A Trace Conjecture and Flag-Transitive Affine Planes

R. D. Baker
Department of Mathematics, West Virginia State College, Institute, West Virginia 25112-1000
G. L. Ebert ${ }^{1}$
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553
K. H. Leung ${ }^{2}$

Department of Mathematics, University of Singapore, Kent Ridge, Singapore 119260
and
Q. Xiang ${ }^{3}$

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553

Communicated by the Managing Editors
Received April 12, 2000; published online May 10, 2001

For any odd prime power q, all $\left(q^{2}-q+1\right)$ th roots of unity clearly lie in the extension field $\mathbb{F}_{q^{6}}$ of the Galois field \mathbb{F}_{q} of q elements. It is easily shown that none of these roots of unity have trace -2 , and the only such roots of trace -3 must be primitive cube roots of unity which do not belong to \mathbb{F}_{q}. Here the trace is taken from $\mathbb{F}_{q^{6}}$ to \mathbb{F}_{q}. Computer based searching verified that indeed -2 and possibly -3 were the only values omitted from the traces of these roots of unity for all odd $q \leqslant 200$. In this paper we show that this fact holds for all odd prime powers q. As an application, all odd order three-dimensional flag-transitive affine planes admitting a cyclic transitive action on the line at infinity are enumerated. © 2001 Academic Press

[^0]
1. INTRODUCTION

This article deals with a cyclotomic question in the Galois field $\mathbb{F}_{q^{6}}$ of order q^{6}, where q is any odd prime power. This question is motivated by the classification of certain flag-transitive affine planes. Our arguments will reduce the problem to showing the existence of some irreducible polynomial in $\mathbb{F}_{q}[x]$. We denote the set of all nonzero squares of \mathbb{F}_{q} by \square_{q}, the set of nonsquares by \square_{q}, and the nonzero elements of \mathbb{F} by \mathbb{F}^{*}. Let Tr be the trace from $\mathbb{F}_{q^{6}}$ to \mathbb{F}_{q}; that is, $\operatorname{Tr}(x)=x+x^{q}+x^{q^{2}}+x^{q^{3}}+x^{q^{4}}+x^{q^{5}}$ for $x \in \mathbb{F}_{q^{6}}$.

With the exception of the Lüneburg planes and the Hering plane, all known finite flag-transitive affine planes have a translation complement which contains a linear cyclic subgroup that either is transitive or has two equal-sized orbits on the line at infinity. Under a mild number-theoretic condition involving the order and dimension of the plane (see [5]), it can be shown that one of these actions must occur. We call flag-transitive planes of the first kind C-planes and those of the second kind H-planes.

Subject to the number-theoretic condition mentioned above, all odd order two-dimensional flag-transitive affine planes are H-planes, and these have been completely classified in [1]. In particular, there are precisely $\frac{1}{2}(q-1)$ such (nondesarguesian) planes of order q^{2} for any odd prime q. In [2] it is shown that every odd order three-dimensional flag-transitive affine plane of type C arises from a "perfect" Baer subplane partition of $P G\left(2, q^{2}\right)$. Perfect Baer subplane partitions by definition are an orbit of some Baer subplane under a Singer subgroup of order $q^{2}-q+1$. Moreover, in [3] it is shown that every perfect Baer subplane partition is equivalent to one which is an orbit of a Baer subplane which may be represented (as a root space in $\mathbb{F}_{q^{6}}$) by a linearized polynomial of the form $x^{q^{3}}+m x^{q^{2}}+n x^{q}+x$, where m and n are elements of $\mathbb{F}_{q^{6}}$ satisfying four conditions. The last condition says that $t=m n^{q^{2}}+m^{q^{3}} n^{q^{5}}$ is an element of \mathbb{F}_{q}, other than -1 , which is not expressible as $\mathrm{N}_{\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{2}}}(1+u)$ for any $u \in \mathbb{F}_{q^{6}}$ with $u^{q^{2}-q+1}=1$. Here $\mathrm{N}_{\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{2}}}$ denotes the norm from $\mathbb{F}_{q^{6}}$ to $\mathbb{F}_{q^{2}}$, where one notes that $\mathrm{N}_{\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{2}}}(1+u)^{1} \in \mathbb{F}_{q}$ whenever $u^{q^{2}-q+1}=1$. The conjecture made in [3] was that for any odd prime power q,

$$
\mathbb{F}_{q} \backslash\left\{\mathbf{N}_{\mathbb{F}_{\mathrm{q}^{6}} / \mathbb{F}_{q^{2}}}(1+u) \mid u^{q^{2}-q+1}=1\right\}=\left\{\begin{array}{llll}
\{0\} & \text { if } & q \not \equiv 1 & (\bmod 3) \\
\{0,-1\} & \text { if } & q \equiv 1 & (\bmod 3)
\end{array}\right)^{\circ} .
$$

Since the perfect Baer subplane partitions (and the resulting flag-transitive planes) corresponding to $t=0$ are known, the proof of this conjecture would lead to a complete classification of three-dimensional odd order flagtransitive affine planes of type C. Here we prove this conjecture.

It will suit our purposes to first reformulate the conjecture in terms of traces from $\mathbb{F}_{q^{6}}$ to \mathbb{F}_{q}. If $u \in \mathbb{F}_{q^{6}}$ and $u^{q^{2}-q+1}=1$, then $u^{q^{2}+1}=u^{q}$, $u^{q^{3}}=u^{-1}, u^{1-q}=u^{-q^{2}}=u^{q^{5}}$, and $u^{q^{2}-q}=u^{-1}=u^{q^{3}}$. Thus $\mathrm{N}_{\mathbb{F}_{q^{6} / \mathbb{F}_{q^{2}}}}(1+u)=$ $(1+u)^{1+q^{2}+q^{4}}=(1+u)\left(1+u^{q^{2}}\right)\left(1+u^{-q}\right)=2+\operatorname{Tr}(u)$. Hence what we must show is that

$$
\mathbb{F}_{q} \backslash\left\{\operatorname{Tr}(u) \mid u^{q^{2}-q+1}=1\right\}=\left\{\begin{array}{llll}
\{-2\} & \text { if } & q \equiv \equiv 1 & (\bmod 3) \\
\{-2,-3\} & \text { if } & q \equiv 1 & (\bmod 3)
\end{array} .\right.
$$

Our approach is based on the observation that any $u \in U=$ $\left\{u \in \mathbb{F}_{q^{6}} \mid u^{q^{2}-q+1}=1\right\}$ which does not belong to the subfield $\mathbb{F}_{q^{2}}$ has minimal polynomial $p(x)$ over \mathbb{F}_{q} which is irreducible, self-reciprocal, of degree 6 , and has $-\operatorname{Tr}(u)$ as the coefficient of x^{5}. Thus the value set in question can be studied by examining these irreducible polynomials. We actually work "backwards" by counting the number of irreducible cubics $f(x)$ over \mathbb{F}_{q} in a certain one parameter family, and then "lifting" each $f(x)$ to a degree 6 polynomial $p(x)=x^{3} f\left(x+\frac{1}{x}\right)$. This lifted polynomial will be monic, self-reciprocal, and irreducible over \mathbb{F}_{q}. The final step will be to show that $p(x)$ is, in fact, a minimal polynomial for an element of U. We end up showing not only that the values $\operatorname{Tr}(u)$, for $u \in U$, cover $\mathbb{F}_{q} \backslash$ $\{-2,-3\}$, but that in addition the coverage is very "uniform." This depends upon early work of Hasse [6, 7], and thus we begin by reviewing quadratic characters.

2. QUADRATIC CHARACTER SUMS

In this section we collect a few facts about sums involving quadratic characters. Hence, let η denote the quadratic character of \mathbb{F}_{q}, so that

$$
\eta(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in \square_{q} \\
0 & \text { if } & x=0 \\
-1 & \text { if } & x \in \square_{q}
\end{array}\right.
$$

We begin with a well known result. All sums are over \mathbb{F}_{q} unless otherwise noted.

Proposition 1. Let q be an odd prime power and $f(x)=a x^{2}+b x+$ $c \in \mathbb{F}_{q}[x]$ with $a \neq 0$. Then

$$
\sum_{x \in \mathbb{F}_{q}} \eta\left(a x^{2}+b x+c\right)=\left\{\begin{array}{lll}
-\eta(a) & \text { if } & b^{2}-4 a c \neq 0 \\
(q-1) \eta(a) & \text { if } & b^{2}-4 a c=0
\end{array}\right.
$$

Proof. The standard argument multiplies the sum by $\eta\left(4 a^{2}\right)=1$, distributing through $\eta(4 a)$ and completing the square to get $\eta(a)$. $\sum_{x} \eta\left((2 a x+b)^{2}-\left(b^{2}-4 a c\right)\right)=\eta(a) \sum_{y} \eta\left(y^{2}-d\right)$, where we have replaced $2 a x+b$ by y and written d for $b^{2}-4 a c$. The case when $d=0$ is clear. For $d \neq 0$ one counts the solutions of $y^{2}-d=z^{2}$. This is easy once we rewrite this equation as $(y+z)(y-z)=d$, and observe that y is just the average of complementary divisors of d.

The following result is a special case of the Hasse-Weil bound, first proved by Hasse [6, 7] (cf. [8, p. 1]) in 1936.

Theorem 2. Let q be a prime power, and let N be the number of solutions $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ of the equation $y^{2}=f(x)$, where $f(x) \in \mathbb{F}_{q}[x]$ is a polynomial of degree 4 with distinct roots. Then

$$
|N+1-q| \leqslant 2 \sqrt{q} .
$$

Stating this theorem in terms of quadratic character sums, we have
Corollary 3. Let q be an odd prime power, let $f(x) \in \mathbb{F}_{q}[x]$ be a polynomial of degree 4 with distinct roots, and let η be the quadratic character of \mathbb{F}_{q}. Then

$$
\left|1+\sum_{x \in \mathbb{F}_{q}} \eta(f(x))\right| \leqslant 2 \sqrt{q} .
$$

Proof. Let N be the number of solutions $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ of $y^{2}=f(x)$. Given x, there are 0,1 , or 2 choices for y accordingly as $f(x)$ belongs to $\square_{q},\{0\}$, or \square_{q}. Thus $N=\sum_{x \in \mathbb{F}_{q}}(1+\eta(f(x)))=q+\sum_{x \in \mathbb{F}_{q}} \eta(f(x))$, and the corollary follows from Theorem 2.

We now state and prove a useful lemma about the number of irreducible cubic polynomials in a family of polynomials parameterized by the coefficient of x.

Lemma 4. Let q be an odd prime power, $a \in \mathbb{F}_{q}$ with $a \neq-3$ or -4 , and set $c=-(a+4)^{2}$. Let $\mathscr{P}=\left\{f(x)=x^{3}+a x^{2}+b x+c \mid b \in \mathbb{F}_{q},-f(4) \in \square_{q}\right\}$, a family of cubic polynomials parameterized by the coefficient b of x. Then \mathscr{P} contains $(q-1) / 2$ polynomials, of which at least $\frac{1}{6}(q+1-2 \sqrt{q})$ but not more than $\frac{1}{6}(q+1+2 \sqrt{q})$ are irreducible over \mathbb{F}_{q}. In particular, \mathscr{P} contains at least one polynomial $f(x)$ which is irreducible over \mathbb{F}_{q}.

Proof. There are obviously q polynomials $f(x)=x^{3}+a x^{2}+b x-$ $(a+4)^{2}$ as b varies over \mathbb{F}_{q}. With the restriction $-f(4)=-(64+16 a+$ $\left.4 b-(a+4)^{2}\right) \in \square_{q}$, the number of choices for b (hence the number of $f(x)$) is reduced to $(q-1) / 2$ since $-f(4)$ is a linear expression in b.

We consider the subset \mathscr{P}_{0} of those polynomials which are reducible over \mathbb{F}_{q}. We wish to develop a character sum for the cardinality of \mathscr{P}_{0}. Let $f(x) \in \mathscr{P}_{0}$, and let $t \in \mathbb{F}_{q}$ be a root of $f(x)$. Since $f(0)=c \neq 0$, we know $t \neq 0$ and thus the equation $f(t)=0$ can be solved for b to obtain

$$
b=-\left[t^{3}+a t^{2}+c\right] / t=-\left[t^{2}+a t+c / t\right] .
$$

Since b is uniquely determined by t, any element of \mathbb{F}_{q} is a root of at most one polynomial of \mathscr{P}. Define the mapping $\phi: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}$ by $\phi(t)=-\left[t^{2}+\right.$ $a t+c / t]$. Using this expression for b, we compute

$$
\begin{aligned}
-f(4) & =-\left[64+16 a+4 b-(a+4)^{2}\right] \\
& =(a+4)^{2}-16 a-64+4\left[t^{2}+a t-(a+4)^{2} / t\right] \\
& =(t-4)[4 t+4(a+4)+(a+4)]^{2} / t \\
& =t(t-4)\left[4+4(a+4) / t+(a+4)^{2} / t^{2}\right] \\
& =t(t-4)[2+(a+4) / t]^{2} .
\end{aligned}
$$

Thus we set $Q=\left\{t \mid t(t-4)[2+(a+4) / t]^{2} \in \not \square_{q}\right\}$, and observe that $\mathscr{P}_{0}=\left\{f(x)=x^{3}+a x^{2}+\phi(t) x+c \mid t \in Q\right\}$. Moreover, we have that every polynomial of \mathscr{P}_{0} looks like $f(x)=(x-t)\left[x^{2}+(a+t) x-c / t\right]$. In order to determine the number of polynomials in \mathscr{P}_{0} we need to look at all roots of $f(x)$, and hence the possible roots of $h_{t}(x)=x^{2}+(a+t) x-c / t=x^{2}+$ $(a+t) x+(a+4)^{2} / t$. If $f(x)=(x-t)^{3}$, then we find $-2 t=a+t$ and $t^{2}=$ $-c / t$, which imply $a^{3}-27 c=a^{3}+27(a+4)^{2}=0$. Since $a^{3}+27(a+4)^{2}=$ $(a+3)(a+12)^{2}$, we have either $a=-3$, which we excluded, or $a=-12$. But the latter requires $t=4$, whereas $4 \notin Q$. Hence $f(x)$ cannot have a root of multiplicity 3. Since $t \neq 0$ we can use the discriminant $\delta(t)=(a+t)^{2} t^{2}+$ $4 t c=(a+t)^{2} t^{2}-4 t(a+4)^{2}$ of $t \cdot h_{t}(x)$ to sort out any additional roots. Toward that end we observe that $\delta(t)=t(t-4)\left[t^{2}+(2 a+4) t+(a+4)^{2}\right]$ and set $\delta_{0}(t)=t^{2}+(2 a+4) t+(a+4)^{2}$. Let $\gamma(t)=t(t-4)$, so that $\delta(t)=$ $\gamma(t) \delta_{0}(t)$. Since $\gamma(t) \in \square_{q}$ for all $t \in Q$, it follows that the quadratic character of $\delta_{0}(t)$ is the opposite of that of $\delta(t)$ for all $t \in Q$. Note that t is the unique root of $f(x)$ if and only if $\delta(t) \in \square_{q}$. If $\delta(t)=0$, then $f(x)$ has a double root since $h_{t}(x)$ has a double root. Let $f(x)=\left(x-t_{1}\right)\left(x-t_{2}\right)^{2}$ be such a polynomial. Then $\delta\left(t_{1}\right)=0$, and t_{1} must be one of at most 2 roots of $\delta_{0}(t)$. On the other hand, $\delta\left(t_{2}\right) \in \square_{q}$ since relative to this root $f(x)$ factors to leave $h_{t_{2}}(x)=\left(x-t_{1}\right)\left(x-t_{2}\right)$. Of course, if t is a root of an $f(x)$ with three distinct roots, then we also must have $\delta(t) \in \square_{q}$. Hence we claim that the number of reducible polynomials is given by

$$
\left|\mathscr{P}_{0}\right|=\sum_{t \in Q} \frac{1}{3}[2-\eta(\delta(t))]=\sum_{t \in Q} \frac{1}{3}\left[2+\eta\left(\delta_{0}(t)\right)\right] .
$$

Those $f(x)$ with a unique root get a value of $\frac{2+(1)}{3}=1$ from that root. Those $f(x)$ with three distinct roots get a value of $\frac{2+(-1)}{3}=\frac{1}{3}$ from each root, and hence a total of 1 as required. Finally, for $f(x)=\left(x-t_{1}\right)\left(x-t_{2}\right)^{2}$ the root t_{1} contributes $\frac{2+0}{3}=\frac{2}{3}$ while the root t_{2} contributes $\frac{2+(-1)}{3}=\frac{1}{3}$, and the total is again 1 . In order to actually evaluate the sum we need to use the characteristic function for Q to convert to a sum over all of \mathbb{F}_{q}. But for $t \neq 0,4$ or $-(a+4) / 2$, we have $\eta(\gamma(t))=-1$ or 1 according as $t \in Q$ or $t \notin Q$, so the characteristic function for Q viewed as a subset of $\mathbb{F}_{q} \backslash$ $\left\{0,4,-\frac{a+4}{2}\right\}$ is just $\frac{1}{2}[1-\eta(\gamma(t))]$. Therefore we have shown that

$$
\begin{aligned}
\left|\mathscr{P}_{0}\right|= & \frac{1}{6} \sum_{t \in \mathbb{F}_{q}\{0,4,-(a+4) / 2\}}[1-\eta(\gamma(t))]\left[2+\eta\left(\delta_{0}(t)\right)\right] \\
= & \frac{1}{6} \sum_{t \in \mathbb{F}_{q}}[1-\eta(\gamma(t))]\left[2+\eta\left(\delta_{0}(t)\right)\right] \\
& -\frac{1}{6} \sum_{t \in\{0,4,-(a+4) / 2\}}[1-\eta(\gamma(t))]\left[2+\eta\left(\delta_{0}(t)\right)\right] .
\end{aligned}
$$

In order to evaluate the sum with range $\left\{0,4,-\frac{a+4}{2}\right\}$ we compute that $\gamma(0)=\gamma(4)=0, \quad \delta_{0}(0)=(a+4)^{2}, \quad \delta_{0}(4)=(a+4)(a+12)$, and $\gamma\left(-\frac{a+4}{2}\right)=$ $\delta_{0}\left(-\frac{a+4}{2}\right)=\frac{1}{4}(a+4)(a+12)$. Thus, if $a \neq-12$, the sum is $\frac{1}{6}[6]=1$. When $a=-12$, this sum has only two summands since $-\frac{a+4}{2}=4$ and becomes $\frac{1}{6}[5]=\frac{5}{6}$. Thus in either case the sum is given by the expression $\frac{1}{6}\left[5+\eta\left((a+12)^{2}\right)\right]$. Hence

$$
\begin{aligned}
\left|\mathscr{P}_{0}\right| & =\frac{1}{6} \sum_{t \in \mathbb{F}_{q}}[1-\eta(\gamma(t))]\left[2+\eta\left(\delta_{0}(t)\right)\right]-\frac{1}{6}\left[5+\eta\left((a+12)^{2}\right)\right] \\
& =\frac{q}{3}+\frac{1}{6} \sum_{t \in \mathbb{F}_{q}}\left[\eta\left(\delta_{0}(t)\right)-2 \eta(\gamma(t))-\eta(\delta(t))\right]-\frac{1}{6}\left[5+\eta\left((a+12)^{2}\right)\right] .
\end{aligned}
$$

By Proposition 1 we have that $\sum \eta(\gamma(t))$ and $\sum \eta\left(\delta_{0}(t)\right)$ are both -1 . In the special case $a=-12$, we observe that $\delta(t)=t(t-4)^{2}(t-16)$. Again using Proposition 1 we have that $\sum \eta(\delta(t))=\sum \eta(t(t-16))-\eta(-48)=$ $-1-\eta(-3)$. Substituting these values we obtain

$$
\left|\mathscr{P}_{0}\right|=\left\{\begin{array}{lll}
\frac{q-2}{3}-\frac{1}{6}\left\{1+\sum_{t \in F_{q}}[\eta(\delta(t))]\right\} & \text { for } & a \neq-12 \\
\frac{q-2}{3}+\frac{1}{6}\{1+\eta(-3)\} & \text { for } & a=-12
\end{array} .\right.
$$

By Theorem 3, since $\delta(t)$ has distinct roots for $a \neq-12$, we have $\left|1+\sum \eta(\delta(t))\right| \leqslant 2 q^{1 / 2}$. Therefore, after noting that the case $a=-12$ clearly satisfies $|1+\eta(-3)| \leqslant 2 q^{1 / 2}$, we conclude that

$$
\frac{1}{3}(q-2-\sqrt{q}) \leqslant\left|\mathscr{P}_{0}\right| \leqslant \frac{1}{3}(q-2+\sqrt{q}) .
$$

Hence, we have that $\left|\mathscr{P}_{0}\right|<(q-1) / 2$, and $\mathscr{P} \backslash \mathscr{P}_{0} \neq \varnothing$. The bounds on $\left|\mathscr{P} \backslash \mathscr{P}_{0}\right|$ are just $\frac{q-1}{2}-\frac{1}{3}(q-2 \pm \sqrt{q})=\frac{1}{6}(q+1 \pm 2 \sqrt{q})$. The proof is complete.

3. SELF-RECIPROCAL POLYNOMIALS

In this section we will exploit the connection between a self-reciprocal degree 6 polynomial $p(x)$ and a naturally related cubic polynomial $f(x)$, thereby allowing us to establish the existence results we seek. First we translate Lemma 4 to the exact form required.

Lemma 5. Let q be an odd prime power. Then for every $a^{\prime} \in \mathbb{F}_{q}, a^{\prime} \neq 2$ or 3, there exists $b^{\prime} \in \mathbb{F}_{q}$ such that the polynomial $f(x)=x^{3}+a^{\prime} x^{2}+b^{\prime} x+$ $\left(2 b^{\prime}+4-a^{\prime 2}\right)$ is irreducible over \mathbb{F}_{q} and $a^{\prime 2}-4\left(a^{\prime}+b^{\prime}+3\right) \in \square_{q}$. Indeed, the number of such b^{\prime} lies between $\frac{1}{6}(q+1-2 \sqrt{q})$ and $\frac{1}{6}(q+1+2 \sqrt{q})$.

Proof. Note that $f(x-2)=x^{3}+\left(a^{\prime}-6\right) x^{2}+\left(b^{\prime}-4 a^{\prime}+12\right) x-\left(a^{\prime}-2\right)^{2}$. Let $a=a^{\prime}-6, b=b^{\prime}-4 a^{\prime}+12$, and $c=-\left(a^{\prime}-2\right)^{2}$. As $a^{\prime} \neq 2$ or 3 , we have $a=a^{\prime}-6 \neq-4$ or -3 . Also $c=-(a+4)^{2}$, and $a^{\prime 2}-4\left(a^{\prime}+b^{\prime}+3\right)=$ $-f(2)=-f(4-2)$. Thus, we may apply Lemma 4 to the polynomial $f(x-2)$ to get the desired result.

The conditions of Lemma 5 that force $-f(2)$ and $-f(-2)$ to have opposite quadratic character are critical in showing the irreducibility of the associated degree 6 polynomial in the following lemma.

Lemma 6. Let q be an odd prime power. If $f(x)=x^{3}+a x^{2}+b x+$ $\left(2 b+4-a^{2}\right) \in \mathbb{F}_{q}[x]$ is irreducible over \mathbb{F}_{q} and $a^{2}-4(a+b+3) \in \not \square_{q}$, then $p(x)=x^{3} f\left(x+\frac{1}{x}\right)=x^{6}+a x^{5}+(3+b) x^{4}+\left(2 a+2 b+4-a^{2}\right) x^{3}+(3+b) x^{2}$ $+a x+1$ is a monic, self-reciprocal polynomial which is irreducible over \mathbb{F}_{q}. Moreover, there exists $u \in U=\left\{u \in \mathbb{F}_{q^{6}} \mid u^{q^{2}-q+1}=1\right\}$ such that $p(x)$ is the minimal polynomial of u over \mathbb{F}_{q}

Proof. Since $p(0)=1 \neq 0$, any root u of $p(x)$ is nonzero and must have $u+\frac{1}{u}$ a root of $f(x)$. Thus $p(x)$ cannot have any roots in $\mathbb{F}_{q^{2}}$ as the roots of $f(x)$ lie in $\mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$. Thus it suffices to show that $p(x)$ cannot factor as the product of two irreducible cubics in $\mathbb{F}_{q}[x]$. Suppose to the contrary that $r(x)=x^{3}+r_{2} x^{2}+r_{1} x+r_{0} \in \mathbb{F}_{q}[x]$ is an irreducible cubic which divides $p(x)$. Let u be a root of $r(x)$. Hence $u \in \mathbb{F}_{q^{3}}$ and $u, u^{q}, u^{q^{2}}$ are the three distinct roots of $r(x)$. Since $p(x)$ is a self-reciprocal polynomial, it follows that u^{-1} also is a root of $p(x)$. If u^{-1} were u, u^{q}, or $u^{q^{2}}$, then $u^{2}=1$ as 2 is the gcd of $q^{3}-1$ and any one of $2, q+1$, or $q^{2}+1$. But this implies $u= \pm 1$, an obvious contradiction. Thus the reciprocal polynomial $r^{*}(x)=$ $x^{3} r\left(\frac{1}{x}\right)=r_{0} x^{3}+r_{1} x^{2}+r_{2} x+1$ of $r(x)$ must be its complementary factor, yielding the factorization $c p(x)=r(x) r^{*}(x)$ of an associate of $p(x)$. Evaluation of the identity at 0 shows $c=r_{0}$. Next evaluation at 1 yields $-r_{0}$. $\left[a^{2}-4 a-4 b-12\right]=[r(1)]^{2}$ as $r^{*}(1)=r(1)$. Then evaluation at -1 yields $r_{0}(a-2)^{2}=-[r(-1)]^{2}$ since $r^{*}(-1)=-r(-1)$. If $a=2$, then $f(x)=$ $(x+2)\left(x^{2}+b\right)$, contradicting the irreducibility of $f(x)$. Thus $(a-2)^{2} \in \square_{q}$, forcing $a^{2}-4(a+b+3) \in \square_{q}$, a contradiction. Therefore $p(x)$ is irreducible as claimed.

Let u be a root of $p(x)$. Since $p(x)$ is irreducible over \mathbb{F}_{q}, we have $u \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}}$. Again, since $p(x)$ is self-reciprocal, $\frac{1}{u}$ is also a root of $p(x)$. Hence u^{-1} is equal to one of $u, u^{q}, u^{q^{2}}, u^{q^{3}}, u^{q^{4}}, u^{q^{5}}$. Rewriting $u^{-1}=u^{q^{i}}$ as $u^{q^{i}+1}=1$, we see that the choices u, u^{q}, or $u^{q^{5}}$ would imply that the order of u divides $q+1$, and hence $u \in \mathbb{F}_{q^{2}}$, a contradiction. Similarly the choices $u^{q^{2}}$ or $u^{q^{4}}$ are not possible since $u^{1+q^{2}+q^{4}} \in \mathbb{F}_{q^{2}}$ and hence either of these choices would force $u \in \mathbb{F}_{q^{2}}$. Thus we conclude that $u^{q^{3}+1}=1$.

Now, it can be easily verified that $a=-\operatorname{Tr}(u), b=\operatorname{Tr}\left(u^{1+q}\right)+\operatorname{Tr}\left(u^{1-q}\right)$ and

$$
\begin{equation*}
2 b+4-a^{2}=-\operatorname{Tr}\left(u^{1+q+q^{2}}\right)-\left(u^{1-q+q^{2}}+u^{-1+q-q^{2}}\right) . \tag{1}
\end{equation*}
$$

Observe that $a^{2}=6+\operatorname{Tr}\left(u^{2}\right)+\operatorname{Tr}\left(u^{1+q}\right)+\operatorname{Tr}\left(u^{1-q}\right)+\operatorname{Tr}\left(u^{1+q^{2}}\right)+\operatorname{Tr}$ $\left(u^{1-q^{2}}\right)$. Substituting a^{2}, a and b into Eq. (1), and noting that $\operatorname{Tr}\left(u^{1-q}\right)=$ $\operatorname{Tr}\left(u^{1+q^{2}}\right)$ and $\operatorname{Tr}\left(u^{1+q}\right)=\operatorname{Tr}\left(u^{1-q^{2}}\right)$, we then get

$$
\begin{equation*}
v+v^{-1}+\operatorname{Tr}\left(u^{1+q+q^{2}}\right)-2-\operatorname{Tr}\left(u^{2}\right)=0, \tag{2}
\end{equation*}
$$

where $v=u^{1-q+q^{2}}$. Using the definition of v, we have $u^{1+q+q^{2}}=u^{1-q+q^{2}} u^{2 q}$ $=v u^{2 q}$. Since $v^{q+1}=1$, we see that $\operatorname{Tr}\left(u^{1+q+q^{2}}\right)=\operatorname{Tr}\left(v^{-1} u^{2}\right)$. Write $d=u^{2}$ $+u^{2 q^{2}}+u^{2 q^{4}}$, so that $\operatorname{Tr}\left(v^{-1} u^{2}\right)=v^{-1} d+v d^{q}$. Hence, we obtain from Eq. (2) that

$$
v+v^{-1}+v^{-1} d+v d^{q}-2-d-d^{q}=(v-1)\left[v\left(1+d^{q}\right)-(1+d)\right] / v=0 .
$$

If $v=1$, then $u \in U$ and we are done.

Suppose $v \neq 1$. Then $v\left(1+d^{q}\right)-(1+d)=0$. We will deduce a contradiction. Note that $\operatorname{gcd}\left(1+q, 1-q+q^{2}\right)=\operatorname{gcd}(3,1+q)$. So if we let $3^{e} \|(1+q)$, then $e>0$ if and only if $q \equiv 2(\bmod 3)$. Let

$$
\begin{aligned}
U^{\prime} & =\left\{x \in \mathbb{F}_{q^{6}} \mid x^{3^{e}\left(1-q+q^{2}\right)}=1\right\} \quad \text { and } \\
R & =\left\{x \in \mathbb{F}_{q^{6}} \mid x^{(1+q) / 3^{e}}=1\right\} .
\end{aligned}
$$

As $u^{1+q^{3}}=1$, there exist $t \in R$ and $y \in U^{\prime}$ such that $u=t y$. Note that $v=$ $u^{1-q+q^{2}}=t^{3} s$ where s is an element such that $s^{3^{e}}=1$. In fact, $s=y^{1-q+q^{2}}$, and $s^{q+1}=1$. Hence, the equation $v\left(1+d^{q}\right)-(1+d)=0$ becomes $t^{3}-$ $s^{-1} d+t^{3} d^{q}-s^{-1}=0$. Let $w=s^{-1} y^{2}$. Now

$$
\begin{aligned}
d & =(t y)^{2}+(t y)^{2 q^{2}}+(t y)^{2 q^{4}} \\
& =t^{2}\left(y^{2}+y^{2 q^{2}}+y^{2 q^{4}}\right) \\
& =t^{2} s\left(w+w^{q^{2}}+w^{q^{4}}\right) .
\end{aligned}
$$

Moreover, as $y^{2\left(1-q+q^{2}\right)}=s^{2}, y^{2\left(1+q^{2}\right)}=s^{2} y^{2 q}$. we see that

$$
\begin{aligned}
d^{q} & =t^{-2}\left(y^{2 q}+y^{2 q^{3}}+y^{2 q^{5}}\right) \\
& =t^{-2} s^{-2}\left(y^{2+2 q^{2}}+y^{2+2 q^{4}}+y^{2 q^{2}+2 q^{4}}\right) \\
& =t^{-2}\left(w^{1+q^{2}}+w^{1+q^{4}}+w^{q^{2}+q^{4}}\right) .
\end{aligned}
$$

Finally,

$$
w^{1+q^{2}+q^{4}}=s^{-3} y^{2+2 q^{2}+2 q^{4}}=s^{-3}\left(y^{1-q+q^{2}}\right)^{2+2 q+2 q^{2}}=s^{-3} s^{2\left(1+q+q^{2}\right)}=s^{-1} .
$$

Substituting d and d^{q} into the equation $t^{3}-s^{-1} d+t^{3} d^{q}-s^{-1}=0$, we obtain

$$
\begin{equation*}
t^{3}-t^{2}\left(w+w^{q^{2}}+w^{q^{4}}\right)+t\left(w^{1+q^{2}}+w^{1+q^{4}}+w^{q^{2}+q^{4}}\right)-w^{1+q^{2}+q^{4}}=0 . \tag{3}
\end{equation*}
$$

Obviously, the only solutions for t satisfying Eq. (3) are $w, w^{q^{2}}$ and $w^{q^{4}}$. Recalling that $w=s^{-1} y^{2}=y^{1+q-q^{2}}, y \in U^{\prime}$ and $t \in R$, straightforward gcd computations show that any of the above three choices for t yield $y=1$, $t=1$, and thus $u=t y=1$. This is a contradiction since $u \neq 1$. Therefore $v=1$ and $u \in U$. The proof is complete.

4. THE TRACES

We now prove the main theorem on the traces of the $\left(q^{2}-q+1\right)$ th roots of unity.

Theorem 7. Let q be an odd prime power. For any $s \in \mathbb{F}_{q}, s \neq-2$, or -3 , there exists $u \in U=\left\{u \in \mathbb{F}_{q^{6}} \mid u^{q^{2}-q+1}=1\right\}$ such that $\operatorname{Tr}(u)=u+u^{q}+$ $u^{q^{2}}+u^{q^{3}}+u^{q^{4}}+u^{q^{5}}=$ s. In fact,

$$
q+1-2 \sqrt{q} \leqslant|\{u \in U \mid \operatorname{Tr}(u)=s\}| \leqslant q+1+2 \sqrt{q} .
$$

Proof. For $s \neq 6$, the inequalities come directly from Lemma 5 and Lemma 6. There are six u 's for each of the $(q-1) / 2-\left|\mathscr{P}_{0}\right|$ irreducible polynomials. For $s=6$ we must remember to add in the case of $u=1$, but in this case the number of polynomials $p(x)$ is $\frac{1}{6}[q-\eta(-3)]$ (about the midpoint of the interval of values), and the result also holds here.

The bounds on $|\{u \in U \mid \operatorname{Tr}(u)=s\}|$ found in Theorem 7 are known to be sharp for all small q in the following sense: For every integer N between $\frac{1}{6}(q+1-2 \sqrt{q})$ and $\frac{1}{6}(q+1+2 \sqrt{q})$ there exists an $a \neq 2,3$ such that the number of polynomials $p(x)$ is exactly N. Hence with $s=-a$ we have $|\{u \mid u \neq 1, \operatorname{Tr}(u)=s\}|=6 N$. This has been verified with the computational software package MAGMA [4] for all odd prime powers $q \leqslant 100$.

5. CONCLUSION

In the discussion after Theorem 4.2 in [3] it is shown that $-2 \in \mathbb{F}_{q} \backslash$ $\{\operatorname{Tr}(u) \mid u \in U\}$ for all odd prime powers q, and $-3 \in \mathbb{F}_{q} \backslash\{\operatorname{Tr}(u) \mid u \in U\}$ if $q \equiv 1(\bmod 3)$. Moreover, $\operatorname{Tr}(1)=6=-3$ if $q \equiv 0(\bmod 3)$, while $\operatorname{Tr}(u)=$ -3 for any primitive cube root of unity $u \in U$ when $q \equiv 2(\bmod 3)$. To see the latter fact, simply observe that $u^{q^{3}}+u=u^{-1}+u=u^{2}+u=-1$ if $o(u)=3$, and such elements u exist in U precisely when $q \equiv 2(\bmod 3)$. Thus Theorem 7 shows that the conjecture stated in [3] is true, and hence all odd order three-dimensional flag-transitive affine planes of type C are known (see Theorem 5.1 of [3]). In particular, if the order of such planes is q^{3}, where q is an odd prime, then the number of isomorphism classes is precisely $\frac{1}{2}(q-1)$, the same as the number of two-dimensional flag-transitive affine planes of type H with order q^{2} for odd primes q. It should be noted that in the three-dimensional case there are known examples of odd order planes of type H and even order planes of type C, but enumerating these planes would require different techniques.

REFERENCES

1. R. D. Baker and G. L. Ebert, Two-dimensional flag-transitive planes revisited, Geom. Dedicata 63 (1996), 1-15.
2. R. D. Baker, J. Dover, G. L. Ebert, and K. Wantz, Baer subgeometry partitions, J. Geom. 67 (2000), 23-34.
3. R. D. Baker, J. Dover, G. L. Ebert, and K. Wantz, Perfect Baer subplane partitions and three-dimensional flag-transitive planes, Des. Codes Cryptogr. 21 (2000), 19-39.
4. J. Cannon and C. Playoust, "An Introduction to MAGMA," Univ. of Sydney, Sydney, Australia, 1993.
5. G. L. Ebert, Partitioning problems and flag-transitive planes, Rend. Circ. Mat. Palermo Ser. II Suppl. 53 (1998), 27-44.
6. H. Hasse, Zur Theorie der abstrakte elliptischen Funktionenkörper. II. Automorphismen und Meromorphismen. Das Additionstheorem, J. Reine Angrew. Math. 175 (1936), 69-88.
7. H. Hasse, Zur Theorie der abstrakte elliptischen Funktionenkörper. III. Struktur des Meromorphismenringes. Die Riemannsche Vermutung, J. Reine Angew. Math. 175 (1936), 193-208.
8. W. M. Schmidt, "Equations over Finite Fields, An Elementary Approach," Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin/New York, 1976.

[^0]: ${ }^{1}$ Research partially supported by NSA grant MDA 904-00-1-0029.
 ${ }^{2}$ Research partially supported by NUS research grant RP 3982723.
 ${ }^{3}$ Research partially supported by NSA grant MDA 904-99-1-0012. This author thanks Department of Mathematics, National University of Singapore for its hospitality during the time of this research.

