples a(x)h*

i
(x) in R of the polynomial h*

i
(x).

If the greatest common divisor (i, n) of i and n equals 1, then the code C
i
is

simply a binary Hamming code; its dual CM
i

is called a simplex code. By
de"nition, an m-sequence of length n"2m!1 is a nonzero codeword of
a simplex code.

Let t be an integer relatively prime to n. The decimation by t of a periodic
sequence a"a

0
, a

1
,2, a

n~1
with associated polynomial a (x)"+n~1

i/0
a
i
xi

in R is the sequence b"b
0
, b

1
,2, b

n~1
whose associated polynomial

b(x)"+n~1
i/0

b
i
xi in R is given by b(x)"a(xt~1). Consequently, the zeros of

b(x) include bt for each zero b of a(x). Hence if a is an m-sequence, that is,
a(x)"xrh*

i
(x) for some r and some i with (i, n)"1, then b(x)3CM

it
, hence

b(x)"xsh*
it
(x) for some s. Replacing the primitive element a by ai, we may

assume without loss of generality that i"1. Then we can write the cross-
correlation function (1) of a and b to be

h
a,b

(q)"n!2 )w
H
(xqa (x)#b (x))"n!2 )w

H
(xq`rh*

1
(x)#xsh*

t
(x)), (2)

where w
H

is the Hamming weight.
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Now let C
1,t

be the binary cyclic code of length n with de"ning zeros a and
at, or equivalently, with generator polynomial m

1
(x)m

t
(x). De"ne

!"Mxih*
1
(x)#xjh*

t
(x) D04i, j(nN.

Note that the set ! consists of all polynomials xqa (x)#b (x) together with
their cyclic shifts. Since m

1
(x)m

t
(x) (xih

1
(x)#xjh

t
(x))"0 in R for all i and j,

we see that ! is contained in the dual code CM
1,t

of C
1,t

. In fact it is easy to see
that CM

1,t
is the disjoint union of M0N, CM

1
CM0N, CM

t
CM0N, and !. Since the

2(2m!1) nonzero words of the two simplex codes CM
1
, CM

t
all have weight

2m~1, we conclude that the cross-correlation spectrum of the pair a"xrh*
1
(x),

b"xsh*
t
(x) and the weight distribution of the code CM

1,t
contain exactly the

same information.
A pair of m-sequences is called a preferred pair if the cross-correlation

function only takes on the values !1, !1$2x(m`2)@2y, or equivalently, if the
corresponding code CM

1,t
has only three nonzero weights, 2m~1,

2m~1$2x(m`2)@2y~1. It has been shown [17] that there are no preferred pairs
when m,0mod4, while for m,2 mod4, the only known examples
are those arising from t"2r#1, r even, t"22r!2r#1, r even,
t"2(m`2)@2#3, and t"2m@2#2(m`2)@4#1 (for the latter two cases, see [7]).
In the case m is odd, the following is a list of all values of t which are known or
conjectured to lead to a pair of preferred m-sequences:

(a) t"2r#1, if (r, m)"1 (proved by Gold [11], 1968);
(b) t"22r!2r#1, if (r, m)"1 (proved by Welch [22], 1969, and

Kasami [14], 1971);
(c) m"2r#1 odd, t"2r#3 (conjectured by Welch [19], 1972);
(d) m odd, 4r,!1 modm, t"22r#2r!1 (conjectured by Niho [19],

1972).
The main purpose of this paper is to provide a uniform treatment of the

four cases above. In particular, we prove the Welch and Niho conjectures
from 1972. The proofs depend on a combination of three ideas.

Let C
1,t

be the cyclic code of length 2m!1 de"ned as above, and let A
i
, B

i
denote the number of codewords of weight i in C

1,t
and CM

1,t
respectively. In

Section 2, we use the Pless power moment identities to evaluate a certain
linear combination of the B

i
's in terms of A

3
and A

4
. Our interest in this

expression stems from the fact that the only negative coe$cients in this linear
combination are con"ned to a small interval of weights symmetric about
2m~1, with the coe$cient of B

2m~1 and two other coe$cients equal to zero.
Therefore if we could show that the code CM

1,t
has no other weights in this

interval, and if the aforementioned linear combination of the B
i
's can be

shown to be zero, then the code CM
1,t

can only have three nonzero weights.
To obtain the desired restrictions on the weights that can occur in the code

CM
1,t

, a deep theorem of McEliece on cyclic codes is used to express the largest
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power of 2 that divides the weights of the code CM
1,t

in terms of a number
M(m, t) de"ned as

M(m, t)" max
a |Z

2m~1
CM0N

Dw (ta)!w (a) D, (3)

where w (a) is the binary weight of a. This material can be found in Section 4.
We remark that on other occasions [3, 17], McEliece's theorem has been
used successfully to prove interesting results on the cross-correlation of
m-sequences. Even the number M (m, t) has been investigated before. For
example, it was shown in [3] that M(2r, t)52r~1 for all odd t.

In order to show that the linear combination referred to earlier is indeed
equal to zero, we need to count the number A

3
#A

4
of codewords of weights

3 and 4 in the code C
1,t

. This problem is addressed in Section 3. In the case
when t is of the form t"2r#1, this is easy. For the case where
t"22r!2r#1, we use results from [14, 15] to determine A

3
#A

4
under the

condition that m/(r, m) is odd. In the other two cases of interest we make use
of the recent breakthrough results from [8, 9], which essentially state that the
minimum distance of the code C

1,t
is 5 in these cases.

In Section 5 we collect the required results concerning M(m, t). We develop
a method involving add-with-carry algorithms in Z

2m~1
to investigate this

number. In all four cases, this method actually succeeds in obtaining the exact
values of M(m, t). We remark that these problems involving binary weights
can sometimes be rephrased as tiling problems. Therefore it is possible to
approach the problem of determining M(m, t) from the tiling point of view
(see [6]).

Finally, in Section 6 we prove our main results on the three-valued
cross-correlation of binary m-sequences using the results obtained in pre-
vious sections. In particular, we give a proof for the Welch and Niho
conjectures mentioned above.

We note that the techniques developed in this paper can be useful for
investigating many other (known or conjectured) instances of cyclic codes
with few nonzero weights. To mention just a couple of examples: Recently, in
[6], Chang et al. conjectured that the cyclic code C

1,t,t2
of length n"2m!1

with de"ning zeros a, at, and at2 in GF(2m), with t"1#2(m`1)@2, has the same
weight distribution as the 3-error-correcting primitive BCH code of the same
length. We can prove this conjecture by using some results in [6] and
straightforward generalisations of the techniques in this paper. Similarly, we
can give a solution for research problem 9.7, Chapter 9.11 in [18]. We will
give details of these results in a forthcoming paper.

After submitting this paper, we became aware through discussions with
Charpin and Dobbertin that for the past few years they have been working
systematically towards solving the Welch conjecture along the same lines as
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in this paper (the idea of using Pless power moment identities and McEliece's
theorem seems "rst to have occurred to Charpin [5], while the distance
results [8, 9] were published by Dobbertin). However, for obvious reasons
they did not wish to reveal this promising way of attacking the Welch
conjecture to others. During a meeting in Oberwolfach the second author
was informed by Dobbertin that solving the binary weight problem in
Section 5, which looked similar to a binary weight problem from [10], was
probably su$cient to prove the Welch conjecture; no details concerning this
proof were revealed. After "nishing [10], we used the methods developed
there to solve the binary weight problem; then, intrigued by the Welch and
Niho conjectures, we succeeded in deriving the complete proof for the Welch
and Niho conjectures presented here. After hearing of our results, Canteaut
et al., also succeeded in completing their own proof of the Welch conjecture
(see [4]). Perhaps unfortunately, our o!er to write a joint paper could not be
e!ectuated at that point of time. We hope that the above lines serve to give
the proper credit to all the people that have been involved in this proof
through the years.

2. POWER MOMENT IDENTITIES AND CODES
WITH FEW WEIGHTS

As in Section 1, we use C
1,t

to denote the binary cyclic code of length
n"2m!1 with de"ning zeros a and at, where a is a primitive element in
GF(2m). The number of codewords of weight i in C

1,t
and its dual code

CM
1,t

will be denoted by A
i
and B

i
, respectively.

For later use, we observe the following.

LEMMA 1. =ith the above notation, we have that A
1
"A

2
"0.

Proof. Note that C
1,t

is a subcode of the binary Hamming code, which
has minimum distance 3; therefore A

1
"A

2
"0. j

As we mentioned in Section 1, for certain special values of t, the code CM
1,t

is
known or conjectured to be a three-weight code. We will show how such
results can be proved in a uniform manner from information on A

3
, A

4
, and

certain divisibility conditions on the weights of CM
1,t

by powers of 2.
We proceed as follows, using some ideas of Kasami [13]. In fact we will

treat a more general situation "rst, then specialize to the aforementioned
codes CM

1,t
.

Let CM be a binary [n, k] linear code. We still use B
i
and A

i
to denote the

number of codewords of weight i in CM and C respectively. For later use, we
need the Pless power moment identities for the B

i
's [20; see also 18, p. 131].
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To keep things simple, we will assume that C has minimum distance at least
3 (which will be the case for all our applications). Then, we have that

P
0
:"

n
+

w/0

B
w
"2k,

P
1
:"

n
+

w/0

wB
w
"2k~1n,

P
2
:"

n
+

w/0

w2B
w
"2k~2n (n#1),

P
3
:"

n
+

w/0

w3B
w
"2k~3(n2 (n#3)!3!A

3
),

P
4
:"

n
+

w/0

w4B
w
"2k~4(n (n#1)(n2#5n!2)

#4!(A
4
!nA

3
)).

Let 0(w
1
4w

2
4w

3
4w

4
4n be given integers, and let

g (x)"(x!w
1
) (x!w

2
) (x!w

3
) (x!w

4
).

We will be interested in the linear combination E of the B
w
's de"ned by

E"

n
+

w/1

g (w)B
w
. (4)

Note that by using the above formulae for P
i
, i"0, 1,2, 4, the value of

E for given w
1
, w

2
, w

3
, w

4
can be expressed in terms of n, k, A

3
, and A

4
.

Moreover, we have the following.

THEOREM 1. =ith the above notation and assumptions, if CM has no
codewords of weight w in the intervals (w

1
, w

2
) and (w

3
, w

4
), then E50 with

equality if and only if CM has no nonzero weights except w
1
, w

2
, w

3
, and w

4
.

Proof. We note that g (x) is positive outside the interval [w
1
, w

4
] and

inside the interval (w
2
, w

3
). Also g(x) is negative in the intervals (w

1
, w

2
)

and (w
3
, w

4
). If CM has no codewords of weight w in the intervals (w

1
, w

2
) and
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(w
3
, w

4
), then clearly we have E50, and E"0 if and only if B

w
"0 for all

nonzero w not equal to w
i
, i"1, 2, 3, 4. This completes the proof. j

This simple theorem is actually quite useful for proving that certain codes
have only three or four weights. In this paper, we will concentrate on
applications of Theorem 1 in proving three-weight code results. But we
remark that this theorem can also be used in a similar way to prove
four-weight code results.

From now on, we always assume that the length n of the code CM is odd,
and w

1
"w

2
!d, w

2
"w

3
"(n#1)/2, w

4
"w

2
#d. We have the following

immediate corollary of Theorem 1.

COROLLARY 1. Suppose that CM has no codewords of weight w in the interval
(n#1)/2!d(w((n#1)/2#d except for w"(n#1)/2. ¹hen E50, and
E"0 if and only if CM is a three-weight code with nonzero weights
(n#1)/2!d, (n#1)/2, and (n#1)/2#d.

Proof. In Theorem 1, let w
1
"w

2
!d, w

2
"w

3
"(n#1)/2, w

4
"w

2
#d.

Then the corollary follows immediately from Theorem 1. j

COROLLARY 2. (i) Suppose that d divides (n#1)/2. ¹hen CM is a three-
weight code with weights (n#1)/2!d, (n#1)/2, and (n#1)/2#d if and only
if E"0 and the weight of every codeword of CM is divisible by d.

(ii) If d D(n`1)
2

, if C has minimum distance at least 3, and if CM is a three-
weight code with weights (n#1)/2!d, (n#1)/2, and (n#1)/2#d, then
dD2k~1, where k is the dimension of CM. If, in addition, n"2m!1, then
2k~m~1 Dd2 when k(3m, and d"2m~1 when k53m.

Proof. For part (i), we observe that if the weight of every codeword of
CM is divisible by d and d Dn`1

2
, then CM has no codewords of weight w in the

interval (n#1)/2!d(w((n#1)/2#d except for w"(n#1)/2. Now the
conclusion in part (i) follows from Corollary 1.

For part (ii), we set s"(n#1)/2. Using the power moment identities listed
above, we have

P
0
"2k,

P
1
"2ks!2k~1,

P
2
"s22k!2k~1s"sP

1
,

P
3
"2k~3(2(2s!1)2 (s#1)!6A

3
),
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and

B
s~d

"(s#d )(2k~1!s)/(2d2),

B
s
"(2k!1)!s (2k~1!s)/d2,

B
s`d

"(s!d)(2k~1!s)/(2d2).

Since B
s~d

!B
s`d

"(2k~1!s)/d is an integer and by assumption d Ds, we
see that d D2k~1; hence d is a power of 2.

Using the above expressions for B
s~d

, B
s
, B

s`d
, we also "nd that

P
3
"s3(2k!1)!d2(2k~1!s),

A
3
"(s3!(3s!1)2k~2#d2 (2k~1!s))/(3 ) 2k~2).

Since A
3

is an integer, we conclude that 2x(k~m~1)@2y Dd if n"2m!1, k(3m,
and d"2m~1 if n"2m!1 and k53m. j

Next we express E in terms of n, k, A
3
, and A

4
. (Note that we assume

A
1
"A

2
"0.) By the de"nition of E, we have that

E"P
4
!P

3

4
+
i/1

w
i
#P

2
+

14i:j44

w
i
w
j

!P
1

+
i:j:k

w
i
w
j
w
k
#(P

0
!1)w

1
w
2
w
3
w

4
.

We assumed that w
1
"w

2
!d, w

2
"w

3
"(n#1)/2, w

4
"w

2
#d. With

this assumption, we "nd using the power moment identities that

E"P
4
!4w

2
P
3
#(6w2

2
!d2)P

2
!(4w3

2
!2d2w

2
)P

1

#(w4
2
!d2w2

2
)(P

0
!1) (5)

"3 ) 2k~1(A
3
#A

4
)!(n#1)4/16#2k~4(n#1)(3n#1)

#d2(n#1)2/4!2k~2d2(n#1). (6)
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We now specialize to the case where n"2m!1 and k"2m. With these
assumptions, we obtain that

E"22m~2(6(A
3
#A

4
)!(d2!2m~1) (2m!1)).

In order to apply Corollary 2, part (i), we need d to be a power of 2. Setting
d2"2m~2`e, we conclude from the above equation that E"0 if and only if
A

3
#A

4
"(2e~1!1)2m~1(2m!1)/6. Combining this with Corollary 2, we

now have the following.

THEOREM 2. ¸et n"2m!1, and let C
1,t

be the binary cyclic code of length
n with de,ning zeros a and at, where a is a primitive element of GF(2m). Suppose
that CM

1, t
has dimension 2m. ¸et d be the largest power of 2 dividing the weight of

every codeword of CM
1,t

, and let e be such that d2"2m~2`e. ¹hen

A
3
#A

4
5(2e~1!1)2m~2(2m!1)/3,

with equality if and only if CM
1,t

is a three-weight code with nonzero weights
2m~1#e2(m~2`e)@2, e"!1, 0, 1, where A

i
denotes the number of codewords of

weight i in C
1,t

.

3. THE NUMBER OF WORDS OF WEIGHT 3 OR 4 in C
1,t

Let n"2m!1 and let a be a primitive element in GF(2m). Given a function
f : GF(2m)PGF(2m) with f (0)"0, we use C

f
to denote the binary cyclic code

of length 2m with parity check matrix

H
f
"A

1 1 1 1 2 1

0 1 a a2 2 an~1

f (0) f (1) f (a) f (a2) 2 f (an~1)B .

We will index the coordinate positions of C
f

using the elements of GF(2m),
in such a way that the column of H

f
with index x3GF(2m) will be (1, x, f (x))T.

Let C*
f

denote the subcode of C
f

consisting of all words having a zero in the
position indexed by 0. Denote the number of codewords of weight w in C*

f
by

A
w
. We remark that if f (x)"xt, then the code C*

f
is just C

1,t
. Note also that if

S"Mx Dc
x
O0N is the set of supports of a codeword of weight 2w in C

f
, then

SCM0N is the set of supports of a codeword in C*
f
, of weight 2w if 0NS or weight

2w!1 if 03S; moreover, all sets of supports of words in C*
f

arise in one of
these two ways.
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In what follows, we will be interested in the number A
3
#A

4
of codewords

of weight 3 or 4 in C*
f
. Note that by the previous remark, A

3
#A

4
equals the

number of words of weight 4 in C
f

and therefore is the number of sets
Mx

1
, x

2
, x

3
, x

4
N-GF(2m) of size 4 such that

x
1
#x

2
#x

3
#x

4
"0, (7)

f (x
1
)#f (x

2
)#f (x

3
)#f (x

4
)"0. (8)

Writing x
2
"x, x

1
"x#a, and x

4
"y, we see that A

3
#A

4
is the number

of sets of the form Mx, x#a, y, y#aN, aO0, yOx, x#a, such that

f (x#a)#f (x)"f (y#a)#f (y). (9)

The function f is said to be Almost Perfect Nonlinear (APN) if for each
a3GF(2m)CM0N, the function

*
f,a

(x)"f (x#a)!f (x)

is two-to-one from GF(2m) to itself*that is, if (9) only has the trivial
solutions a"0, y"x, or y"x#a.

As a consequence of the preceding analysis, we have obtained the main
part of the following theorem.

THEOREM 3 [5]. ¹he code C*
f

has minimum distance 5 if and only if f is
APN.

(The fact that C*
f

has minimum distance at most 5 follows from a sharpening
of the Johnson bound [1].)

COROLLARY 3. ¹he function f is APN if and only if A
3
#A

4
"0.

From now on, we only consider functions f of the form f (x)"xt for some t.
In that case, for given x the number of solutions y of (9) only depends on
whether a"0 or aO0. (To see this, in (9) divide both sides of the equation by
at if aO0.) As a consequence, the set of supports of codewords of weight 4 in
the extended code of C

1,t
are precisely the sets of the form

Max, a(x#1), ay, a(y#1)N, aO0, yOx, x#1 (10)

with x and y satisfying

(x#1)t#xt"(y#1)t#yt. (11)
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Let l
t
(x) denote the number of solutions y of the equation (11). Note that

l
t
(x)52 for all x.

THEOREM 4. ¹he sets of supports of codewords of weight 3 or 4 in C
1,t

are
precisely the sets SCM0N for which S has the form (10) with x and y satisfying (11).
¹he number A

3
#A

4
of such codewords satis,es

A
3
#A

4
"(2m!1) +

x |GF(2m)

(l
t
(x)!2)/4!

Proof. For each aO0, Eq. (9) has precisely v
t
(x) solutions y for given x; all

but two of these lead to a valid support set Mx, x#a, y, y#aN. j

We remark that the support sets of words of weight 4 in the code C
f
,

f (x)"xt, form a 2-design if and only if l
t
(x) does not depend on x3GF(2m).

In what follows, we will apply the previous results to determine A
3
#A

4
for various pairs (m, t).

3.1. ¹he Gold Case

First we consider the case where t"1#p, p"2r. Write e"(r, m).

THEOREM 5. All words of weight 3 or 4 in C
1,1`p have zeros a1`2ej for all j.

¹he number A
3
#A

4
of such words satis,es

A
3
#A

4
"2m~2(2m!1)(2e~1!1)/3.

Proof. We apply Theorem 4. Note that the map z>zp from GF(2m) to
GF(2m) is linear, hence (1#z)1`p#z1`p"zp#z#1. Moreover, x and
y satisfy (11) precisely when c"x#y satis"es cp"c. It is easily seen that this
holds if and only if

c2e
"c. (12)

As a consequence, the sets of supports of codewords of weight 3 or 4 in
C

1,1`p are precisely the sets

Max, a (x#1), a (x#c), a (x#c#1)NCM0N (13)

with aO0, cO0, 1 and c satisfying (12) (i.e., c3GF(2e)). The number
A

3
#A

4
of such sets is easily seen to be (2m!1)2m (2e!2)/4!.

Since (12) implies that c2ej
"c for all j, the preceding analysis shows that

each set (13) is in fact the set of supports of a word that is contained in all
codes C

1,1`2ej. j
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We remark that as a consequence of Theorem 4 and Theorem 5, the
function x>x2r`1 on GF(2m) is APN if and only if (m, r)"1.

3.2. ¹he Kasami Case

Next, we consider the case where t"p2!p#1, p"2r. Again we write
e"(r, m). We have not been able to "nd a simple method to count the
number of words of weight at most 4 in C

1,p2~p`1
for all values of r; the

following approach works in the case where m/e is odd.
Let C

1`p,1`p3 denote the binary cyclic code of length n"2m!1 with
de"ning zeros a1`p, a1`p3. Remark that if m/e is odd, or, equivalently, if
(1#p, 2m!1)"1, then the map a>a1`p induces a permutation on
GF(2m)CM0N and hence the codes C

1,p2~p`1
and C

1`p,1`p3 are equivalent. We
will show later on that the following holds.

LEMMA 2. (i) A word of weight 3 or 4 in the code C
1,p2~p`1

has additional
zeros a(p2j`1`1)@(p`1) for all j.

(ii) A word of weight 3 or 4 in the code C
1`p,1`p3 has additional zeros

a1`2e(2j`1) for all j.

This has the following consequence.

THEOREM 6. ¸et m/e be odd. ¹hen the sets of words of weight at most 4 in
the codes C

1`p,1`p3 and C
1,1`p are equal. Moreover, the number A

3
#A

4
of

words of weight 3 or 4 in C
1,p2~p`1

satis,es

A
3
#A

4
"2m~2(2e~1!1)(2m!1)/3.

Proof. By Theorem 5, the words of weight 3 or 4 in C
1,1`p have zeros

a1`2ej for all j. So in particular, such words have zeros a1`p and a1`p3 and
hence are contained in C

1`p,1`p3.
Conversely, if m/e is odd, then by Lemma 2, a word of weight 3 or 4 in

C
1`p,1`p3 has zeros a1`2e(2j`1) for all j; therefore a2, and hence a, is a zero and

such a word is contained in C
1,1`p. Since the codes C

1`p,1`p3 and
C

1,p2~p`1
are equivalent if m/e is odd, the second claim in the theorem

follows from Theorem 5. j

We now give a proof of Lemma 2. In fact, part (ii) of Lemma 2 has already
been proved in [14]. Here we sketch a short proof of Lemma 2, based on
results from [14] and [15].

Let c(X)"+k
i/1

Xui with 04u
1
(u

2
(2(u

k
(n. For each i3Z

n
,

de"ne the vector v(i) in GF(2m)k by

v (i)"(aiu1, aiu2,2, aiuk).
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Let A be a subset of Z
n
. We will say that A is independent if the corresponding

set of vectors <(A)"Mv (a) Da3AN is independent over GF(2m), or, equiva-
lently, if the set of residue classes MXa Da3AN modulo the polynomial
p
c
(X)"<k

i/1
(X!aui) is independent. Note that an independent set has size

at most k.
Let R"Mr3Z

n
Dc(ar)"0N. The "rst step in our proof is mostly a refor-

mulation of Lemma 1 in [14]; see also [15].

1. For all r, s3Z
n
, we have that v(r)v(s)?"c(ar`s). So if A is indepen-

dent,A-R, and sNR, then AXMsN is independent.
Indeed, v(r)v (s)?"+k

i/1
aruiasui"+k

i/1
a(r`s)ui"c (ar`s). So if A-R is in-

dependent and sNR, then the vector v (0) is orthogonal to all the vectors in
<(A) but not orthogonal to v (s), and therefore AXMsN is independent.

The next step can be found in Theorem 11 of [15].
2. If A is independent and s3Z

n
, then the set s#A"Ms#a Da3AN is

independent. This statement is obvious when considered in terms of residue
classes Xamod p

c
(X).

The next step is again in [14].
3. If A is independent and l is any integer, then the set 2lA"M2la Da3AN

is independent.
Essentially, this statement is a direct consequence of the fact that for each l,

the map z>z2l is linear on GF(2m).
4. Now suppose that for some a, q3Z

n
, q"2i, the sequence Mv

j
N
j50

in
Z

n
satis"es v

j`1
"a#qv

j
for all j50 and the set R contains v

j
for

j"0,2, k!1. Then v
j
3R for all j.

To see this, suppose that v
j
3R for j"0,2, u!1 and v

u
NR. By step 1 with

A"0, the set Mv
u
N is independent, and then by a sequence of applications of

step 2 (with s"!a), step 3 (with l"!i), and step 1 (with s"v
u
), we

conclude that the sets Mv
u~1

, v
u
N, Mv

u~2
, v

u~1
, v

u
N,2, Mv

0
, v

1
,2, v

u
N are inde-

pendent, which is only possible if u#14k.
5. Now we apply the above to a codeword c3C

1,p2~p`1
of weight

k44. The sequence v
j
"(p2j~3#1)/(p#1) satis"es v

j`1
"1!p#p2v

j
for

all j50; moreover, note that v
0
"p~3 (p2!p#1), v

1
"p~1, v

2
"1, and

v
3
"p2!p#1 are all zeros of c. Then part (i) of Lemma 2 follows from an

application of the result in step 4 above with a"1!p and q"p2. Similarly,
part (ii) of Lemma 2 follows by considering the sequence of numbers
v@
j
"(p#1)v

j
.

3.3. ¹he=elch Case

Next, we consider the case where m"2r#1 is odd and t"p#3, with
p"2r. The results in Section 3.3 and 3.4 are due to Dobbertin [8, 9]. Here,
we use Theorem 4 to translate his results into coding language.
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Consider the function

*(x)"(x#1)p`3#xp`3.

Writing (x#1)p`3"(x#1)p(x#1)2(x#1), it follows easily that * (x)"
1#(x#xp) (x2#x#1). Hence *(x) can be written in terms of the poly-
nomial

q (y)"y(y2p#y2#1)

as

*(x)"1#q (x#xp).

Since (r, m)"1, the map x>x#xp is two-to-one on GF(2m). The preceding
analysis is from [8], where the following result was also proved.

THEOREM 7 [8]. ¹he polynomial q(y)"y (y2r`1
#y2#1) is a permutation

polynomial on GF(2m), m"2r#1.

As a consequence, the number lp`3
(x) of solutions y to *(x)"* (y) equals

2 for all x; hence by Theorem 4, we have the following.

THEOREM 8. ¸et m"2r#1 and t"p#3, with p"2r. ¹hen the code
C

1,t
has minimum distance 5.

3.4. ¹he Niho Cases

Let m be odd, and let r3Z
m

be such that 4r#1,0 modm. Here we
consider the case where t"p2#p!1, with p"2r. Again, we will apply
Theorem 4. It is not di$cult to verify that the function

*(x)"(x#1)p2`p~1#xp2`p~1

can be written in terms of the polynomial

q (y)"y2p2`2p`1#y2p2`2p~1#y2p2`1#y2p2~1#y

as

*(x)"1#1/q ((xp#x)p~1#1).

The preceding analysis as well as the following result can be found in [9].

THEOREM 9 [9]. =ith the above de,nitions, the polynomial q(y) is a permu-
tation polynomial over GF(2m).
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As a consequence, the number lp2`p~1
(x) of solutions y to * (x)"*(y)

equals 2 for all x; hence by Theorem 4, we have the following.

THEOREM 10. ¸et m be odd, let 4r,!1modm, and let t"p2#p!1,
where p"2r. ¹hen the code C

1,p2`p~1
has minimum distance 5.

4. THE LARGEST POWER OF 2 DIVIDING THE WEIGHTS OF C

In this section, we use the following theorem of McEliece to obtain
information on the largest power of 2 dividing the weights of CM

1,t
.

THEOREM 11 [16]. ¸et C be a binary cyclic code, and let l be the smallest
positive integer such that l nonzeros of C (with repetitions allowed) have
product 1. ¹hen the weight of every codeword in C in divisible by 2l~1, and
there is at least one weight which is not divisible by 2l.

Let n"2m!1, and let Z
n
be the ring of integers modulo n. We de"ne the

weight w(a) of a given sequence a"a
0
, a

1
,2, a

m~1
as

w(a)"
m~1
+
i/0

a
i
.

We say that a number a has binary representation a"a
m~1

2a
0

if
a"+m~1

i/0
a
i
2i with a

i
3M0, 1N for all i. We will write aN to denote the number

with binary representation aN
m~1

2aN
0

(that is, aN "2m!1!a). By a slight
abuse of notation, we also use w(a) to denote the (binary) weight +m~1

i/0
a
i
of

a number a with binary representation a"a
m~1

2a
0
. Note that

w(aN )"m!w (a). Moreover, if a3Z
n

has a given binary representation
a,+m~1

i/0
a
i
2i mod2m!1, a

i
3M0, 1N, then we also use w (a) to denote the

weight of this representation. Note that an element a3Z
n

has a unique
binary representation if aI0mod n.

Next, for any integer m'1 and t3Z
n
CM0N, we de"ne

M (m, t)"max*(w (s)!w (a)), (14)

where the maximum is over all integers a, s for which 04a, s42m!1,
s,tamod 2m!1, and aO0 or sO2m!1. For later use, we will write the
above de"nition in a slightly di!erent form. First we observe that the above
maximum is never attained for a,0 mod2m!1. Indeed, if a"2m!1, then
w(s)!w(a)40 for all s, and if a"0, then s,0 mod2m!1, so s"0 (the
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case a"0, s"2m!1 is excluded) and w (s)!w (a)"0. However, the choice
a"1, s"t shows that M(m, t)5w (t)!w (1)50. Next, we note that
w(sN )!w(aN )"w (a)!w(s). As a consequence, we have that

M(m, t)"max* (w(a)!w(s))"max* (w(s)!w (a))

"max* Dw(a)!w (s) D, (15)

where the maximum is now over all integers a, s for which 04a, s42m!1,
s,tamod 2m!1, and aI0 mod2m!1, which will be the form used in this
paper.

THEOREM 12. ¸et C
1,t

be the binary cyclic code of length n"2m!1 with
de,ning zeros a and at, where a is a primitive element of GF(2m) and t3Z

n
CM0N.

¸et M(m, t) be de,ned as above. ¹hen the weight of every codeword of CM
1,t

is
divisible by 2m~M(m, t)~1, and there is at least one weight which is not divisible by
2m~M (m, t).

Proof. By de"nition, the zeros of C
1,t

are Ma1, a2, a4,2, a2m~1, at,
a2t,2, a2m~1tN, so the nonzeros of CM

1,t
are Ma~1, a~2, a~4,2, a~2m~1, a~t,

a~2t,2, a~2m~1tN. Let

N"M!1, !2, !4,2,!2m~1, !t, !2t,2,!2m~1tN.

We want to "nd the smallest l51 such that i
1
, i

2
,2, il come from the set

N and

ai1`i2`2`il"1. (16)

We remark that, since N-Z
2m~1

is closed under multiplication by 2, we may
assume without loss of generality that all i

j
are distinct. Since i

1
, i

2
,2, il are

from the set N, we may assume that some of them are !2j1, !2j2,2,!2jc

and the rest are !2h1t, !2h2t,2,!2hdt. Let b"2j1#2j2#2#2jc, and
let a"2h1#2h2#2#2hd. Then we have c#d"l, 04a, b42m!1,
w(a)"c, w (b)"d, and since l51 we also have aO0 or bO0. Now
ai1`i2`2`il"1 if and only if a~b~ta"1, which is equivalent to

b#ta,0mod2m!1. (17)
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Write s"2m!1!b. Then (17) is equivalent to s,tamod 2m!1 and
since w (s)"w (bM )"m!w(b), we have l"m!w(s)#w(a) and aO0 or
sO2m!1. This tells us that the smallest l such that (16) holds necessarily
satis"es l"m!M(m, t). The conclusion of the theorem now follows from
Theorem 11. j

5. THE DETERMINATION OF M (m, t)

In this section we will determine the number M (m, t) as de"ned in (15) for
various values of t. We treat successively the Gold case (t"2r#1), the
Kasami case (t"22r!2r#1), the Welch case (t"2(m~1)@2#3, m odd), and
the Niho cases (m odd, 4r,!1modm, t"22r#2r!1).

In all these cases, we "rst obtain upper bounds on M(m, t) through
a detailed analysis of a suitable binary modular add-with-carry algorithm for
the computation of tamod2m!1, where a3Z

2m~1
CM0N varies. The main

idea is to express the quantity w (ta)!w (a) as a sum +m~1
i/0

u
i
, where each u

i
is

an expression involving some of the digits of a and some of the carries that
occur in the computation of ta mod2m!1; then we show by a local analysis
that this sum cannot grow beyond the desired bounds. In fact, a more
detailed analysis of the arguments that we use to obtain these bounds is
su$cient to construct examples where the bounds are actually attained.

It turns out that the Gold case is almost trivial and the Kasami case is only
slightly more di$cult. The Welch and Niho cases are much more involved. In
the latter two cases, we essentially construct a weighted directed graph D (not
depending on m) with the property that directed cycles in D of length m and
total arc weight u are in 1}1 correspondence with integers a3Z

2m~1
CM0N for

which w(a)!w (ta)"u. We remark that a similar technique has been ap-
plied in [10] to count the number of solutions of certain equations involving
the binary weight function w. Once we have constructed the weighted digraph
D, proving the desired upper bounds on M (m, t) is equivalent to showing that
the weight of every directed cycle in D is not larger than its length, which is
a "nite problem. The Welch case can still be analysed by hand and we will
present this analysis in full detail. In contrast, the Niho cases are perhaps best
analysed by computer (although an analysis by hand seems feasible). We will
give su$cient details to enable the interested readers to do such an analysis
using a computer by themselves.

5.1. Modular Add-with-Carry Algorithms in Z
2m~1

We now discuss the add-with-carry algorithm for integers modulo 2m!1
and describe some of its basic properties. The required results will follow
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from a simple lemma given below. Before we state it, we introduce some
notation.

Let Ma
i
N
i |Z be a periodic integer sequence, with period m. De"ne

a*k+"
m~1
+
i/0

a
i`k

2i.

We write a"a*0+.

LEMMA 3. ¹here exists a periodic integer sequence Mc
i
N
i |Z with period

m such that

2c
i
"a

i
#c

i~1
(18)

holds for all i if and only if a,0 mod2m!1. If that is the case, then we have
a*k+,0mod 2m!1 for all k, and

c
k~1

"a*k+/(2m!1), (19)

for all k; in particular, the solution is unique. Also, if (18) holds, then

m~1
+
k/0

c
k
"

m~1
+
k/0

a
k
. (20)

Proof. Suppose that (18) holds for all i. Write c*k+"+m~1
i/0

c
i`k

2i. Then,
using (18), we have that

2c*k+"a*k+#
m~1
+
i/0

c
i~1`k

2i

"a*k+#2c*k+#c
k~1

!2mc
k`m~1

"a*k+#2c*k+!c
k~1

(2m!1);

hence c
k~1

"a*k+/(2m!1). So a*k+,0mod2m!1 for all k; in particular, we
have that a,0 mod2m!1.

Conversely, suppose that a,0 mod2m!1. Then obviously 2ka*k+,
a*0+,0 mod2m!1, hence a*k+,0mod2m!1 for all k. Then the sequence
Mc

i
N
i |Z de"ned by (19) is an integer sequence with period m, and it is easily
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veri"ed that this sequence indeed satis"es (18). Finally, the equation (20)
easily follows from (18) by summing (18) for i"0,2, m!1. j

Now let a( j), 14j4k, be nonnegative integers with 04a(j)42m!1, with
binary representation a( j)"a(j)

m~1
2a( j)

0
for all j. Furthermore, let t

1
, t

2
,2, t

k
be nonzero integers. De"ne t

`
"+

i,ti;0
t
i
and t

~
"+

i,ti:0
t
i
so that

k
+
j/1

t
j
"t

`
#t

~
, t

`
50, t

~
40.

Let s be an integer with 04s42m!1, with binary representation
s"s

m~1
2s

0
, say, and suppose that

s,t
1
a(1)#t

2
a(2)#2#t

k
a(k)mod 2m!1.

We will prove in the theorem below that there exists a unique integer
sequence c

~1
, c

0
,2, c

m~1
with c

~1
"c

m~1
such that

2c
i
#s

i
"

k
+
j/1

t
j
a( j)
i
#c

i~1
, 04i4m!1. (21)

The s
i
and c

i
will be called the digits and carries for the computation modulo

2m!1 of the number s. We emphasize here that the non-obvious part is the
existence of a carry sequence with c

m~1
"c

~1
(otherwise (21) represents the

ordinary add-with-carry algorithm). To stress the periodic nature of this
modular add-with-carry algorithm, we will often consider all indices as indices
from Z

m
.

THEOREM 13. (i) ¹here exists a unique integer sequence c
~1

, c
0
,2, c

m~1
with c

~1
"c

m~1
such that (21) holds. Moreover, if we de,ne w(c)"+m~1

i/0
c
i
,

then we have that

w(c)"
k
+
j/0

t
j
w (a( j))!w(s). (22)

Also, we have that t
~
!14c

i
4t

`
, and furthermore

t
~
4c

i
(t

`
(23)

for all i if a(j)I0 mod2m!1 holds for some j.
(ii) If sN

i
"1!s

i
, aN ( j)

i
"1!a( j)

i
, and cJ

i
"t

`
#t

~
!1!c

i
for all i and j,

then the sN
i
and cJ

i
are the digits and carries for the modular computation of

sN,!s,+k
j/1

t
j
aN (j)mod 2m!1.
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Proof. De"ne a
i
"!s

i
#+k

j/1
t
j
a( j)
i

for i"0,2,m!1 and extend the
sequence to a sequence Ma

i
N
i|Z by letting a

i`m
"a

i
for all i3Z; now Lemma 3

applies. To obtain the bounds on the c
i
, simply note that

(2m!1)t
~
!(2m!1)4a*k+4(2m!1)t

`

holds for all k, and if equality holds in either of these bounds then s and each
a(j) equals either 0 or 2m!1.

The relation between the digits and carries for the computation of s
and !s as given in the second part of the theorem is easily veri"ed by
substitution. j

In the next part, we will be interested in the digits and carries for the
modular computation of numbers s for which s,tamod 2m!1, where
t"+k

j/1
t
j
2ej with each t

j
3M!1, 1N. Note that if a has binary representation

a"a
m~12

a
0
, then a(j) :"2eja has binary representation a(j)

m~1
2a( j)

1
a( j)
0

,
where a(j)

i
"a

i~ej
and the indices are considered modulo m. Now the exist-

ence of a carry sequence c and binary digits s
i
satisfying

2c
i
#s

i
"

k
+
j/1

t
j
a
i~ej

#c
i~1

(24)

for all i3Z
m

is guaranteed by Theorem 13.

5.2. ¹he Gold Case

We now determine M(m, t) for the case t"2r#1. Let a and s be integers
for which 04a, s42m!1, s,tamod2m!1, and aI0 mod2m!1; sup-
pose that s and a have binary representations a"a

m~1
2a

0
and s"

s
m~1

2s
0
. To determine M (m, t), it is su$cient to derive a suitable upper

bound on w (a)!w (s). To this end, we will apply Theorem 13. According to
this theorem, there are carries c

i
3M0, 1N for i3Z

m
such that

2c
i
#s

i
"a

i~r
#a

i
#c

i~1
(25)

holds for all i3Z
m
; moreover, w (c)#w (s)"2w(a). Now let

u
i
"c

i
!a

i
.

Then u
i
3M!1, 0, 1N and

w (u) :"
m~1
+
i/0

u
i
"w(a)!w (s).

LEMMA 4. If u
i
"1, then u

i~r
40.
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Proof. &&If '' u
i
"1, then c

i
"1 and a

i
"0. Hence by (25), we have

a
i~r

"1, therefore u
i~r

40. j

THEOREM 14. =e have that

M(m, 2r#1)"G
m/2

(m!(m, r))/2,

if m/(r, m) is even,

if m/(r, m) is odd.

Proof. Partition the m numbers u
0
,2, u

m~1
into groups

Mu
i
, u

i~r
, u

i~2r
,2N.

There will be e"(r, m) such groups, each consisting of ¸"m/(r, m) elements.
By Lemma 4, the sum of the elements from each group is at most ¸/2 if ¸ is
even or (¸!1)/2 if ¸ is odd. The upper bounds on w (a)!w(s), and hence on
M(m, t), now follow.

It is easy to construct examples of a3Z
2m~1

CM0N for which the upper
bounds are attained. For example, we may take a"(2e!1) '
(2r(m@e~e)!1)/(22r!1)"(2e!1) (1#22r#24r#2#22r((m@e~e)@2~1)),
where e"0 if m/e is even and e"1 otherwise. Then w (a)"(m!ee)/2 and
w((2r#1)a)"m!ee. Therefore Dw (a)!w((2r#1)a) D"(m!ee)/2. This
completes the proof. j

5.3. ¹he Kasami Case

Next, we determine M(m, t) for the case t"22r!2r#1. In fact, we will
consider the more general case where t"(2rk#1)/(2r#1)"1#2r#
2#2(k~1)r, with k53 odd. Let a and s be integers for which 04a,
s42m!1, s,tamod2m!1, and aI0mod2m!1; suppose that s and
a have binary representations a"a

m~1
2a

0
and s"s

m~1
2s

0
. Again, we

apply Theorem 13 to derive a suitable upper bound on w (a)!w (s). Accord-
ing to this theorem, there are carries c

i
3M!(k!1)/2,2, (k!1)/2N for

i3Z
m

such that

2c
i
#s

i
"a

i~(k~1)r
!a

i~(k~2)r
#2!a

i~r
#a

i
#c

i~1
(26)

holds for all i3Z
m
; moreover, w (c)#w (s)"w (a). In this case, we take

u
i
"c

i
#c

i~r
, so that w (u)"+m~1

i/0
u

i
"2(w (a)!w(s)).

LEMMA 5. If u
j
NM!1, 0, 1N for some j3Z

m
, then a,0mod2m!1.
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Proof. By adding the two equations (26) for i and i!r, we obtain that

2w
i
#s

i
#s

i~r
"a

i~kr
#a

i
#w

i~1
(27)

for all i3Z
m
. From (27), it is easily seen that

Dw
i
D4(Dw

i~1
D#1)/2, (28)

for all i3Z
m
. Due to the cyclic nature of (27), we may conclude that Du

i
D42

for all i; moreover, if u
j
3M!1, 0, 1N for some j3Z

m
, then the same will be

true for all subsequent indices i"j#1, j#2,2, and hence for all i3Z
m
.

The only other possibilities are that either w
i
"2, s

i
"s

i~r
"0, a

i~kr
"a

i
"1

for all i, or w
i
"!2, s

i
"s

i~r
"1, a

i~kr
"a

i
"0 for all i; in both these cases,

we have that a,0mod2m!1. j

THEOREM 15. For k53 odd, we have that

M(m, (2kr#1)/(2r#1))"M(m, 2r!1)"G
m/2,

(m!(m, r))/2,

if m/(r, m) is even;

if m/(r, m) is odd.

Proof. If c
i
"c

i~r
"$1 for some i, then Du

i
D"2, hence a,0mod 2m!1

by Lemma 5, which is excluded in the de"nition of M(m, (2kr#1)/(2r#1)). So
we may assume that if c

i
"1, then c

i`r
"c

i~r
"0. Again we partition the

m numbers c
0
, c

1
,2, c

m~1
into groups Mc

i
, c

i~r
, c

i~2r
,2N. The remainder of

the proof now proceeds similarly to the proof of Theorem 14. j

5.4. ¹he=elch Case

For the moment, let m"2r#1 be odd. We now consider M (m, t) for the
case where t"2r#3. Let a and s be integers for which 04a, s42m!1,
s,tamod 2m!1, and aI0mod2m!1; suppose that s and a have binary
representations a"a

m~1
2a

0
and s"s

m~1
2s

0
. Again, we apply Theorem

13 to derive a suitable upper bound on w (a)!w (s). According to this
theorem, there are carries c

i
3M0, 1, 2N for i3Z

m
such that

2c
i
#s

i
"a

i
#a

i~1
#a

i~r
#c

i~1
(29)

holds for all i3Z
m
; moreover, w (c)#w (s)"3w(a).

Our aim is to prove that

Dw(s)!w (a) D4r. (30)
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In fact, we shall prove more. Let x, y, p, and q be integers for which 04x, y, p,
q42m!1,

p,3x#y, q,3y#2m~1xmod 2m!1, (31)

and at least one of x, y is nonzero modulo 2m!1; suppose that x, y, p, and
q have binary representations x"x

m~1
2x

0
, y"y

m~1
2y

0
, p"p

m~1
2p

0
,

and q"q
m~1

2q
0
. (The motivation for this will be discussed in a moment.)

By Theorem 13, there are carries d
i
, e

i
3M0, 1, 2N such that

2d
i
#p

i
"x

i
#x

i~1
#y

i
#d

i~1
(32)

and

2e
i
#q

i
"y

i
#y

i~1
#x

i`1
#e

i~1
(33)

hold for all i3Z
m
; furthermore, the carry sequences d and e satisfy

w (d)"2w(x)#w (y)!w (p), w (e)"2w(y)#w (x)!w (q). (34)

We shall prove that

Dw (x)#w(y)!w (p)!w (q) D4m. (35)

Observe that if we let x
i
"a

i
, d

i
"c

i
, p

i
"s

i
, and y

i
"a

i~r
, e

i
"c

i~r
,

q
i
"s

i~r
, for all i (so that x"a, y,2ra, p"s,(2r#3)a, and q,2rp), then

(32) follows from (29). Moreover, since !2r,1 modm, (33) follows from (29)
by replacing i by i!r. In that case w (x)"w (y)"w (a) and w (p)"
w(q)"w (s), and (30) follows immediately from (35) because m"2r#1 is
odd.

We now proceed to prove (35). Since the parity of m will no longer play
a role in what follows, we will now drop our previous assumption that m is
odd. In order to prove (35), we will follow a similar strategy as before. Let the
numbers m

i
ad g

i
be de"ned by

m
i
"x

i
#x

i~1
!d

i
(36)

and

g
i
"y

i
#y

i~1
!e

i
(37)

and let us set

u
i
"m

i
#g

i
. (38)
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Note that by (34), we have that w (m)"w (p)!w (y) and w (g)"w (q)!w (x);
hence

w (u) :"
m~1
+
i/0

u
i
"w(p)#w(q)!w (x)!w (y). (39)

We will prove (35) in a number of steps. In some of these, we will claim that
certain expressions satisfy a lower and an upper bound. We will then only
prove the upper bound; the corresponding lower bound will automatically
follow from the symmetry stated in part (ii) of Theorem 13. (This remark also
applies to the material in the Appendix.) Our "rst result gives a bound on m

i
and g

i
.

LEMMA 6. =e have that m
i
, g

i
3M!1, 0, 1N for all i; hence Du

i
D42.

Proof. If x
i
"x

i~1
"1, then by (32) we have that d

i
51, hence m

i
41.

Similarly, if y
i
"y

i~1
"1, then e

i
51, and hence g

i
41. Therefore

u
i
"m

i
#g

i
42. j

Next we will show that if u takes the value 2 in some position, then the
values taken by u in subsequent positions are a limited number of 1s followed
by a non-positive number. This result is stated more precisely in the following
lemma.

LEMMA 7. Suppose that u
h
"2. ¹hen there is an integer k with 04k43

such that u
h`i

"1 for i"1, 2,2, k and u
h`k`1

40.

By far the easiest way to verify this claim is by using a computer. To do so,
for all choices of d

i
, e

i
, x

i
,2,x

i`7
, and y

i
,2, y

i`6
, we compute u

i`1
,2, u

i`6
using (32), (33), (36), (37), and (38). By inspecting all cases where u

i`2
"2, we

see that Lemma 7 is true.
Alternatively, the claim in Lemma 7 can also be veri"ed by a rigorous, but

somewhat tedious analysis. The interested reader will "nd this analysis in the
Appendix.

The next result follows directly from Lemma 7.

COROLLARY 4. =e have that

Dw(u) D4m.

Proof. By Lemma 7, we can partition the m values u
i
, i"0,2,m!1,

into blocks B"Mu
h
, u

h`1
,2,u

h`j~1
N of length DB D"j45 such that the



CROSS-CORRELATIONS OF BINARY m-SEQUENCES 277
sum S
B

of the elements in B satis"es

DS
B
D4DB D,

from which the desired conclusion follows immediately. j

THEOREM 16. (i) ¸et x, y, p and q be integers for which 04x, y, p,
q42m!1, p,3x#y, q,3y#2m~1x mod2m!1, and at least one of x, y
is nonzero modulo 2m!1. ¹hen we have that

Dw (x)#w (y)!w (p)!w(q) D4m.

(ii) For odd m, we have that

M(m, 2(m~1)@2#3)"(m!1)/2.

Proof. The "rst part of the theorem follows from Corollary 4 by using (39)
and (31). If m"2r#1 is odd, then by taking y"2rx, we "nd that

Dw (x)!w((2r#3)x) D4xm/2y.

It is easy to see that the upper bound above is attained by the elements
1#22#24#2#22x(r~1)@2y from Z

2m~1
. Therefore part (ii) follows. j

5.5. ¹he Niho Cases

Finally, we determine M(m, t) for the cases where m"4r#1,
t"22r#2r!1 or m"4r!1, t"22r~1#23r~1!1. Our aim is to prove
that M(m, t)4(m!1)/2 in these two cases. To motivate our approach, we
will start treating the case where m"4r#1 and t"22r#2r!1. Let a and
s be integers for which 04a, s42m!1, s,tamod2m!1, and
aI0 mod2m!1; suppose that s and a have binary representations
a"a

m~1
2a

0
and s"s

m~1
2s

0
. Again, we apply Theorem 13 to derive

a suitable upper bound on w (a)!w(s). According to this theorem, there are
carries c

i
3M!1, 0, 1N for i3Z

m
such that

2c
i
#s

i
"a

i~2r
#a

i~r
!a

i
#c

i~1
(40)

holds for all i3Z
m
; moreover, w (c)"w (a)!w (s). We have to prove that

Dw (c) D"Dw (s)!w (a) D42r. (41)
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As in the Welch case, we shall prove more. Let x(j), j"0, 1, 2, 3, be four
integers, not all 0 modulo 2m!1, with binary representation
x(j)"x(j)

m~1
2x( j)

0
. Let the numbers p( j), j"0, 1, 2, 3, satisfy

p(0),x(2)#x(1)!x(0) mod2m!1, (42)

p(1),x(3)#x(2)!x(1) mod2m!1, (43)

p(2),x(0)/2#x(3)!x(2)mod 2m!1, (44)

p(3),x(1)/2#x(0)/2!x(3)mod 2m!1, (45)

(The motivation for this will follow shortly.) Let the binary digits of the p( j) be
p(j)
i

, for i"0,2,m!1. By Theorem 13, there are carries e( j)
i

3M!1, 0, 1N for
all i3Z such that

2e(0)
i
#p(0)

i
"x(2)

i
#x(1)

i
!x(0)

i
#e(0)

i~1
, (46)

2e(1)
i
#p(1)

i
"x(3)

i
#x(2)

i
!x(1)

i
#e(1)

i~1
, (47)

2e(2)
i
#p(2)

i
"x(0)

i`1
#x(3)

i
!x(2)

i
#e(2)

i~1
, (48)

and

2e(3)
i
#p(3)

i
"x(1)

i`1
#x(0)

i`1
!x(3)

i
#e(3)

i~1
, (49)

hold for all i3Z
m
. We shall prove that if all x( j) are nonzero modulo 2m!1,

then

Dw (x(0))#w(x(1))#w (x(2))#w (x(3))

!w (p(0))!w (p(1))!w(p(2))!w (p(3)) D42m. (50)

Observe that if we let x(j)
i
"a

i~jr
, e( j)

i
"c

i~jr
, and p(j)

i
"s

i~jr
, for j"0, 1, 2,

3 and for all i so that x(j)"2ja and p(j)"2j (22r#2r!1)a, for j"0, 1, 2, 3,
then (46) follows from (40), and (47), (48), and since !4r,1mod m, (49)
follows from (40) by replacing i by i!r, i!2r, and i!3r, respectively. In
that case w (x(j))"w (a) and w (p( j))"w (s), j"0, 1, 2, 3, and since obviously
all x( j) are nonzero modulo 2m!1, (41) follows immediately from (50)
because m"4r#1 is odd.

Very conveniently, the case where m"4r!1 and t"22r~1#23r~1!1
can also be derived from (50). Indeed, if we let x(0)"23ra, x(1)"22ra,
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x(2)"2ra, and x(3)"a, then (50) implies that Dw(ta)!w (a) D4m/2, and since
m"4r!1 is odd, we may conclude that Dw (ta)!w (a) D4(m!1)/2.

In order to prove (50), we follow the same strategy as before. Let us de"ne

u
i
"e(0)

i
#e(1)

i
#e(2)

i
#e(3)

i
. (51)

Now it follows easily from (46)}(49) that (50) is equivalent to

Dw(u) D"K
m~1
+
i/0

u
i K42m. (52)

We shall prove (52) by analysing a certain weighted directed graph D which
we construct as follows. The set of vertices of D is the set of all vectors

(x, x@, xA, x@@@, e, e@, eA, e@@@),

where x, x@, xA, x@@@3M0, 1N and e, e@, eA, e@@@3M!1, 0, 1N. Corresponding to any
solution x( j), e( j), p(j) for j"0, 1, 2, 3 of (46)}(49), de"ne the m vertices

v
i
"(x(0)

i
, x(1)

i
, x(2)

i~1
, x(3)

i~1
, e(0)

i~1
, e(1)

i~1
, e(2)

i~1
, e(3)

i~1
), i"0, 1,2, m!1.

Our construction of the weighted directed edges of D will be motivated by
the desire to obtain a 1}1 correspondence between solutions of (46)}(49) and
directed cycles in D of length m so that a solution x(j), e( j), p( j) for j"0, 1, 2,
3 will correspond to the directed cycle v

0
Pv

1
P2Pv

m~1
Pv

0
. We de"ne

a directed edge from a vertex (x, x@, xA, x@@@, e, e@, eA, e@@@) to a vertex (X, X@,
XA, X@@@, E, E@, EA, E@@@), of weight="E#E@#EA#E@@@, if and only if

XA#x@!x#e!2E3M0, 1N; (53)

X@@@#XA!x@#e@!2E@3M0, 1N; (54)

X#X@@@!XA#eA!2EA3M0, 1N; (55)

X@#X!X@@@#e@@@!2E@@@3M0, 1N. (56)

Here, the reader should think of the two vertices (x, x@, xA, x@@@, e, e@, eA, e@@@)
and (X, X@, XA, X@@@, E, E@, EA, E@@@) as v

i
and v

i`1
, respectively, should think of

= as u
i
, and should observe that (53)}(56) re#ect (46)}(49).
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Given these de"nitions, it is now easily veri"ed that solutions of (46)}(49)
with w(u)"= are in 1}1 correspondence with directed cycles in D of length
m and weight=. (Here, the weight w (C) of a directed cycle C is de"ned as the
sum of the weights of the edges that make up the cycle.) Let us call a directed
cycle C in D a null cycle if the projection onto one of the "rst four coordinates
of the vertices on the cycle is constant. (Observe that a null cycle corresponds
to a solution of (46)}(49) for which one of x(0), x(1), x(3) is congruent to
0 modulo 2m!1.) As a consequence, (52) is equivalent to the following.

THEOREM 17. ¸et C be a non-null cycle of length m in D. ¹hen we have that

Dw (C) D42m.

Proof. We investigated the weighted digraph D with the aid of a com-
puter. It turns out that D, a digraph on 2434"1296 vertices, has 941 strongly
connected components. Here, two vertices of a digraph are said to be strongly
connected if they are contained together in a directed cycle. The relation of
being strongly connected is an equivalence relation on the set of vertices; the
equivalence classes of this relation are called the the strongly connected
components of the directed graph.

One of these strongly connected components has size 320 (that is, contains
320 vertices) and all edge weights of directed edges in this component are
contained in the set M!2, !1, 0, 1, 2N. So in this component, the theorem
holds for all directed cycles.

The directed graph D has six further strongly connected components K
i
,

i"1,2, 6, each of size 6, two strongly connected components ¸
i
, i"1, 2,

each of size 4, and further 932 strongly connected components M
i
,

i"1,2, 932, each of size 1.
Obviously, all strongly connected components of size 1 contain only null

cycles. A further inspection reveals that in each of the eight strongly connec-
ted components K

i
and ¸

j
, the vertices have a constant projection onto one

of the "rst four coordinates. Hence, certainly all cycles in these strongly
connected components are null cycles. j

THEOREM 18. (i) ¸et x(j), j"0, 1, 2, 3, be four integers, all nonzero modulo
2m!1. ¸et the numbers p(j), j"0, 1, 2, 3, satisfy p(0),x(2)#

x(1)!x(0)mod2m!1, p(1),x(3)#x(2)!x(1) mod2m!1, p(2),x(0)/2#
x(3)!x(2)mod2m!1, and p(3),x(1)/2#x(0)/2!x(3)mod 2m!1. ¹hen we
have that

Dw (x(0))#w (x(1))#w (x(2))#w(x(3))!w (p(0))!w (p(1))

!w(p(2))!w (p(3)) D42m.
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(ii) For m"4r#1, we have that

M(m, 22r#2r!1)"(m!1)/2.

(iii) For m"4r!1, we have that

M (m, 22r~1#23r~1!1)"(m!1)/2.

Proof. The "rst part of the theorem follows from Theorem 17. From part
(i), we have M(m, 22r#2r!1)4(m!1)/2. It is easy to see that the upper
bound in this case is attained by a"2r#1. This "nishes the proof of part (ii).
Similarly, M(m, 22r~1#23r~1!1)4(m!1)/2 and the upper bound here is
attained by a"1. j

6. CONCLUSIONS

In this section, we use the methods developed in previous sections to prove
the main results of this paper. Our "rst theorem concerns the Gold case. The
result is of course well known and is cited in many places (see, for example, [2,
3, 18]).

THEOREM 19. ¸et t"2r#1 with 0(r(m, and let C
1,t

be the cyclic code
of length 2m!1 with de,ning zeros a and at, where a is a primitive element in
GF(2m). ¸et e"(r, m). ¹hen CM

1,t
is a three-weight code (in fact, with nonzero

weights 2m~1#e2(m~2`e)@2, e"!1, 0, 1) if and only if m/e is odd or m is even
and r"m/2.

Proof. We begin by noting that the dimension k of CM
1,t

satis"es k"2m
except when m"2r, in which case k"m#m/2. (To see this, consider the
binary representation of 2i (2r#1) for i"1,2, m!1.)

By Theorem 14, we know that M(m, t)"(m!e@)/2, where e@"e if m/e is
odd and e@"0 otherwise. Hence by Theorem 12, the weight of every code-
word of CM

1,t
is divisible by 2m~M (m, t)~1"2(m~2`e{)@2.

First suppose that mO2r. Then we apply Theorem 2 with d2"2m~2`e{.
From Theorem 5, we know that the number of codewords of weight 3 or 4 of
C

1,t
is A

3
#A

4
"(2e~1!1)2m~2(2m!1)/3, hence by Theorem 2, the code

CM
1,t

has only three nonzero weights 2m~1#e2(m~2`e)@2, e"!1, 0, 1 if e@"e
and has at least four nonzero weights otherwise.

Next, suppose that m"2r. From (5), now specialised to n"2m!1 and
k"3m/2, we see that in this case E"0 if A

3
#A

4
"(2e~1!1) '

2m~2(2m!1)/3, with e"(r, m)"r. So by Theorem 5, the code CM
1,t

has only
three nonzero weights. j
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Our next result concerns the Kasami case. The well-known &&if '' part in the
theorem below was "rst obtained by Welch [22] and Kasami [14]. The &&only
if '' part might be new.

THEOREM 20. ¸et t"22r!2r#1 with 1(r(m, and let C
1,t

be the
cyclic code of length 2m!1 with de,ning zeros a and at, where a is a primitive
element in GF(2m). ¸et e"(r, m). ¹hen CM

1,t
is a three-weight code (in fact, with

nonzero weights 2m~1#e2(m~2`e)@2, e"!1, 0, 1) if and only if m/e is odd.

Proof. The proof more or less follows the proof for the Gold case. Here,
the dimension k of CM

1,t
satis"es k"2m in all cases. (To see this, consider the

binary representation of 2i (22r!2r#1) for i"1,2, m!1.)
By Theorem 15, we have that M (m, t)"(m!e@)/2, where e@"e if m/e is

odd and e@"0 otherwise. Hence by Theorem 12, the weight of every code-
word of CM

1,t
is divisible by 2m~M(m, t)~1"2(m~2`e{)@2.

Now we apply Theorem 2 with d2"2m~2`e{. If m/e is even, then e@"0 and
we immediately see from Theorem 2 that CM

1,t
cannot be a three-weight code.

(Indeed, the number A
3
#A

4
of codewords of weight 3 or 4 would have to be

negative, which is absurd.) Conversely, if m/e is odd, then from Theorem 6
and Theorem 2, the code CM

1,t
is a three-weight code, with weights as indicated

in the theorem. j

The weight distribution of a three-weight code CM
1,t

with known weights
can easily be determined, for example by using the power moments. The
results for the codes from Theorems 19 and 20 are as follows. If t"2r#1 or
t"22r#2r#1, if e"(m, r), and if m/e is odd, then

B
2m~1~2(m~2`e)@2"(2m!1)(2m~e~1#2(m~e~2)@2)

B
2m~1"(2m!1)(2m!2m~e#1)

B
2m~1`2(m~2`e)@2"(2m!1)(2m~e~1!2(m~e~2)@2). (57)

The following two results concern the Welch and Niho conjectures.

THEOREM 21. ¸et m"2r#1, t"2r#3, and let C
1,t

be the cyclic code of
length 2m!1 with de,ning zeros a and at, where a is a primitive element in
GF(2m). ¹hen CM

1,t
is a three-weight code with weights 2m~1#e2(m~1)@2,

e"!1, 0, 1, and weight-distribution given by (57) with e"1.

Proof. Since (t, 2m!1)"1, the code CM
1,t

has dimension 2m. By
Theorem 16, we know that M(m, t)"(m!1)/2. Hence by Theorem 12, the
weight of every codeword of CM

1,t
is divisible by 2m~M (m, t)~1"2(m~1)@2.
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Now we apply Theorem 2 with d2"2m~2`e, where e"1. From
Theorem 8, we know that the number of codewords of weight 3 or 4 of C

1,t
is

A
3
#A

4
"0, hence by Theorem 2, the code CM

1,t
has only three weights

2m~1#e2(m~1)@2, e"!1, 0, 1. j

THEOREM 22. ¸et m be odd, t"2(m~1)@2#2(m~1)@4!1 if m,1 (mod4)
and t"2(m~1)@2#2(3m~1)@4!1 if m,3 (mod4). ¸et C

1,t
be the cyclic code of

length 2m!1 with de,ning zeros a and at, where a is a primitive element in
GF(2m). ¹hen CM

1,t
is a three-weight code with weights 2m~1#e2(m~1)@2,

e"!1, 0, 1, and weight-distribution given by (57) with e"1.

Proof. The proof proceeds exactly in the same way as in the Welch case
except that we use Theorem 18 to get the value of M(m, t) and Theorem 10 to
get A

3
#A

4
"0. j

The last two theorems state that both the Welch and Niho cases give rise to
pairs of preferred m-sequences. Concerning preferred pairs in general, we
have the following.

THEOREM 23. ¸et C
1,t

be the binary cyclic code of length 2m!1 with
de,ning zeros a and at, where a is a primitive element of GF(2m) and
gcd(t, 2m!1)"1. ¸et A

w
denote the number of codewords of weight w in C

1,t
.

¹he code CM
1,t

is a three-weight code with nonzero weights 2m~1,
2m~1$2x(m`2)@2y~1, or, equivalently, the pair of m-sequences obtained from an
m-sequence of length 2m!1 and the decimation of that sequence by the integer
t constitute a preferred pair, if and only if either

(i) m odd, A
3
#A

4
"0, and all weights in CM

1,t
are divisible by 2(m~1)@2, or

(ii) m even, A
3
#A

4
"2m~2(2m!1)/3, and all weights in CM

1,t
are divis-

ible by 2m@2.

Proof. As explained in the introduction, the cross-correlation of a pair of
m-sequences takes on values !1 and !1$2D if and only if the code
CM

1,t
has only nonzero weights 2m~1 and 2m~1$D. By de"nition, the pair is

preferred if D"2x(m`2)@2y~1. Now the theorem follows directly from Theorem
2 with e"1, 2. j

APPENDIX

In this Appendix, we shall give a rigorous proof of Lemma 7. The notation
used here is the same as in Section 5.4. In what follows, we will repeatedly
use (32), (33), (36), and (37) with di!erent values i. To help the reader follow
the somewhat detailed arguments, we will refer to these equations as
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D
i
(x

i
, x

i~1
, y

i
, d

i~1
), E

i
(y

i
, y

i~1
, x

i`1
, e

i~1
), X

i
(x

i
, x

i~1
, d

i
), and>

i
(y

i
, y

i~1
, e

i
),

respectively.

LEMMA 8. If u
j
"2, then y

j
"1, x

j`1
"0, and d

j`1
51.

Proof. If u
j
"2, by Lemma 6, we have m

j
"1 and g

j
"1. Assume to the

contrary that y
j
"0, then from g

j
"1 and >

j
(y

j
"0, y

j~1
, e

j
), we have that

y
j~1

"1 and e
j
"0, which together with E

j
(y

j
, y

j~1
"1, x

j`1
, e

j~1
) implies

that e
j~1

"0. Now from E
j~1

(y
j~1

"1, y
j~2

, x
j
, e

j~2
), we "nd that x

j
"0,

so from m
j
"1 and X

j
(x

j
, x

j~1
, d

j
) we conclude that x

j~1
"1 and d

j
"0.

Hence by D
j
(x

j
, x

j~1
"1, y

j
, d

j~1
), we have d

j~1
"0. However by

D
j~1

(x
j~1

"1, x
j~2

, y
j~1

"1, d
j~2

), we must have d
j~1

"1. This is a con-
tradiction. Therefore we conclude that y

j
"1.

From m
j
"1 and X

j
(x

j
, x

j~1
, d

j
), we see that x

j
#x

j~1
51. Hence by

D
j
(x

j
, x

j~1
, y

j
"1, d

j~1
), we have d

j
51. Then by m

j
"1 and X

j
(x

j
,

x
j~1

, d
j
51), we see that x

j
"x

j~1
"1 and d

j
"1. Now d

j`1
51 follows

from D
j`1

(x
j`1

, x
j
"1, y

j`1
, d

j
"1).

Finally, if x
j`1

"1, then "rst from g
j
"1 and >

j
(y

j
, y

j~1
, e

j
), we conclude

that y
j
#y

j~1
51; so by E

j
(y

j
, y

j~1
, x

j`1
"1, e

j~1
), we have e

j
51. Now

from g
j
"1 and >

j
(y

j
, y

j~1
, e

j
51), we see that y

j
"y

j~1
"1 and e

j
"1.

Hence from E
j
(y

j
"1, y

j~1
"1, x

j`1
"1, e

j~1
) again, we obtain that

e
j~1

"0. Also, from m
j
"1 and X

j
(x

j
, x

j~1
, d

j
), we see that x

j
#x

j~1
51,

and by D
j
(x

j
, x

j~1
, y

j
"1, d

j~1
), we have d

j
51. Therefore we conclude that

x
j
"x

j~1
"1 and d

j
"1. However, from E

j~1
(y

j~1
"1, y

j~2
, x

j
"1, e

j~2
),

we obtain that e
j~1

51, contradicting the conclusion e
j~1

"0 obtained
earlier. So we conclude that x

j`1
"0. j

LEMMA 9. ¸et y
j
"1, x

j`1
"0, and d

j`1
51. If u

j`1
51, then u

j`1
"1.

If furthermore u
j`2

51, then y
j`1

"1 and e
j`1

51.

Proof. If u
j`1

51, then m
j`1

50. so by X
j`1

(x
j`1

"0, x
j
, d

j`1
51), we

have that x
j
"1, m

j`1
"0. So u

j`1
"g

j`1
"1. If y

j`1
"1, then e

j`1
51

follows from E
j`1

(y
j`1

"1, y
j
"1, x

j`2
, e

j
). In the following, we will show

that if y
j`1

"0, then u
j`2

40. The proof goes as follows. if y
j`1

"0, then
from g

j`1
"1 and >

j`1
(y

j`1
"0, y

j
"1, e

j`1
), we see that e

j`1
"0.

Then by E
j`1

(y
j`1

"0, y
j
"1, x

j`2
, e

j
), we have x

j`2
"e

j
"0, hence by

X
j`2

(x
j`2

"0, x
j`1

"0, d
j`2

), we obtain m
j`2

"!d
j`2

40. Therefore if
d
j`2

51, then u
i`2

40. If d
j`2

"0, then by D
j`2

(x
j`2

"0,
x
j`1

"0, y
j`2

, d
j`1

"1), we have y
j`2

"0. Hence by >
j`2

(y
j`2

"0,
y
j`1

"0, e
j`2

), we see that g
j`2

"!e
j`2

40. So in both cases (d
j`2

51 or
d
j`2

"0), we have u
i`2

40.

LEMMA 10. If y
j~1

"1, d
j~1

51, e
j~1

51, x
j
#x

j~1
41 and u

j
51,

then u
j
"1, x

j
#x

j~1
"1, x

j`1
"0, and y

j
"d

j
"e

j
"1.
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Proof. Since y
j~1

"1 and e
j~1

51, by E
j
(y

j
, y

j~1
, x

j`1
, e

j~1
), we have

e
j
51. We will prove that e

j
"1. Assume to the contrary that e

j
"2, then

g
j
"y

j
#y

j~1
!e

j
"y

j
!140. Now m

j
"x

j
#x

j~1
!d

j
41!d

j
,

14u
j
"m

j
#g

j
41!d

j
, we must have d

j
"0, g

j
"0 and y

j
"1. Then from

D
j
(x

j
, x

j~1
, y

j
"1, d

j~1
51), we see that d

j
51. This is a contradiction.

Therefore e
j
"1, and g

j
"y

j
#y

j~1
!e

j
"y

j
. We proceed to prove that

y
j
"1 by way of contradiction. If y

j
"0, then g

j
"0. Hence u

j
"m

j
"1. By

(36), we have m
j
"x

j
#x

j~1
!d

j
, hence x

j
#x

j~1
"1 and d

j
"0, which is

impossible because d
j~1

"1. So we conclude that y
j
"g

j
"1. From

E
j
(y

j
"1, y

j~1
"1, x

j`1
, e

j~1
51) and e

j
"1, we see that x

j`1
"0. By (32),

we have d
j
"xx

j
#x

j~1
#y

j
#1y/251. Since m

j
50 and x

j
#x

j~1
41, by

(36) we see that x
j
#x

j~1
"1, d

j
"1, m

j
"0. Therefore u

j
"g

j
"1. j

Now we are in position to prove our earlier Lemma 7 concerning the
values taken by u

i
following a value of 2.

Proof. Suppose that u
h
"2. By Lemma 8 for j"h, we have that y

h
"1,

x
h`1

"0, and d
h`1

51. Then by Lemma 9 for j"h, either u
h`1

40, or
u

h`1
"1 and u

h`2
40, or u

h`1
"1, y

h`1
"1, e

h`1
51. In the last case, we

will repeatedly apply Lemma 10. First, we have y
h`1

"1, d
h`1

51, e
h`1

51,
and x

h`1
"0. Hence by Lemma 10 for j"h#2, we have either u

h`1
40 or

u
h`2

"1, x
h`2

#x
h`1

"1, x
h`3

"0, and y
h`2

"d
h`2

"e
h`2

"1. Hence
again by Lemma 10, now for j"h#3, we conclude that either u

h`3
40, or

u
h`3

"1, x
h`3

#x
h`2

"1, x
h`4

"0, and y
h`3

"d
h`3

"e
h`3

"1. Now
since x

h`3
"x

h`4
"0, a third application of Lemma 10, this time with

j"h#4, shows that now u
h`4

40. j
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