A Trace Conjecture and Flag-Transitive Affine Planes

R. D. Baker

Department of Mathematics, West Virginia State College, Institute, West Virginia 25112-1000

G. L. Ebert¹

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553

K. H. Leung²

Department of Mathematics, University of Singapore, Kent Ridge, Singapore 119260

and

Q. Xiang³

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553

Communicated by the Managing Editors

Received April 12, 2000; published online May 10, 2001

For any odd prime power q, all $(q^2 - q + 1)$ th roots of unity clearly lie in the extension field \mathbb{F}_{q^6} of the Galois field \mathbb{F}_q of q elements. It is easily shown that none of these roots of unity have trace -2, and the only such roots of trace -3 must be primitive cube roots of unity which do not belong to \mathbb{F}_q . Here the trace is taken from \mathbb{F}_{q^6} to \mathbb{F}_q . Computer based searching verified that indeed -2 and possibly -3 were the only values omitted from the traces of these roots of unity for all odd $q \leq 200$. In this paper we show that this fact holds for all odd prime powers q. As an application, all odd order three-dimensional flag-transitive affine planes admitting a cyclic transitive action on the line at infinity are enumerated. © 2001 Academic Press

¹ Research partially supported by NSA grant MDA 904-00-1-0029.

² Research partially supported by NUS research grant RP 3982723.

³ Research partially supported by NSA grant MDA 904-99-1-0012. This author thanks Department of Mathematics, National University of Singapore for its hospitality during the time of this research.

1. INTRODUCTION

This article deals with a cyclotomic question in the Galois field \mathbb{F}_{q^6} of order q^6 , where q is any odd prime power. This question is motivated by the classification of certain flag-transitive affine planes. Our arguments will reduce the problem to showing the existence of some irreducible polynomial in $\mathbb{F}_q[x]$. We denote the set of all nonzero squares of \mathbb{F}_q by \Box_q , the set of nonsquares by $\not{\Box}_q$, and the nonzero elements of \mathbb{F} by \mathbb{F}^* . Let Tr be the trace from \mathbb{F}_{q^6} to \mathbb{F}_q ; that is, $\operatorname{Tr}(x) = x + x^q + x^{q^2} + x^{q^3} + x^{q^4} + x^{q^5}$ for $x \in \mathbb{F}_{q^6}$.

With the exception of the Lüneburg planes and the Hering plane, all known finite flag-transitive affine planes have a translation complement which contains a linear cyclic subgroup that either is transitive or has two equal-sized orbits on the line at infinity. Under a mild number-theoretic condition involving the order and dimension of the plane (see [5]), it can be shown that one of these actions must occur. We call flag-transitive planes of the first kind *C*-planes and those of the second kind *H*-planes.

Subject to the number-theoretic condition mentioned above, all odd order two-dimensional flag-transitive affine planes are H-planes, and these have been completely classified in [1]. In particular, there are precisely $\frac{1}{2}(q-1)$ such (nondesarguesian) planes of order q^2 for any odd prime q. In [2] it is shown that every odd order three-dimensional flag-transitive affine plane of type C arises from a "perfect" Baer subplane partition of $PG(2, q^2)$. Perfect Baer subplane partitions by definition are an orbit of some Baer subplane under a Singer subgroup of order $q^2 - q + 1$. Moreover, in [3] it is shown that every perfect Baer subplane partition is equivalent to one which is an orbit of a Baer subplane which may be represented (as a root space in \mathbb{F}_{a^6}) by a linearized polynomial of the form $x^{q^3} + mx^{q^2} + nx^q + x$, where m and n are elements of \mathbb{F}_{q^6} satisfying four conditions. The last condition says that $t = mn^{q^2} + m^{q^3}n^{q^5}$ is an element of \mathbb{F}_q , other than -1, which is not expressible as $N_{\mathbb{F}_{q^6}/\mathbb{F}_q^2}(1+u)$ for any $u \in \mathbb{F}_{q^6}$ with $u^{q^2-q+1} = 1$. Here $N_{\mathbb{F}_{q^6}/\mathbb{F}_{q^2}}$ denotes the norm from \mathbb{F}_{q^6} to \mathbb{F}_{q^2} , where one notes that $N_{\mathbb{F}_{q^6}/\mathbb{F}_{q^2}}(1+u) \in \mathbb{F}_q$ whenever $u^{q^2-q+1} = 1$. The conjecture made in [3] was that for any odd prime power q.

$$\mathbb{F}_{q} \setminus \{ \mathbb{N}_{\mathbb{F}_{q^{6}}/\mathbb{F}_{q^{2}}}(1+u) \mid u^{q^{2}-q+1} = 1 \} = \begin{cases} \{0\} & \text{if } q \neq 1 \pmod{3} \\ \{0, -1\} & \text{if } q \equiv 1 \pmod{3} \end{cases}$$

Since the perfect Baer subplane partitions (and the resulting flag-transitive planes) corresponding to t=0 are known, the proof of this conjecture would lead to a complete classification of three-dimensional odd order flag-transitive affine planes of type *C*. Here we prove this conjecture.

It will suit our purposes to first reformulate the conjecture in terms of traces from \mathbb{F}_{q^6} to \mathbb{F}_q . If $u \in \mathbb{F}_{q^6}$ and $u^{q^2-q+1} = 1$, then $u^{q^2+1} = u^q$, $u^{q^3} = u^{-1}$, $u^{1-q} = u^{-q^2} = u^{q^5}$, and $u^{q^2-q} = u^{-1} = u^{q^3}$. Thus $N_{\mathbb{F}_{q^6}/\mathbb{F}_{q^2}}(1+u) = (1+u)^{1+q^2+q^4} = (1+u)(1+u^{q^2})(1+u^{-q}) = 2 + \operatorname{Tr}(u)$. Hence what we must show is that

$$\mathbb{F}_{q} \setminus \{ \operatorname{Tr}(u) \mid u^{q^{2}-q+1} = 1 \} = \begin{cases} \{-2\} & \text{if } q \not\equiv 1 \pmod{3} \\ \{-2, -3\} & \text{if } q \equiv 1 \pmod{3} \end{cases}$$

Our approach is based on the observation that any $u \in U = \{u \in \mathbb{F}_{q^6} | u^{q^2-q+1} = 1\}$ which does not belong to the subfield \mathbb{F}_{q^2} has minimal polynomial p(x) over \mathbb{F}_q which is irreducible, self-reciprocal, of degree 6, and has $-\operatorname{Tr}(u)$ as the coefficient of x^5 . Thus the value set in question can be studied by examining these irreducible polynomials. We actually work "backwards" by counting the number of irreducible cubics f(x) over \mathbb{F}_q in a certain one parameter family, and then "lifting" each f(x) to a degree 6 polynomial $p(x) = x^3 f(x + \frac{1}{x})$. This lifted polynomial will be monic, self-reciprocal, and irreducible over \mathbb{F}_q . The final step will be to show that p(x) is, in fact, a minimal polynomial for an element of U. We end up showing not only that the values $\operatorname{Tr}(u)$, for $u \in U$, cover $\mathbb{F}_q \setminus \{-2, -3\}$, but that in addition the coverage is very "uniform." This depends upon early work of Hasse [6, 7], and thus we begin by reviewing quadratic characters.

2. QUADRATIC CHARACTER SUMS

In this section we collect a few facts about sums involving quadratic characters. Hence, let η denote the quadratic character of \mathbb{F}_q , so that

$$\eta(x) = \begin{cases} 1 & \text{if } x \in \Box_q \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x \in \not \Box_q. \end{cases}$$

We begin with a well known result. All sums are over \mathbb{F}_q unless otherwise noted.

PROPOSITION 1. Let q be an odd prime power and $f(x) = ax^2 + bx + c \in \mathbb{F}_q[x]$ with $a \neq 0$. Then

$$\sum_{x \in \mathbb{F}_q} \eta(ax^2 + bx + c) = \begin{cases} -\eta(a) & \text{if } b^2 - 4ac \neq 0\\ (q-1) \eta(a) & \text{if } b^2 - 4ac = 0 \end{cases}$$

Proof. The standard argument multiplies the sum by $\eta(4a^2) = 1$, distributing through $\eta(4a)$ and completing the square to get $\eta(a) \cdot \sum_x \eta((2ax+b)^2 - (b^2 - 4ac)) = \eta(a) \sum_y \eta(y^2 - d)$, where we have replaced 2ax + b by y and written d for $b^2 - 4ac$. The case when d = 0 is clear. For $d \neq 0$ one counts the solutions of $y^2 - d = z^2$. This is easy once we rewrite this equation as (y+z)(y-z) = d, and observe that y is just the average of complementary divisors of d.

The following result is a special case of the Hasse–Weil bound, first proved by Hasse [6, 7] (cf. [8, p. 1]) in 1936.

THEOREM 2. Let q be a prime power, and let N be the number of solutions $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ of the equation $y^2 = f(x)$, where $f(x) \in \mathbb{F}_q[x]$ is a polynomial of degree 4 with distinct roots. Then

$$|N+1-q| \leq 2\sqrt{q}.$$

Stating this theorem in terms of quadratic character sums, we have

COROLLARY 3. Let q be an odd prime power, let $f(x) \in \mathbb{F}_q[x]$ be a polynomial of degree 4 with distinct roots, and let η be the quadratic character of \mathbb{F}_q . Then

$$\left|1 + \sum_{x \in \mathbb{F}_q} \eta(f(x))\right| \leq 2\sqrt{q}.$$

Proof. Let N be the number of solutions $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ of $y^2 = f(x)$. Given x, there are 0, 1, or 2 choices for y accordingly as f(x) belongs to $[\square_q, \{0\}, \text{ or } \square_q$. Thus $N = \sum_{x \in \mathbb{F}_q} (1 + \eta(f(x))) = q + \sum_{x \in \mathbb{F}_q} \eta(f(x))$, and the corollary follows from Theorem 2.

We now state and prove a useful lemma about the number of irreducible cubic polynomials in a family of polynomials parameterized by the coefficient of x.

LEMMA 4. Let q be an odd prime power, $a \in \mathbb{F}_q$ with $a \neq -3$ or -4, and set $c = -(a+4)^2$. Let $\mathscr{P} = \{f(x) = x^3 + ax^2 + bx + c \mid b \in \mathbb{F}_q, -f(4) \in \square_q\}$, a family of cubic polynomials parameterized by the coefficient b of x. Then \mathscr{P} contains (q-1)/2 polynomials, of which at least $\frac{1}{6}(q+1-2\sqrt{q})$ but not more than $\frac{1}{6}(q+1+2\sqrt{q})$ are irreducible over \mathbb{F}_q . In particular, \mathscr{P} contains at least one polynomial f(x) which is irreducible over \mathbb{F}_q .

Proof. There are obviously q polynomials $f(x) = x^3 + ax^2 + bx - (a+4)^2$ as b varies over \mathbb{F}_q . With the restriction $-f(4) = -(64 + 16a + 4b - (a+4)^2) \in \mathbb{Z}_q$, the number of choices for b (hence the number of f(x)) is reduced to (q-1)/2 since -f(4) is a linear expression in b.

We consider the subset \mathscr{P}_0 of those polynomials which are reducible over \mathbb{F}_q . We wish to develop a character sum for the cardinality of \mathscr{P}_0 . Let $f(x) \in \mathscr{P}_0$, and let $t \in \mathbb{F}_q$ be a root of f(x). Since $f(0) = c \neq 0$, we know $t \neq 0$ and thus the equation f(t) = 0 can be solved for b to obtain

$$b = -[t^3 + at^2 + c]/t = -[t^2 + at + c/t].$$

Since *b* is uniquely determined by *t*, any element of \mathbb{F}_q is a root of at most one polynomial of \mathscr{P} . Define the mapping $\phi \colon \mathbb{F}_q^* \to \mathbb{F}_q$ by $\phi(t) = -[t^2 + at + c/t]$. Using this expression for *b*, we compute

$$-f(4) = -[64 + 16a + 4b - (a + 4)^{2}]$$

= $(a + 4)^{2} - 16a - 64 + 4[t^{2} + at - (a + 4)^{2}/t]$
= $(t - 4)[4t + 4(a + 4) + (a + 4)]^{2}/t$
= $t(t - 4)[4 + 4(a + 4)/t + (a + 4)^{2}/t^{2}]$
= $t(t - 4)[2 + (a + 4)/t]^{2}$.

Thus we set $Q = \{t \mid t(t-4)[2+(a+4)/t]^2 \in \mathbb{Z}_q\}$, and observe that $\mathscr{P}_0 = \{f(x) = x^3 + ax^2 + \phi(t) \ x + c \mid t \in Q\}$. Moreover, we have that every polynomial of \mathcal{P}_0 looks like $f(x) = (x-t) [x^2 + (a+t)x - c/t]$. In order to determine the number of polynomials in \mathcal{P}_0 we need to look at all roots of f(x), and hence the possible roots of $h_t(x) = x^2 + (a+t)x - c/t = x^2 + c/t$ $(a+t)x + (a+4)^2/t$. If $f(x) = (x-t)^3$, then we find -2t = a+t and $t^2 = -c/t$, which imply $a^3 - 27c = a^3 + 27(a+4)^2 = 0$. Since $a^3 + 27(a+4)^2 = 0$ $(a+3)(a+12)^2$, we have either a=-3, which we excluded, or a=-12. But the latter requires t = 4, whereas $4 \notin Q$. Hence f(x) cannot have a root of multiplicity 3. Since $t \neq 0$ we can use the discriminant $\delta(t) = (a+t)^2 t^2 + t^2 t^2$ $4tc = (a+t)^2 t^2 - 4t(a+4)^2$ of $t \cdot h_t(x)$ to sort out any additional roots. Toward that end we observe that $\delta(t) = t(t-4) [t^2 + (2a+4)t + (a+4)^2]$ and set $\delta_0(t) = t^2 + (2a+4)t + (a+4)^2$. Let $\gamma(t) = t(t-4)$, so that $\delta(t) = t(t-4)$ $\gamma(t) \, \delta_0(t)$. Since $\gamma(t) \in \square_q$ for all $t \in Q$, it follows that the quadratic character of $\delta_0(t)$ is the opposite of that of $\delta(t)$ for all $t \in Q$. Note that t is the unique root of f(x) if and only if $\delta(t) \in \square_q$. If $\delta(t) = 0$, then f(x) has a double root since $h_t(x)$ has a double root. Let $f(x) = (x - t_1)(x - t_2)^2$ be such a polynomial. Then $\delta(t_1) = 0$, and t_1 must be one of at most 2 roots of $\delta_0(t)$. On the other hand, $\delta(t_2) \in \Box_q$ since relative to this root f(x)factors to leave $h_{t_2}(x) = (x - t_1)(x - t_2)$. Of course, if t is a root of an f(x)with three distinct roots, then we also must have $\delta(t) \in \Box_q$. Hence we claim that the number of reducible polynomials is given by

$$|\mathcal{P}_{0}| = \sum_{t \in Q} \frac{1}{3} [2 - \eta(\delta(t))] = \sum_{t \in Q} \frac{1}{3} [2 + \eta(\delta_{0}(t))].$$

Those f(x) with a unique root get a value of $\frac{2+(1)}{3} = 1$ from that root. Those f(x) with three distinct roots get a value of $\frac{2+(-1)}{3} = \frac{1}{3}$ from each root, and hence a total of 1 as required. Finally, for $f(x) = (x - t_1)(x - t_2)^2$ the root t_1 contributes $\frac{2+0}{3} = \frac{2}{3}$ while the root t_2 contributes $\frac{2+(-1)}{3} = \frac{1}{3}$, and the total is again 1. In order to actually evaluate the sum we need to use the characteristic function for Q to convert to a sum over all of \mathbb{F}_q . But for $t \neq 0, 4$ or -(a+4)/2, we have $\eta(\gamma(t)) = -1$ or 1 according as $t \in Q$ or $t \notin Q$, so the characteristic function for Q viewed as a subset of $\mathbb{F}_q \setminus \{0, 4, -\frac{a+4}{2}\}$ is just $\frac{1}{2}[1-\eta(\gamma(t))]$. Therefore we have shown that

$$\begin{split} |\mathcal{P}_{0}| &= \frac{1}{6} \sum_{t \in \mathbb{F}_{q} \setminus \{0, 4, -(a+4)/2\}} \left[1 - \eta(\gamma(t)) \right] \left[2 + \eta(\delta_{0}(t)) \right] \\ &= \frac{1}{6} \sum_{t \in \mathbb{F}_{q}} \left[1 - \eta(\gamma(t)) \right] \left[2 + \eta(\delta_{0}(t)) \right] \\ &- \frac{1}{6} \sum_{t \in \{0, 4, -(a+4)/2\}} \left[1 - \eta(\gamma(t)) \right] \left[2 + \eta(\delta_{0}(t)) \right]. \end{split}$$

In order to evaluate the sum with range $\{0, 4, -\frac{a+4}{2}\}$ we compute that $\gamma(0) = \gamma(4) = 0$, $\delta_0(0) = (a+4)^2$, $\delta_0(4) = (a+4)(a+12)$, and $\gamma(-\frac{a+4}{2}) = \delta_0(-\frac{a+4}{2}) = \frac{1}{4}(a+4)(a+12)$. Thus, if $a \neq -12$, the sum is $\frac{1}{6}[6] = 1$. When a = -12, this sum has only two summands since $-\frac{a+4}{2} = 4$ and becomes $\frac{1}{6}[5] = \frac{5}{6}$. Thus in either case the sum is given by the expression $\frac{1}{6}[5 + \eta((a+12)^2)]$. Hence

$$\begin{split} |\mathcal{P}_{0}| &= \frac{1}{6} \sum_{t \in \mathbb{F}_{q}} \left[1 - \eta(\gamma(t)) \right] \left[2 + \eta(\delta_{0}(t)) \right] - \frac{1}{6} \left[5 + \eta((a+12)^{2}) \right] \\ &= \frac{q}{3} + \frac{1}{6} \sum_{t \in \mathbb{F}_{q}} \left[\eta(\delta_{0}(t)) - 2\eta(\gamma(t)) - \eta(\delta(t)) \right] - \frac{1}{6} \left[5 + \eta((a+12)^{2}) \right]. \end{split}$$

By Proposition 1 we have that $\sum \eta(\gamma(t))$ and $\sum \eta(\delta_0(t))$ are both -1. In the special case a = -12, we observe that $\delta(t) = t(t-4)^2 (t-16)$. Again using Proposition 1 we have that $\sum \eta(\delta(t)) = \sum \eta(t(t-16)) - \eta(-48) = -1 - \eta(-3)$. Substituting these values we obtain

$$|\mathscr{P}_{0}| = \begin{cases} \frac{q-2}{3} - \frac{1}{6} \left\{ 1 + \sum_{t \in F_{q}} \left[\eta(\delta(t)) \right] \right\} & \text{for } a \neq -12\\ \frac{q-2}{3} + \frac{1}{6} \left\{ 1 + \eta(-3) \right\} & \text{for } a = -12 \end{cases}$$

By Theorem 3, since $\delta(t)$ has distinct roots for $a \neq -12$, we have $|1 + \sum \eta(\delta(t))| \leq 2q^{1/2}$. Therefore, after noting that the case a = -12 clearly satisfies $|1 + \eta(-3)| \leq 2q^{1/2}$, we conclude that

$$\tfrac{1}{3}(q-2-\sqrt{q})\leqslant |\mathscr{P}_0|\leqslant \tfrac{1}{3}(q-2+\sqrt{q}).$$

Hence, we have that $|\mathscr{P}_0| < (q-1)/2$, and $\mathscr{P} \setminus \mathscr{P}_0 \neq \emptyset$. The bounds on $|\mathscr{P} \setminus \mathscr{P}_0|$ are just $\frac{q-1}{2} - \frac{1}{3}(q-2 \pm \sqrt{q}) = \frac{1}{6}(q+1 \pm 2\sqrt{q})$. The proof is complete.

3. SELF-RECIPROCAL POLYNOMIALS

In this section we will exploit the connection between a self-reciprocal degree 6 polynomial p(x) and a naturally related cubic polynomial f(x), thereby allowing us to establish the existence results we seek. First we translate Lemma 4 to the exact form required.

LEMMA 5. Let q be an odd prime power. Then for every $a' \in \mathbb{F}_q$, $a' \neq 2$ or 3, there exists $b' \in \mathbb{F}_q$ such that the polynomial $f(x) = x^3 + a'x^2 + b'x + (2b' + 4 - a'^2)$ is irreducible over \mathbb{F}_q and $a'^2 - 4(a' + b' + 3) \in \square_q$. Indeed, the number of such b' lies between $\frac{1}{6}(q + 1 - 2\sqrt{q})$ and $\frac{1}{6}(q + 1 + 2\sqrt{q})$.

Proof. Note that $f(x-2) = x^3 + (a'-6) x^2 + (b'-4a'+12) x - (a'-2)^2$. Let a = a'-6, b = b'-4a'+12, and $c = -(a'-2)^2$. As $a' \neq 2$ or 3, we have $a = a'-6 \neq -4$ or -3. Also $c = -(a+4)^2$, and $a'^2 - 4(a'+b'+3) = -f(2) = -f(4-2)$. Thus, we may apply Lemma 4 to the polynomial f(x-2) to get the desired result. ■

The conditions of Lemma 5 that force -f(2) and -f(-2) to have opposite quadratic character are critical in showing the irreducibility of the associated degree 6 polynomial in the following lemma.

LEMMA 6. Let q be an odd prime power. If $f(x) = x^3 + ax^2 + bx + (2b+4-a^2) \in \mathbb{F}_q[x]$ is irreducible over \mathbb{F}_q and $a^2 - 4(a+b+3) \in \mathbb{Z}_q$, then $p(x) = x^3 f(x + \frac{1}{x}) = x^6 + ax^5 + (3+b) x^4 + (2a+2b+4-a^2) x^3 + (3+b) x^2 + ax + 1$ is a monic, self-reciprocal polynomial which is irreducible over \mathbb{F}_q . Moreover, there exists $u \in U = \{u \in \mathbb{F}_{q^6} \mid u^{q^2-q+1} = 1\}$ such that p(x) is the minimal polynomial of u over \mathbb{F}_q .

Proof. Since $p(0) = 1 \neq 0$, any root u of p(x) is nonzero and must have $u + \frac{1}{u}$ a root of f(x). Thus p(x) cannot have any roots in \mathbb{F}_{q^2} as the roots of f(x) lie in $\mathbb{F}_{q^3} \setminus \mathbb{F}_q$. Thus it suffices to show that p(x) cannot factor as the product of two irreducible cubics in $\mathbb{F}_{a}[x]$. Suppose to the contrary that $r(x) = x^3 + r_2 x^2 + r_1 x + r_0 \in \mathbb{F}_q[x]$ is an irreducible cubic which divides p(x). Let u be a root of r(x). Hence $u \in \mathbb{F}_{q^3}$ and u, u^q, u^{q^2} are the three distinct roots of r(x). Since p(x) is a self-reciprocal polynomial, it follows that u^{-1} also is a root of p(x). If u^{-1} were u, u^q , or u^{q^2} , then $u^2 = 1$ as 2 is the gcd of $q^3 - 1$ and any one of 2, q + 1, or $q^2 + 1$. But this implies $u = \pm 1$, an obvious contradiction. Thus the reciprocal polynomial $r^*(x) =$ $x^{3}r(\frac{1}{x}) = r_{0}x^{3} + r_{1}x^{2} + r_{2}x + 1$ of r(x) must be its complementary factor, yielding the factorization $cp(x) = r(x) r^*(x)$ of an associate of p(x). Evaluation of the identity at 0 shows $c = r_0$. Next evaluation at 1 yields $-r_0$. $[a^2-4a-4b-12] = [r(1)]^2$ as $r^*(1) = r(1)$. Then evaluation at -1 yields $r_0(a-2)^2 = -[r(-1)]^2$ since $r^*(-1) = -r(-1)$. If a=2, then f(x) = -r(-1). $(x+2)(x^2+b)$, contradicting the irreducibility of f(x). Thus $(a-2)^2 \in \Box_a$, forcing $a^2 - 4(a+b+3) \in \Box_a$, a contradiction. Therefore p(x) is irreducible as claimed.

Let u be a root of p(x). Since p(x) is irreducible over \mathbb{F}_q , we have $u \in \mathbb{F}_{q^6} \setminus \mathbb{F}_{q^2}$. Again, since p(x) is self-reciprocal, $\frac{1}{u}$ is also a root of p(x). Hence u^{-1} is equal to one of $u, u^q, u^{q^2}, u^{q^3}, u^{q^4}, u^{q^5}$. Rewriting $u^{-1} = u^{q^i}$ as $u^{q^{i+1}} = 1$, we see that the choices u, u^q , or u^{q^5} would imply that the order of u divides q + 1, and hence $u \in \mathbb{F}_{q^2}$, a contradiction. Similarly the choices u^{q^2} or u^{q^4} are not possible since $u^{1+q^2+q^4} \in \mathbb{F}_{q^2}$ and hence either of these choices would force $u \in \mathbb{F}_{q^2}$. Thus we conclude that $u^{q^3+1} = 1$.

Now, it can be easily verified that $a = -\operatorname{Tr}(u), b = \operatorname{Tr}(u^{1+q}) + \operatorname{Tr}(u^{1-q})$ and

$$2b + 4 - a^{2} = -\operatorname{Tr}(u^{1+q+q^{2}}) - (u^{1-q+q^{2}} + u^{-1+q-q^{2}}).$$
(1)

Observe that $a^2 = 6 + \operatorname{Tr}(u^2) + \operatorname{Tr}(u^{1+q}) + \operatorname{Tr}(u^{1-q}) + \operatorname{Tr}(u^{1+q^2}) + \operatorname{Tr}(u^{1-q^2})$. Substituting a^2 , a and b into Eq. (1), and noting that $\operatorname{Tr}(u^{1-q}) = \operatorname{Tr}(u^{1+q^2})$ and $\operatorname{Tr}(u^{1+q}) = \operatorname{Tr}(u^{1-q^2})$, we then get

$$v + v^{-1} + \operatorname{Tr}(u^{1+q+q^2}) - 2 - \operatorname{Tr}(u^2) = 0,$$
(2)

where $v = u^{1-q+q^2}$. Using the definition of v, we have $u^{1+q+q^2} = u^{1-q+q^2}u^{2q}$ $= vu^{2q}$. Since $v^{q+1} = 1$, we see that $\operatorname{Tr}(u^{1+q+q^2}) = \operatorname{Tr}(v^{-1}u^2)$. Write $d = u^2$ $+ u^{2q^2} + u^{2q^4}$, so that $\operatorname{Tr}(v^{-1}u^2) = v^{-1}d + vd^q$. Hence, we obtain from Eq. (2) that

$$v + v^{-1} + v^{-1}d + vd^{q} - 2 - d - d^{q} = (v - 1)[v(1 + d^{q}) - (1 + d)]/v = 0.$$

If v = 1, then $u \in U$ and we are done.

Suppose $v \neq 1$. Then $v(1 + d^q) - (1 + d) = 0$. We will deduce a contradiction. Note that $gcd(1 + q, 1 - q + q^2) = gcd(3, 1 + q)$. So if we let $3^e \parallel (1 + q)$, then e > 0 if and only if $q \equiv 2 \pmod{3}$. Let

$$U' = \{ x \in \mathbb{F}_{q^6} \mid x^{3^e(1-q+q^2)} = 1 \}$$
 and
$$R = \{ x \in \mathbb{F}_{q^6} \mid x^{(1+q)/3^e} = 1 \}.$$

As $u^{1+q^3} = 1$, there exist $t \in R$ and $y \in U'$ such that u = ty. Note that $v = u^{1-q+q^2} = t^3s$ where s is an element such that $s^{3^e} = 1$. In fact, $s = y^{1-q+q^2}$, and $s^{q+1} = 1$. Hence, the equation $v(1+d^q) - (1+d) = 0$ becomes $t^3 - s^{-1}d + t^3d^q - s^{-1} = 0$. Let $w = s^{-1}y^2$. Now

$$d = (ty)^{2} + (ty)^{2q^{2}} + (ty)^{2q^{4}}$$
$$= t^{2}(y^{2} + y^{2q^{2}} + y^{2q^{4}})$$
$$= t^{2}s(w + w^{q^{2}} + w^{q^{4}}).$$

Moreover, as $y^{2(1-q+q^2)} = s^2$, $y^{2(1+q^2)} = s^2 y^{2q}$. we see that

$$d^{q} = t^{-2}(y^{2q} + y^{2q^{3}} + y^{2q^{5}})$$

= $t^{-2}s^{-2}(y^{2+2q^{2}} + y^{2+2q^{4}} + y^{2q^{2}+2q^{4}})$
= $t^{-2}(w^{1+q^{2}} + w^{1+q^{4}} + w^{q^{2}+q^{4}}).$

Finally,

$$w^{1+q^2+q^4} = s^{-3}y^{2+2q^2+2q^4} = s^{-3}(y^{1-q+q^2})^{2+2q+2q^2} = s^{-3}s^{2(1+q+q^2)} = s^{-1}.$$

Substituting d and d^q into the equation $t^3 - s^{-1}d + t^3d^q - s^{-1} = 0$, we obtain

$$t^{3} - t^{2}(w + w^{q^{2}} + w^{q^{4}}) + t(w^{1+q^{2}} + w^{1+q^{4}} + w^{q^{2}+q^{4}}) - w^{1+q^{2}+q^{4}} = 0.$$
(3)

Obviously, the only solutions for t satisfying Eq. (3) are w, w^{q^2} and w^{q^4} . Recalling that $w = s^{-1}y^2 = y^{1+q-q^2}$, $y \in U'$ and $t \in R$, straightforward gcd computations show that any of the above three choices for t yield y = 1, t = 1, and thus u = ty = 1. This is a contradiction since $u \neq 1$. Therefore v = 1 and $u \in U$. The proof is complete.

4. THE TRACES

We now prove the main theorem on the traces of the $(q^2 - q + 1)$ th roots of unity.

THEOREM 7. Let q be an odd prime power. For any $s \in \mathbb{F}_q$, $s \neq -2$, or -3, there exists $u \in U = \{u \in \mathbb{F}_{q^6} | u^{q^2-q+1} = 1\}$ such that $\operatorname{Tr}(u) = u + u^q + u^{q^2} + u^{q^3} + u^{q^4} + u^{q^5} = s$. In fact,

$$q+1-2\sqrt{q} \leqslant |\{u \in U \mid \operatorname{Tr}(u) = s\}| \leqslant q+1+2\sqrt{q}.$$

Proof. For $s \neq 6$, the inequalities come directly from Lemma 5 and Lemma 6. There are six *u*'s for each of the $(q-1)/2 - |\mathscr{P}_0|$ irreducible polynomials. For s = 6 we must remember to add in the case of u = 1, but in this case the number of polynomials p(x) is $\frac{1}{6}[q-\eta(-3)]$ (about the midpoint of the interval of values), and the result also holds here.

The bounds on $|\{u \in U \mid \operatorname{Tr}(u) = s\}|$ found in Theorem 7 are known to be sharp for all small q in the following sense: For every integer N between $\frac{1}{6}(q+1-2\sqrt{q})$ and $\frac{1}{6}(q+1+2\sqrt{q})$ there exists an $a \neq 2$, 3 such that the number of polynomials p(x) is exactly N. Hence with s = -a we have $|\{u \mid u \neq 1, \operatorname{Tr}(u) = s\}| = 6N$. This has been verified with the computational software package MAGMA [4] for all odd prime powers $q \leq 100$.

5. CONCLUSION

In the discussion after Theorem 4.2 in [3] it is shown that $-2 \in \mathbb{F}_q \setminus \{\operatorname{Tr}(u) \mid u \in U\}$ for all odd prime powers q, and $-3 \in \mathbb{F}_q \setminus \{\operatorname{Tr}(u) \mid u \in U\}$ if $q \equiv 1 \pmod{3}$. Moreover, $\operatorname{Tr}(1) = 6 = -3$ if $q \equiv 0 \pmod{3}$, while $\operatorname{Tr}(u) = -3$ for any primitive cube root of unity $u \in U$ when $q \equiv 2 \pmod{3}$. To see the latter fact, simply observe that $u^{q^3} + u = u^{-1} + u = u^2 + u = -1$ if o(u) = 3, and such elements u exist in U precisely when $q \equiv 2 \pmod{3}$. Thus Theorem 7 shows that the conjecture stated in [3] is true, and hence all odd order three-dimensional flag-transitive affine planes of type C are known (see Theorem 5.1 of [3]). In particular, if the order of such planes is q^3 , where q is an odd prime, then the number of isomorphism classes is precisely $\frac{1}{2}(q-1)$, the same as the number of two-dimensional flag-transitive affine planes of type H with order q^2 for odd primes q. It should be noted that in the three-dimensional case there are known examples of odd order planes of type H and even order planes of type C, but enumerating these planes would require different techniques.

REFERENCES

- R. D. Baker and G. L. Ebert, Two-dimensional flag-transitive planes revisited, *Geom. Dedicata* 63 (1996), 1–15.
- R. D. Baker, J. Dover, G. L. Ebert, and K. Wantz, Baer subgeometry partitions, J. Geom. 67 (2000), 23–34.

- R. D. Baker, J. Dover, G. L. Ebert, and K. Wantz, Perfect Baer subplane partitions and three-dimensional flag-transitive planes, *Des. Codes Cryptogr.* 21 (2000), 19–39.
- J. Cannon and C. Playoust, "An Introduction to MAGMA," Univ. of Sydney, Sydney, Australia, 1993.
- G. L. Ebert, Partitioning problems and flag-transitive planes, *Rend. Circ. Mat. Palermo* Ser. II Suppl. 53 (1998), 27–44.
- H. Hasse, Zur Theorie der abstrakte elliptischen Funktionenkörper. II. Automorphismen und Meromorphismen. Das Additionstheorem, J. Reine Angrew. Math. 175 (1936), 69–88.
- H. Hasse, Zur Theorie der abstrakte elliptischen Funktionenkörper. III. Struktur des Meromorphismenringes. Die Riemannsche Vermutung, J. Reine Angew. Math. 175 (1936), 193–208.
- W. M. Schmidt, "Equations over Finite Fields, An Elementary Approach," Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin/New York, 1976.