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Abstract

We study the space of functions on a finite-dimensional vector space over a field of odd order as a module
for a symplectic group. We construct a basis of this module with the following special properties. Each
submodule generated by a single basis element under the symplectic group action is spanned as a vector
space by a subset of the basis and has a unique maximal submodule. From these properties, the dimension
and composition factors of the submodule generated by any subset of the basis can be determined. These
results apply to incidence geometry of the symplectic polar space, yielding the symplectic analogue of
Hamada’s additive formula for the p-ranks of the incidence matrices between points and flats. A special
case leads to a closed formula for the p-rank of the incidence matrix between the points and lines of the
symplectic generalized quadrangle over a field of odd order. Together with earlier results on the 2-ranks,
this result completes the determination of the p-ranks for these quadrangles.
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1. Introduction

Let k = Fq be the finite field of order q , where q = pt , p is a prime, and t is a positive integer,
and let V be a 2m-dimensional vector space over k. We denote by PG(2m − 1, q) the (2m − 1)-
dimensional projective geometry of V , and denote by P the set of points of PG(2m − 1, q). The
incidence matrices between P and flats of PG(2m− 1, q) have been studied extensively over the
past forty years. See for example, [2,5–7,15] for Fp-ranks of these matrices, and [3,13] for their
Smith normal forms. The spaces k[P ] and k[V ] of k-valued functions on P and V , respectively,
are permutation modules for the general linear group GL(V ) and were investigated from this
viewpoint in [2], where the p-ranks of the above incidence matrices were obtained as a corollary
of the description of the submodule lattice of k[P ] (see [2]).

In this paper we assume that V has the additional structure of a nonsingular alternating bilin-
ear form. Then it is natural to consider the symplectic polar space W(2m − 1, q) whose flats are
those flats of PG(2m − 1, q) which are totally isotropic with respect to the form. Thus, the set of
points is P and the incidence matrices between P and the flats of this geometry are submatrices
of the ones above. To study these new incidence matrices we consider the spaces k[P ] and k[V ]
as permutation modules for the symplectic group Sp(V ) of the form. Let Ir denote the set of
totally isotropic r-dimensional subspaces of V , where 1 � r � m. The space k[Ir ] of functions
from Ir to k has a standard basis in bijection with Ir and we shall often identify the two sets.
Then for 1 � r � m the incidence matrix between P and Ir is the matrix, in the standard bases,
of the incidence map

ηr : k[Ir ] → k[P ] (1)

sending a totally isotropic r-dimensional subspace of V to its characteristic function in k[P ]. We
are therefore interested in the images of the maps ηr .

When q = p is an odd prime, the p-ranks were determined in [14] and the invariant factors of
the incidence matrices over the integers were found in [9].

We now survey the results of this paper, which are valid for an arbitrary power q of an odd
prime p. A crucial step is the construction of a special basis of k[V ] (see Definition 4.1), whose
elements are called symplectic basis functions. Our main theorems describe the submodule struc-
ture of the k Sp(V )-module generated by an arbitrary symplectic basis function. We will come
back to this submodule structure later in this introduction. The k Sp(V )-module k[P ] can be
viewed as a direct summand of k[V ], and the images of the incidence maps ηr belong to the class
of submodules of k[V ] generated by symplectic basis functions. From the results on submodule
structure, we obtain an additive p-rank formula (Theorem 6.2) for the incidence matrix between
I1 = P and Ir . This formula is the symplectic analogue of Hamada’s p-rank formula [6]. In
the case where m = 2, the additive formula leads to an attractive closed formula for the p-rank,
which we will now describe in some detail.

For convenience, let Am
1,r (q) be a (0,1)-matrix with rows indexed by the elements Y of Ir

and columns indexed by the elements Z of P , and with the (Y,Z) entry equal to 1 if and only if
Z ⊆ Y . We consider the case where m = 2 (and r = 2) in particular. In this case, the symplectic
polar space W(3, q) is a classical generalized quadrangle (GQ) [11,17], whose points are all the
points of PG(3, q), and whose lines are the totally isotropic 2-dimensional subspaces of V . When
q = 2t , Sastry and Sin [12] gave the following formula for the 2-rank of A2

1,2(q).

rank2
(
A2

1,2

(
2t

)) = 1 +
(

1 + √
17

)2t

+
(

1 − √
17

)2t

. (2)

2 2
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In the case where q = p is an odd prime, de Caen and Moorhouse [4] determined the p-rank of
A2

1,2(p), which was later generalized in [14], giving the p-ranks of Am
1,r (p), where 1 � r � m,

p is an odd prime, and m is not necessarily 2. In this paper, we obtain the following formula for
the p-rank of A2

1,2(p
t ), p an odd prime, as a corollary of our submodule structure results.

Theorem 1.1. Let p be an odd prime and let t � 1 be an integer. Then the p-rank of A2
1,2(p

t ) is
equal to

1 + αt
1 + αt

2,

where

α1, α2 = p(p + 1)2

4
± p(p + 1)(p − 1)

12

√
17. (3)

We remark that in (3), if we simply set p = 2, then we actually obtain (2), but the two results
require different proofs. We also mention in passing that the 2-rank of A2

1,2(p
t ), where p is odd,

was computed in [1].
The paper is organized as follows. In Section 2, we will review the results in [2] concerning

the GL(V )-submodule lattice of k[V ]. The submodule lattice has a combinatorial description in
terms of certain partially ordered sets H and H[d]. (See Subsection 2.1 below.) For the moment,
we will just consider H, which is associated with the nontrivial summand YP of k[P ]. The
module YP has a special basis, and to each basis element there is an associated element of H
called its H-type, giving a surjective map from the basis to H. It was proved in [2] that for each
s ∈ H, the set of basis elements whose H-types are � s span a k GL(V )-submodule Y(s) of YP

with the property that Y(s) has a unique maximal submodule. Furthermore, every submodule of
YP is a sum of submodules of the form Y(s).

On the representation-theoretic side, the main goal of this paper is to construct analogues of
these objects adapted to the action of Sp(V ). In order to do so, it is necessary first to look deeper
into the k GL(V )-structure of k[V ]. By considering its multiplicative structure as a k GL(V )-
algebra, we derive tensor product factorizations of certain subquotients of k[V ] which will be
needed in our later constructions. These new results concerning GL(V ) are also included in
Section 2. In Section 3, we define posets S and S[d] whose elements are pairs (s, ε), with s in H
(or H[d]) and ε a certain “signature.” In Section 4, we define a special basis of k[V ]. Just as in the
GL(V ) case, a certain subset of this basis spans YP and there is a surjection from this subset to S .
For (s, ε) ∈ S , let Y(s, ε) be the k-subspace spanned by the basis elements of YP which map into
the ideal in S determined by (s, ε). In Section 5 we prove that Y(s, ε) is a k Sp(V )-submodule
of YP , and our main technical result, that Y(s, ε) has a unique maximal submodule. Unlike the
k GL(V )-submodules, not every Sp(V )-submodule of YP is the sum of submodules of the form
Y(s, ε). The reason is a fundamental difference between the two cases. As a k GL(V )-module,
YP is multiplicity-free—that is, no two composition factors are isomorphic—while the k Sp(V )-
module is not. Nevertheless, the portion of the entire k Sp(V )-submodule lattice generated by the
submodules Y(s, ε) is sufficiently rich for our applications. In Section 6, we apply the results of
Section 5 to the images of the incidence maps ηr defined in (1) in order to obtain a summation
formula for the p-rank of the incidence matrix Am

1,m(pt ). Theorem 1.1 is then deduced from the
m = 2 case of this formula.

The following assumptions and notations will be in force throughout the paper. To avoid trivial
exceptions, we will assume that V has dimension 2m � 4. Let 〈−,−〉 denote the nonsingular
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alternating bilinear form on V . We fix a basis e1, e2, . . . , em,fm, . . . , f1 of V , with corresponding
coordinates x1, x2, . . . , xm, ym, . . . , y1 so that 〈ei, fj 〉 = δij , 〈ei, ej 〉 = 0, and 〈fi, fj 〉 = 0.

2. Action of GL(V ) on k[V ]

Throughout Sections 2 through 5 of the paper, we assume that p is an odd prime, k = Fq , V

is a 2m-dimensional vector space over k, and q = pt , t > 1. The assumption that t > 1 is mainly
for notational convenience, and is only seriously used in Lemmas 5.4 and 5.5. We shall need to
apply some of the results of [2].

The results in [2, Theorems A, B, C] give a simple and complete description of the k GL(V )-
submodule structure of the space k[V ] of k-valued functions on a finite vector space V . Let
k[X1,X2, . . . ,X2m] denote the polynomial ring, in 2m variables. Since every function on V is
given by a polynomial in the 2m coordinates xi , the map Xi 	→ xi defines a surjective k-algebra
homomorphism k[X1,X2, . . . ,X2m] → k[V ], with kernel generated by the elements X

q
i − Xi .

Furthermore, this map is simply the coordinate description of the following canonical map. The
polynomial ring is isomorphic to the symmetric algebra S(V ∗) of the dual space of V ; so we
have a natural evaluation map S(V ∗) → k[V ]. This canonical description makes it clear that the
map is equivariant with respect to the natural actions of GL(V ) on these spaces. A basis for k[V ]
is obtained by taking monomials in 2m coordinates xi such that the degree in each variable is at
most q − 1. We will call these the basis monomials of k[V ].

The space k[V ] has the structure of a Z/(q − 1)Z-graded GL(V )-algebra, where the grading
is given by the characters of the center, the scalar multiplications, isomorphic to k×. Thus,

k[V ] =
⊕

[d]∈Z/(q−1)Z

A[d],

where μ ∈ k× acts on the component A[d] as μ[d]. The component A[d] has basis consisting of
the basis monomials in which the total degree is in the residue class [d].

2.1. Types and H-types

We now recall the definitions of two t-tuples associated with each basis monomial. Let

f =
2m∏
i=1

x
bi

i =
t−1∏
j=0

2m∏
i=1

(
x

aij

i

)pj

, (4)

be a basis monomial, where bi = ∑t−1
j=0 aijp

j and 0 � aij � p − 1. Let λj = ∑2m
i=1 aij . The

t-tuple λ = (λ0, . . . , λt−1) is called the type of f . The set of all types of monomials is denoted
by Λ.

Let d be the integer between 0 and q − 2 which is congruent to the total degree
∑

i bi =∑
j λjp

j modulo q − 1, and let (d0, . . . , dt−1) be the t-tuple of p-adic digits of d .
In [2], there is another t-tuple associated with each basis monomial, which we will call its

H-type. If [d] 
= [0] this tuple will lie in the set

H[d] = {
s = (s0, . . . , st−1)

∣∣ ∀j, 0 � sj � 2m − 1, 0 � psj+1 − sj + dj � 2m(p − 1)
}
,
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and if d = 0, it will belong to the set H[0] = H ∪ {(0,0, . . . ,0), (2m,2m, . . . ,2m)}, where

H = {
s = (s0, s1, . . . , st−1)

∣∣ ∀j, 1 � sj � 2m − 1, 0 � psj+1 − sj � 2m(p − 1)
}
.

The H-type s of f is uniquely determined by the type via the equations

λj = psj+1 − sj + dj , 0 � j � t − 1,

where the subscripts are taken modulo t . Moreover, these equations determine a bijection be-
tween the set Λ of types of basis monomials and the union of the sets H[d], 0 � d � q − 2. We
will consider the sets H[d] and H as partially ordered sets under their natural order induced by
the product order on t-tuples of natural numbers.

Notation 2.1. We will be considering many objects indexed by H-types. To indicate that the
corresponding H-type belongs to H[d], a decoration [d] will be used. In the case [d] = [0], we
will most often be interested in the case where the H-type is in H. In this case, we adopt the
convention of omitting [0] from the notation.

2.2. Composition factors

The types, or equivalently the H-types parametrize the composition factors of k[V ] in the
following sense. Except for the existence of two trivial direct summands in A[0], the k GL(V )-
module k[V ] is multiplicity-free. We can associate to each H-type s ∈H[d] a composition factor,
which we shall denote by L(s)[d], such that these simple modules are all nonisomorphic except
that L((0, . . . ,0))[0] ∼= L((2m, . . . ,2m))[0] ∼= k. The simple modules L(s)[d] occur as subquo-
tients of k[V ] in the following way. For r ∈ H[d] let Y(r)[d] be the span of all basis monomials
with H-types in H[d]r = {r′ ∈ H[d] | r′ � r}. By [2], if [d] 
= [0] then Y(r)[d] is a k GL(V )-
submodule of A[d] with a unique maximal submodule and such that the quotient by the maximal
submodule is isomorphic to L(r)[d]. Similarly in the case [d] = [0], for each s ∈ H, we let Y(s)
be the subspace spanned by monomials of H-types in Hs = {s′ ∈ H | s′ � s}, and Y(s) has a
unique simple quotient, isomorphic to L(s) := L(s)[0] (by the notational convention above).

The isomorphism type of the simple module L(s)[d] is most easily described in terms of
the corresponding type (λ0, . . . , λt−1) ∈ Λ. Let Sλ be the degree λ component in the truncated
polynomial ring k[X1,X2, . . . ,X2m]/(Xp

i ; 1 � i � 2m). Here λ ranges from 0 to 2m(p − 1).
Note that the dimension of Sλ is

dλ =
�λ/p�∑
j=0

(−1)j
(

2m

j

)(
2m − 1 + λ − jp

2m − 1

)
. (5)

The simple module L(s)[d] is isomorphic to the twisted tensor product

Sλ0 ⊗ (
Sλ1

)(p) ⊗ · · · ⊗ (
Sλt−1

)(pt−1)
. (6)

Remark 2.2. Note that each module (Sλ)(p
j ) is itself isomorphic to a composition factor

L(s)[pjλ] of k[V ], corresponding to the type λ with λj = λ and all other components zero.

Let us be more precise about this identification. From the definition, we may view (Sλ)(p
j ) as
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the degree λ component of the truncated polynomial ring in the variables X
pj

i . In k[X1, . . . ,X2m]
we consider the set of pj th powers of monomials of total degree λ and with the degree of each
variable between 0 and p − 1. This set maps injectively into the truncated polynomial ring in the

variables X
pj

i and the images form a basis for (Sλ)(p
j ). The images of the same monomials in

k[V ] are basis monomials of type λ. Hence they lie in Y(s)[pjλ] and they map bijectively to a
basis of the simple quotient L(s)[pjλ]. Later on, when we abuse notation slightly and speak of
(Sλ)(p

j ) as having a basis consisting of images of basis monomials of type λ, the exact meaning
will always be as we have just described.

2.3. Submodule structure

The reason for considering H-types is that they allow a simple description of the submod-
ule structure of the k GL(V )-modules A[d]. Suppose first that [d] = [0]. The space A[0] has
a trivial direct summand spanned by the characteristic function of {0}, which is the kernel of
the natural map A[0] → k[P ]. The basis monomials with types in H[0], excluding the type
(2m(p − 1),2m(p − 1), . . . ,2m(p − 1)) span a complementary direct summand, which maps
isomorphically onto k[P ]. We have

A[0] ∼= k ⊕ k[P ] = k ⊕ k ⊕ YP , (7)

where YP is the kernel of the map k[P ] → k, f 	→ |P |−1 ∑
Q∈P f (Q). The k GL(V ) mod-

ule YP is an indecomposable module whose composition factors are parametrized by H. The
[2, Theorem A] states that given any k GL(V )-submodule of YP , the set of its composition fac-
tors is an ideal in the partially ordered set H and that this correspondence is an order isomorphism
from the submodule lattice of YP to the lattice of ideals in H. For a submodule A � YP , let
H(A) ⊆ H denote the ideal of H-types of its composition factors.

For [d] 
= [0], the set H[d] parametrizes the composition factors of A[d] and we have a similar
order isomorphism from the submodule lattice of A[d] to the lattice of ideals in H[d], with its
natural partial order [2, Theorem C]. Let H[d](A) denote the ideal of the submodule A � A[d].

Assume now that M is a subquotient of A[d] with no trivial submodules. This condition is
just a convenient way of saying that in the case [d] = [0] we assume M is a subquotient of YP (so
that its set of H-types is well defined). Then there are submodules B � C of A[d] with no trivial
submodules such that M = C/B . Thus, if [d] 
= [0], the composition factors of M correspond
to the set H[d](C) \ H[d](B), which is a difference of ideals in H[d], while if [d] = [0] the
composition factors of M correspond to H(C) \H(B), a difference of ideals in H.

The submodules of A[d] and YP can also be described in terms of basis monomials
[2, Theorem B]. Any submodule of A[d] ([d] 
= [0]) or of YP has a basis consisting of the basis
monomials which it contains. Moreover, the H-types of these basis monomials are precisely the
H-types of the composition factors of the submodule. Furthermore, in any composition series,
the images of the monomials of a fixed H-type form a basis of the composition factor of that
H-type. (These statements are not quite true of A[0], because of the two trivial summands.)

2.4. GL(V )-algebra structure

Multiplication in k[V ] is pointwise multiplication of functions and it is GL(V )-equivariant,
giving k GL(V )-homomorphisms

A[d] ⊗ A[d ′] → A[d + d ′], for [d], [d ′] ∈ Z/(q − 1)Z.
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Lemma 2.3. Let λ = (λ0, . . . , λt−1) ∈ Λ correspond to the H-type r = (r0, . . . , rt−1) ∈ H[d].
Let [d∗] = [d − λt−1p

t−1] and let the H-type r∗ = (r∗
0 , . . . , r∗

t−1) ∈ H[d∗] correspond to the
type λ∗ = (λ0, . . . , λt−2,0). Then

r∗ = r + e, (8)

where the t-tuple e of integers depends only on [d] and λt−1.

Proof. The lemma follows directly from the definitions of r and r∗. Let dj and d∗
j be the p-adic

digits of the least nonnegative residues in [d] and [d∗] respectively. Then by definition,

λj = prj+1 − rj + dj , λ∗
j = pr∗

j+1 − r∗
j + d∗

j ;

so for 0 � i � t − 1,

(q − 1)ri =
t−1∑
j=0

(λj − dj )p
(j−i),

where the exponent (j − i) is taken to be the least nonnegative residue modulo t . The lemma
follows by comparing this formula with the similar one for r∗

i , remembering that λ∗
i = λi for

0 � i � t − 2 and that [d∗] is determined by [d] and λt−1. �
Corollary 2.4. Let T ⊆ Λ be a set of types whose (t − 1)th entries are all equal to λt−1. Let T ∗
be the set of types obtained from T by replacing λt−1 by zero in the (t − 1)th entry. Let X and
X ∗ be the sets of corresponding H-types which belong to H[d] and H[d∗] respectively, with the
induced orderings. The following hold:

(i) The bijection T → T ∗ sending λ to λ∗ induces an order isomorphism from X to X ∗.
(ii) X is a difference of ideals of H[d] if and only if X ∗ is a difference of ideals of H[d∗].

Proof. Both follow from the previous lemma; for (ii) we note that a subset of a finite partially
ordered set is a difference of ideals if and only if it satisfies the “intermediate value” condition
that for any two elements in the subset, all elements in between them are also in the subset. �
Theorem 2.5. Let M be a k GL(V )-subquotient of A[d] with no trivial submodules and let X
denote the set of H-types of its composition factors in H[d]. Suppose that for some j ∈ Z/tZ,
all tuples in X have the same rj and also the same entries rj+1. Let λj = prj+1 − rj + dj . Let
T ⊆ Λ be the set of types corresponding to X and T ∗ be the set of types obtained from T by
replacing λj by zero in the j th entry.

Then in the k GL(V )-submodule P of A[d − pjλj ] generated by all monomials with types
in T ∗, the k-subspace Q of P spanned by monomials whose types are not in T ∗ is a k GL(V )-
submodule. Let N = P/Q. Then

M ∼= N ⊗ (
Sλj

)(pj )
. (9)

Moreover, the types of N are obtained by replacing λj by 0 in the types of M .



878 D.B. Chandler et al. / Journal of Algebra 318 (2007) 871–892
Proof. Note that in the case [d] = [0] our hypothesis implies that M is a subquotient of YP ,
so the set of H-types of its composition factors is well defined. By Galois conjugation, we may
assume j = t − 1. By [2, Theorem A] X is a difference of ideals of H[d]. Let T be the set of
types λ = (λ0, . . . , λt−1) corresponding to X . By hypothesis, the entry λt−1 = dt−1 +pr0 − rt−1

is the same for every type in T . Then, by the previous corollary, the set X ∗ ⊆ H[d∗], whose
types form the set T ∗ of types obtained from T by replacing λt−1 by 0 in the (t − 1)th entry, is
a difference of ideals in H[d∗], where [d∗] = [d − λt−1p

t−1]. Let P � A[d∗] be the k GL(V )-
submodule generated by all monomials of types in T ∗. Then by [2] there exists a k GL(V )-
submodule Q � P such that Q has as basis all the monomials of P whose types are not in
T ∗, and N = P/Q is a k GL(V )-module with basis consisting of the bijective images of all
monomials of type T ∗. Likewise, M has a basis consisting of images of all monomials whose
types lie in T . In exactly the same way, the pt−1th powers of all monomials of degree λt−1 form
a basis of a k GL(V )-subquotient S of A[λt−1p

t−1] with S ∼= (Sλt−1)(p
t−1) as k GL(V )-modules.

It is clear that if we multiply each monomial of type T ∗ by the pt−1th power of each monomial
of degree λt−1, we obtain each monomial of type T exactly once. Therefore the multiplication
map A[d∗] ⊗ A[λt−1p

t−1] → A[d] induces a bijection of the subquotients

N ⊗ S ∼= M. (10)

Since the multiplication map is a map of k GL(V )-modules, the map (10) is a k GL(V )-
isomorphism. �
Remark 2.6. Let us interpret this tensor factorization in terms of a function f ∈ A[d] which

maps to a nonzero element f of M . Assume that f can be written as a product f = f ′f pj

j ,

where the monomials of f ′ ∈ A[d − pjλj ] have types in T ∗ and those of f
pj

j ∈ A[pjλj ] are

of type (0, . . . ,0, λj ,0, . . . ,0). Then under the isomorphism of the theorem, f is mapped to

f ′ ⊗f
pj

j , where f ′ is the image of f ′ in the subquotient N of A[d −pjλj ] and f
pj

j is the image

of f
pj

j in the simple subquotient S of A[λjp
j ].

2.5. The modules Y(s)[d]j and Y (s)j

We will consider certain quotients of Y(s)[d] and Y(s). Let X ⊂ H[d]s be the subset of
tuples having j th and (j + 1)th entries equal to sj and sj+1 respectively and λj = m(p − 1).
It is clear that X is the difference of the ideal H[d]s and an ideal of H[d], since it satisfies
the “intermediate value” condition; so X is the set of tuples of a k GL(V )-quotient Y (s)[d]j of
Y(s)[d]. Moreover, in the case [d] = [0], we have X ⊆ H and so Y(s)[0]j is actually a quotient
of Y(s). The following is immediate from the theorem above.

Lemma 2.7. There is a k GL(V )-module Bj such that

Y (s)[d]j ∼= Bj ⊗ (
Sm(p−1)

)(pj )
.
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3. The posets S and S[d]

Definition 3.1. For λ ∈ Λ, let s be the corresponding H-type in H[d]. Set

J (s) = {
j

∣∣ 0 � j � t − 1, λj = m(p − 1)
}
.

For any s, s′ ∈H[d], let Z(s, s′) = {j | s′
j = sj , s′

j+1 = sj+1, λj = m(p − 1)}. We define

S[d] = {
(s, ε)

∣∣ s ∈H[d], ε ⊆ J (s)
}
.

In the case [d] = [0], we also define

S = {
(s, ε)

∣∣ s ∈ H, ε ⊆ J (s)
}
.

We define (s′, ε′) � (s, ε) if and only if s′ � s and ε ∩Z(s′, s) = ε′ ∩Z(s′, s). It is not difficult
to check that this defines a partial order on S[d] and S ; for transitivity one notes that if s′′ �
s′ � s, then Z(s′′, s) = Z(s′′, s′) ∩ Z(s′, s).

Since each s ∈ H or r ∈ H[d] corresponds to a type λ ∈ Λ, we can also talk about signed
types (λ, ε) corresponding to elements of S or S[d].

4. Action of Sp(V ) on k[V ]

We now equip V with a nonsingular alternating bilinear form 〈−,−〉, with the basis
e1, e2, . . . , em,fm, . . . , f1 and the corresponding coordinates x1, x2, . . . , xm, ym, . . . , y1 as given
in Section 1. Accordingly, we view S(V ∗) as the polynomial ring generated by “symplectic in-
determinates,” X1, . . . ,Xm,Ym, . . . , Y1.

We will consider the submodule structures of k[V ], A[d], and YP , under the action of Sp(V ).
First let us recall the known facts about composition factors (cf. [8,16]). We would like to know
how a GL(V ) composition factor (6) decomposes upon restriction to Sp(V ). The modules Sλ,
0 � λ � 2m(p − 1), all remain simple except when λ = m(p − 1), in which case we have

Sm(p−1) = S+ ⊕ S−. (11)

Here, S+ and S− are simple k Sp(V )-modules, and

dim
(
S+) = (

d(p−1)m + pm
)
/2, dim

(
S−) = (

d(p−1)m − pm
)
/2. (12)

We can describe S+ and S− as follows.
To avoid cumbersome notation involving X1, . . . ,Xm, Ym, . . . , Y1, we will use multi-index no-

tation XαY β for monomials, where α = (a1, . . . , am) and β = (b1, . . . , bm), 0 � ai, bi � p − 1.
Further, for any multi-index β , we define |β| = ∑m

i=1 bi , β! = ∏m
i=1 bi !, and β = (p − 1 −

b1, . . . , p − 1 − bm), and similarly define |α| and α!. We will denote the images of monomials
in the quotient module Sm(p−1) using bars. Then [8] the map

τ :Sm(p−1) → Sm(p−1), XαY β 	→ (−1)|β|α!β!XβY α (13)

is a k Sp(V )-homomorphism with τ 2 = 1.
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The modules S+ and S− are the eigenspaces of τ for the eigenvalues (−1)m and (−1)m+1

respectively. By Remark 2.2 the space Sm(p−1) can be viewed as having a basis of images of basis
monomials of k[V ]. From this point of view, the eigenspaces S+ and S− have bases consisting
of images of basis monomials of k[V ] of the form

xαyα (14)

and of sums and differences

xαyβ ± (−1)|β|+mα!β!xβyα (15)

of monomials, for α 
= β . The images of the monomials (14) together with those in (15) with a
“+” sign form a basis of S+ and the images of those in (15) with a “−” sign form a basis of S−.

Definition 4.1. We will now define a new basis of k[V ], whose elements we will call symplectic
basis functions. We will first define the symplectic basis functions of type λ = (λ0, λ1, . . . , λt−1).
Then we will take the union of these sets of functions over all λ ∈ Λ. The symplectic basis
functions of type λ will be certain functions of the form

f = f0f
p

1 · · ·f pt−1

t−1 , (16)

where each fj , which we will call the j th digit of f , is either a basis monomial or binomial of
k[V ] of degree λj . We will now describe the allowable forms of the j th digit; then the set of
functions f , all of whose digits are allowable, will be the set of symplectic basis functions of
type λ. If λj 
= (p − 1)m, then fj can be any basis monomial of degree λj in which the degree
in each variable is at most p − 1. If λj = (p − 1)m, then fj can be any function of the form (14)
or (15).

Clearly by restricting the types for the symplectic basis functions we can obtain bases for
A[d], and YP .

Definition 4.2. To each symplectic basis function of k[V ] we associate a pair (s, ε) ∈ S[d] for
some [d] ∈ Z/(q − 1)Z, as follows. If f is of type λ, then s is the corresponding H-type. The set
ε ⊆ J (s), called the signature, is defined to be the set of j ∈ J (s) for which the image of the j th
digit fj of f in Sm(p−1) belongs to S+.

From (6) and (11), it is clear that the k Sp(V )-composition factors of k[V ] are given by their
types, together with the additional choice of signs for each j with λj = m(p − 1). In terms of H-
types, we see that each H-type gives a k GL(V )-composition factor and then the choice of signs
determines the simple k Sp(V ) composition factor of this simple k GL(V )-module. In this way,
the elements of S label the k Sp(V )-composition factors of YP , and those of S[d], [d] 
= [0] label
the k Sp(V )-composition factors of A[d]. However it should be noted that different elements of
S or S[d] can label isomorphic composition factors, due to the fact that Sλ ∼= S2m(p−1)−λ as
k Sp(V )-modules. We will use L(s, ε)[d] to denote the simple k Sp(V )-submodule of L(s)[d]
where we take the + summand for each j ∈ ε and the − summand for each j ∈ J (s) \ ε. When
s ∈H, we may use the simpler notation L(s, ε).
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It follows from the definitions that the set of symplectic basis functions of H-type s ∈ H[d]
and signature ε maps bijectively under the natural map Y(s)[d] → L(s)[d] to a basis of
L(s, ε)[d]. We will also call ε the signature of L(s, ε)[d].

The following statement is an immediate consequence of Lemma 2.7 and the decomposition
of Sm(p−1) just discussed.

Theorem 4.3. As k Sp(V )-modules, we have

Y(s)[d]j ∼= (
Bj ⊗ (

S+)(pj )) ⊕ (
Bj ⊗ (

S−)(pj ))
.

5. The submodules Y(s, ε)[d]

Let Y(s)[d]+j be the preimage in Y(s)[d] of the + component of Y(s)[d]j in Theorem 4.3 and

let Y(s)[d]−j be the preimage in Y(s)[d] of the − component. For ε ⊆ J (s), let

Y(s, ε)[d] =
⋂
j∈ε

Y (s)[d]+j ∩
⋂

j∈J (s)\ε
Y (s)[d]−j . (17)

Thus, Y(s, ε)[d] is a k Sp(V )-submodule of Y(s)[d].

Lemma 5.1. Let (s, ε) ∈ S[d]. Then Y(s, ε)[d] has a basis consisting of all the symplectic basis
functions with signed H-types (s′, ε′) � (s, ε).

Proof. Suppose (s′, ε′) ∈ S[d] with (s′, ε′) � (s, ε) and let f be a symplectic basis function

of signed type (s′, ε′). We will show first that f ∈ Y(s, ε)[d]. Write f = f0f
p

1 · · ·f pt−1

t−1 as the
product of its digits raised to the appropriate powers. Let j ∈ J (s). We must show that f ∈
Y(s)[d]+j if j ∈ ε and f ∈ Y(s)[d]−j if j ∈ J (s) \ ε.

Let j ∈ J (s). If j ∈ ε and f maps to zero in Y (s)[d]j then f is in both Y(s)[d]+j and Y(s)[d]−j .
The similar statement holds for j ∈ J (s) \ ε. So we may assume that f has nonzero image
f ∈ Y(s)[d]j . According to Remark 2.6, under the isomorphism of Lemma 2.7, f is mapped to

f ′ ⊗ f
pj

j , where f
pj

j is the image of f
pj

j in (Sm(p−1))(p
j ) and f ′ is the image in Bj of the prod-

uct of the other factors of f . Thus, since f 
= 0, we must have j ∈ Z(s, s′). From the definition

of τ and the assumption that fj has an allowable form, we see that f
pj

j is an eigenvector of the

endomorphism of (Sm(p−1))(p
j ) induced by τ . Therefore f is an eigenvector of the endomor-

phism of Y(s)[d]j induced by τ via the tensor factorization of Lemma 2.7, and will belong to
either the + or − part of the decomposition given in Theorem 4.3. More precisely, f will be in
the + part if j ∈ ε′ and in the − part if j ∈ J (s′) \ ε′. But we already have j ∈ Z(s, s′) and also
since (s′, ε′) � (s, ε), we have ε ∩ Z(s, s′) = ε′ ∩ Z(s, s′). Thus f is in the + part if j ∈ ε and in
the − part if j /∈ ε. We have proved f ∈ Y(s, ε)[d].

Now we must prove that Y(s, ε)[d] is spanned by the symplectic basis functions with signed
types (s′, ε′) � (s, ε). Since we know that Y(s)[d] has a basis consisting of all symplectic basis
functions with H-types s′ � s, it suffices to prove that no linear combination

∑
cigi, (18)
i
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with nonzero scalars ci , of symplectic basis functions whose signed types (si , εi) satisfy si � s
but (si , εi) � (s, ε), can belong to Y(s, ε)[d]. Consider the function g1. There must exist j ∈
Z(s, s1) which belongs to ε but not ε1, or vice versa. We will assume j ∈ ε, as the case j ∈
J (s) \ ε is similar. We can rewrite (18) as

∑
i∈I

cigi +
∑
r /∈I

crgr ,

where I is the set of indices i for which j ∈ Z(s, si ). Under the map Y(s)[d] → Y(s)[d]j , the
set {gi | i ∈ I } is mapped to a linearly independent set, while the elements gr with r /∈ I are
mapped to zero. The reason is that Y(s)[d]j corresponds to the set of H-types s′ � s for which
s′
j = sj , s′

j+1 = sj+1, and λ′
j = m(p − 1). Therefore, the image in Y(s)[d]j of

∑
i∈I cigi is a

sum of linearly independent eigenvectors for the endomorphism induced by τ . At least one of the
terms, namely the image g1, has the opposite eigenvalue to that prescribed by ε. The conclusion
is that the image of

∑
i∈I cigi in Y (s)[d]j cannot be in the + component of Y (s)[d]j as given in

Theorem 4.3. Therefore
∑

i cigi cannot belong to Y(s, ε)[d]. The proof is complete. �
It is obvious from Lemma 5.1 that Y(s′, ε′)[d] � Y(s, ε)[d] if and only if (s′, ε′) � (s, ε). We

define Y<(s, ε)[d] to be the kernel of the natural map Y(s, ε)[d] → L(s, ε)[d], or equivalently,
the sum of all Y(s′, ε′)[d] with (s′, ε′) � (s, ε).

Remark 5.2. For s ∈ H[d], we define its digit sum by |s| = ∑t−1
j=0 sj . It is not hard to see that if

(s′, ε′) � (s, ε) then there exists (s′′, ε′′) such that |s′′| = |s| − 1 and (s′, ε′) � (s′′, ε′′) � (s, ε);
so we also have

Y<(s, ε)[d] =
∑

(s′,ε′)�(s,ε)
|s′|=|s|−1

Y(s′, ε′)[d]. (19)

5.1. Submodule structure of Y(s, ε)[d]

Lemma 5.3. Let s ∈H[d]. Then no two k Sp(V ) composition factors of
⊕

s′ L(s′)[d] are isomor-
phic, where the sum runs over all s′ which are immediately below s.

Proof. Let s′ and s′′ ∈ H[d] be immediately below s. It is clear that no two simple k Sp(V )-
submodules of L(s′)[d] are isomorphic; so we only need to consider the case where some
L(s′, ε′)[d] is isomorphic to some L(s′′, ε′′)[d]. Now these simple modules have the form of
twisted tensor products, which, by Steinberg’s Tensor Product Theorem can be isomorphic only
if the corresponding tensor factors are isomorphic. Thus, the above isomorphism can only hap-
pen if L(s′)[d] and L(s′′)[d] are isomorphic as k Sp(V )-modules, which means that for each j

we must have either λ′
j = λ′′

j or 2m(p − 1)− λ′′
j . Let s = (s0, . . . , st−1), with similar notation for

s′ and s′′. By Galois conjugation we may assume without loss of generality that s′
0 = s0 − 1 and

s′′
k = sk − 1 for some k 
= 0. Suppose first t > 2 and k 
= 1. Then λ′

0 = λ0 + 1 and λ′′
0 = λ0, so

that the above condition cannot hold. If k = 1, then by considering λ′
1 = λ1 and λ′′

1 = λ1 + 1, we
reach the same conclusion. Finally we must consider the case t = 2. Then the above condition
forces 2λ0 = 2λ1 = (2m + 1)(p − 1). Therefore s0 = s1 and so λ0 = (p − 1)s0. Dividing the
previous equation by (p − 1) yields the desired contradiction. �
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Fix [d] ∈ Z/(q − 1)Z and (s, ε) ∈ S[d].
Let Z be the set of elements of S[d], which are immediately below (s, ε). Let R =∑
(s′′,ε′′)∈Z Y<(s′′, ε′′)[d]. Then

Y<(s, ε)[d]/R ∼=
⊕

(s′′,ε′′)∈Z

(
Y(s′′, ε′′)[d]/Y<(s′′, ε′′)[d])

is a multiplicity-free semisimple module by Lemma 5.3. Fix (s′, ε′) ∈Z and let

K(s′, ε′) = Y<(s′, ε′)[d] +
∑

(s′′ε′′)∈Z
(s′′,ε′′) 
=(s′,ε′)

Y (s′′, ε′′)[d],

and let U = Y(s, ε)[d]/Y<(s, ε)[d]. Then we have a short exact sequence

0 → (
Y(s′, ε′)[d] + K(s′, ε′)

)
/K(s′, ε′) → Y(s, ε)[d]/K(s′, ε′) → U → 0 (20)

which is an extension of L(s, ε)[d] by L(s′, ε′)[d].
We will show that the short exact sequence (20) does not split. To do so, we need to introduce

some shift operators (elements in the group ring k Sp(V )). The p-adic version of these shift
operators was used extensively in [3]. Here we are using the finite field version of these operators.
For μ ∈ k×, we use gμ to denote the symplectic transvection sending x1 to x1 + μy1 and fixing
all other coordinates.

Lemma 5.4. For 0 � j � t − 1 and 1 � � � p − 1, let

g�(j) =
∑
μ∈k×

μ�pj

gμ−1 ∈ k Sp(V ). (21)

Given any basis monomial f = x
a1
1 y

b1
1 · · ·xam

m y
bm
m of k[V ], we have

g�(j)f =
{

0, if the j th digit of a1 is less than �;

−( a1
�pj

)
x

a1−�pj

1 y
b1+�pj

1 x
a2
2 y

b2
2 · · ·xam

m y
bm
m , otherwise.

Proof. We first prove the lemma for j = 0. If a1 = 0, then clearly we have g�(0)f = 0. So we
assume that a1 > 0.

g�(0)f =
∑
μ∈k×

μ�
(
x1 + μ−1y1

)a1y
b1
1 x

a2
2 y

b2
2 · · ·xam

m ybm
m

=
( ∑

μ∈k×
μ�

(
x

a1
1 +

(
a1

1

)
μ−1x

a1−1
1 y1 +

(
a1

2

)
μ−2x

a1−2
1 y2

1 + · · ·
))

× y
b1
1 x

a2
2 y

b2
2 · · ·xam

m ybm
m

= −
(

a1
)

x
a1−�
1 y

b1+�
1 x

a2
2 y

b2
2 · · ·xam

m ybm
m .
�



884 D.B. Chandler et al. / Journal of Algebra 318 (2007) 871–892
By a classical theorem of Lucas [10],
(
a1
�

) ≡ 0 (mod p) if the 0th digit of a1 (in the base p

expansion of a1) is less than �, proving the lemma for j = 0.
The general case follows from the j = 0 case by using the Frobenius automorphism. �
We let h�(j) denote the group ring element analogous to g�(j), but with the roles of x1 and

y1 exchanged, so that this element shifts �pj from the exponent of y1 to that of x1.

Lemma 5.5. For each pair of integers (α,β), 0 � α,β � p − 1, and each j , 0 � j � t − 1, there
is a group ring element gα,β(j) ∈ k Sp(V ) such that for any basis monomial

f =
m∏

i=1

x
ai

i y
bi

i (22)

of k[V ], where ai = ∑t−1
k=0 aikp

k and bi = ∑t−1
k=0 bikp

k , 0 � aik, bik � p − 1,

gα,β(j)f =
{

f, if a1j = α and b1j = β, or a1j = p − 1 − β and b1j = p − 1 − α;
0, otherwise.

Proof. It suffices to prove the lemma in the case where α +β � p − 1. The reason is that for any
pair (α,β), 0 � α,β � p − 1, with α + β > p − 1, the “complementary” pair (p − 1 − β,p −
1 − α) has sum of entries equal to 2(p − 1) − (α + β), which is < p − 1, and gp−1−β,p−1−α(j)

will be the required element. We will only give the proof for the j = 0 case. The other cases are
the same. We use induction on α + β .

First assume that α + β = p − 1. Using Lemma 5.4, we define

gα,β(0) = −
(

p − 1

β

)−1

gβ(0)hp−1(0)gα(0). (23)

We claim that gα,β(0) has the required action on the basis monomials of k[V ]. It can be seen as
follows. Let f be a basis monomial of k[V ] as in (22). We first assume that a10 + b10 � p − 1.
By Lemma 5.4,

gα(0)f =
{−(

a10
α

)
x

a1−α
1 y

b1+α
1 x

a2
2 y

b2
2 · · ·xam

m y
bm
m , if a10 � α;

0, otherwise.

Next,

hp−1(0)
(
gα(0)f

) =

⎧⎪⎨
⎪⎩

(
a10
α

)
x

a1−α+p−1
1 y

∑t−1
k=1 b1kp

k

1 x
a2
2 y

b2
2 · · ·xam

m y
bm
m ,

if a10 � α and b10 + α = p − 1;

0, otherwise.

Note that since α + β = p − 1, we have b10 + α = p − 1 if and only if b10 = β . So

hp−1(0)
(
gα(0)f

) =
{(

a10
α

)
x

a1−b10
1 y

∑t−1
k=1 b1kp

k

1 x
a2
2 y

b2
2 · · ·xam

m y
bm
m , if a10 � α and b10 = β;
0, otherwise.
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Finally,

gβ(0)
(
hp−1(0)gα(0)f

) =
{−(

p−1
β

)(
a10
α

)
x

a1
1 y

b1
1 x

a2
2 y

b2
2 · · ·xam

m y
bm
m , if a10 � α and b10 = β;

0, otherwise.

Note that under the assumptions α +β = p−1 and a10 +b10 � p−1, the condition that a10 � α

and b10 = β means exactly a10 = α and b10 = β . We have shown that the group ring element
defined in (23) has the desired action on those f with a10 + b10 � p − 1.

For the purpose of this lemma, two monomials f and f ′ can be considered “complementary,”

if f = ∏m
i=1 x

ai

i y
bi

i and f ′ = ∏m
i=1 x

a′
i

i y
b′
i

i with a10 + b′
10 = a′

10 + b10 = p − 1. The elements we
are constructing should act the same on f ′ and on f . In particular, the element (23) acts the same
on f ′ as it does on f . That is,

gα,β(j)f ′ =
{

f ′, if a10 = α and b10 = β;

0, otherwise.

The analysis is quite similar to the above. (One needs to take extra care when there is a carry
from the 0th digit to the first digit, such as in the case where p − 1 − a10 + α � p. We omit the
details.) With this observation, we see that the group ring element defined in (23) also has the
desired action on those f with a10 + b10 > p − 1, proving the base case where α + β = p − 1.

For a general pair (α,β) with α + β < p − 1, by induction hypothesis, we may assume that
for all those pairs (γ, δ), 0 � γ, δ � p − 1, with α + β < γ + δ < p, we have found gγ,δ(0) with
the desired property. We define

gα,β(0) = −
(

α + β

β

)−1

gβ(0)h(α+β)(0)gα(0)
∏

α+β<γ+δ<p

(
1 − gγ,δ(0)

)
.

Again we claim that this gα,β(0) has the required action on the basis monomials as given in the
statement of the lemma. Clearly, if α + β < a10 + b10 < 2(p − 1) − (α + β), then f will be
annihilated by

∏
α+β<γ+δ<p(1 − gγ,δ(0)). So we only need to consider the action of gα,β(0) on

those f with

a10 + b10 � α + β < p − 1 or p − 1 < 2(p − 1) − (α + β) � a10 + b10.

It is clear that
∏

α+β<γ+δ<p(1 − gγ,δ(0)) acts on such basis monomials as the identity, and we

only need to consider the action of −(
α+β

β

)−1
gβ(0)h(α+β)(0)gα(0) on these monomials.

Now if a10 + b10 < p, an analysis similar to that in the α + β = p − 1 case shows that

−
(

α + β

β

)−1

gβ(0)h(α+β)(0)gα(0)(f ) =
{

f, if a10 = α and b10 = β;

0, otherwise,

and in the complementary case a10 + b10 � p − 1,

−
(

α + β

β

)−1

gβ(0)h(α+β)(0)gα(0)(f ′) =
{

f ′, if a′
10 + β = p − 1 and α + b′

10 = p − 1;

0, otherwise.

The proof is complete. �
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Lemma 5.6. Assume that (s, ε) is not a minimal element of S[d]. If [d] = [0] we assume in
addition that (s, ε) ∈ S and is not minimal in S . Then the short exact sequence (20) does not
split.

Proof. We will choose a particular element f ∈ Y(s, ε)[d] with nonzero image in

U = Y(s, ε)[d]/Y<(s, ε)[d]
and show that if f ∗ ∈ Y(s, ε)[d] is any element with the same image in U , then as a k Sp(V )-
module, Y(s, ε)[d]/K(s′, ε′) is generated by the image of f ∗ in Y(s, ε)[d]/K(s′, ε′). Let us first
fix some notation. Since s′ is immediately below s, there is a unique index j + 1 where these
two tuples differ and s′

j+1 = sj+1 − 1. We let λ and λ′ be the types corresponding to s and s′,
respectively.

The element f is chosen to be a certain symplectic basis function of signed H-type (s, ε).
Since (s0, . . . , sj , sj+1 − 1, sj+2, . . . , st−1) ∈ H[d], we have λj � p and λj+1 < 2m(p − 1).
Therefore we may choose f such that the j th digit of the exponent of x1 is at least 1 and the j th
digit of the exponent of y1 is equal to p − 1. We can also require that the (j + 1)th digit of the
exponent of y1 be less than p − 1, and further, if λj+1 = m(p − 1) − 1, that the (j + 1)th digits
of the exponents of x1 and y1 be 0. Let fj denote the j th digit of f .

Let e = f ∗ − f ∈ Y(s′, ε′)[d] + K(s′, ε′). From the definition of symplectic basis functions
f ∗ has the form

f ∗ = f0f
p

1 · · · (xa
1 y

p−1
1 · · ·)pj

f
pj+1

j+1 · · ·f pt−1

t−1 + e

or

f ∗ = f0f
p

1 · · · (xa
1 y

p−1
1 · · · ± cx0

1y
p−1−a

1 · · ·)pj

f
pj+1

j+1 · · ·f pt−1

t−1 + e,

where a � 1, c represents the product of factorials as in (15), and fj+1 could be a monomial or
another term of the same form as in (14) or (15).

Now we apply the group ring element ga,p−1(j) from Lemma 5.5 to f ∗. It annihilates all
but those monomials appearing in e with the same j th digits of the exponents of x1 and y1 as
those of f or the complementary j th digits, 0 and p − 1 − a, respectively. Next we apply the
shift operator g1(j) from Lemma 5.4 which shifts pj from the exponent of x1 to that of y1. The
results are

g1
(
f0f

p

1 · · · (xa
1 y

p−1
1 · · ·)pj

f
pj+1

j+1 · · ·f pt−1

t−1

)
= f0f

p

1 · · · (xa−1
1 y0

1 · · ·)pj

(fj+1y1)
pj+1 · · ·f pt−1

t−1 , (24)

which is of H-type s′, and

g1
(
f0f

p

1 · · · (x0
1y

p−1−a

1 · · ·)pj

f
pj+1

j+1 · · ·f pt−1

t−1

) = 0. (25)

Note that if f ′ is any other symplectic basis function appearing in f ∗ belonging to Y(s′, ε′)[d]+
K(s′, ε′), not annihilated by ga,p−1(j), then g1(f

′) ∈ K(s′, ε′) because the H-type of g1(f
′) is

obtained by subtracting 1 from the (j +1)th entry of the H-type of f ′. Now we have produced an
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element (24) of (Y (s′, ε′)[d] + K(s′, ε′)) and we must show that it is not zero, modulo K(s′, ε′),
or in other words, that when this element is expressed in symplectic basis functions, necessarily
of H-type s′, some symplectic basis function of signature ε′ appears with nonzero coefficient.
Since (s′, ε′) � (s, ε) and the tuples s and s′ differ only in the (j + 1)st digit, we have Z(s, s′) ⊆
J (s′) ⊆ Z(s, s′) ∪ {j, j + 1}. We consider several possibilities. If J (s′) = Z(s, s′) then all basis
functions involved in (24) are of signature ε′. If j ∈ J (s′), that is to say λ′

j = m(p − 1), then
in (24) the j th digit of the exponent of x1 is at most p − 2, and that of y1 is 0. The monomial
is not of the form (14) and therefore can be written as the sum of a (nonzero) S+ term and a
(nonzero) S− term. Similarly, if λ′

j+1 = m(p − 1), we have taken care that the (j + 1)th digits
of the exponents of x1 and y1 are 0 and 1, and the monomial is not of the form (14). Thus, for all
four possibilities for J (s′) and for any ε′ ⊆ J (s′) such that ε′ ∩Z(s, s′) = ε ∩Z(s, s′), the element
in (24) involves a symplectic basis function with signature ε′. The proof is now complete. �
Remark 5.7. If [d] = [0], the assumption of Lemma 5.6 is equivalent to s 
= (0, . . . ,0),
(2m, . . . ,2m) or (1, . . . ,1).

We recall that the radical of a module is the intersection of its maximal submodules. Let
radM denote the radical of a k Sp(V )-module M . It is the smallest submodule of M whose
corresponding quotient is semisimple.

Theorem 5.8.

(i) If [d] 
= [0] then Y<(s, ε)[d] is the unique maximal k Sp(V )-submodule of Y(s, ε)[d].
(ii) For (s, ε) ∈ S , Y<(s, ε) is the unique maximal k Sp(V )-submodule of Y(s, ε).

Proof. We may assume in both parts that (s, ε) satisfies the hypotheses of Lemma 5.6, for other-
wise Y(s, ε)[d] in (i) and Y(s, ε) in (ii) are simple modules and there is nothing to prove. We will
only give the argument for (ii), since the proof of (i) is formally identical. The assertion of the
theorem can be restated as radY(s, ε) = Y<(s, ε). We proceed by induction on the partial order
of S , the result being clear for the minimal element. Let f ∈ Y(s, ε) \ Y<(s, ε) and let Yf be the
k Sp(V ) submodule generated by f . By Lemma 5.6 the sequence (20) does not split. Therefore
Yf contains an element of Y(s′, ε′) + K(s′, ε′) which has nonzero image in

(
Y(s′, ε′) + K(s′, ε′)

)
/K(s′, ε′) ∼= Y(s′, ε′)/Y<(s′, ε′).

Thus, (Yf + R)/R has L(s′, ε′) as a composition factor. Since (s′, ε′) was an arbitrary element
of Z and since Y<(s, ε)/R is multiplicity-free by Lemma 5.3, it then follows that (Yf +R)/R =
Y(s, ε)/R. By the inductive hypothesis, we have R = ∑

(s′,ε′)∈Z radY(s′, ε′) � radY<(s, ε) and
since Y<(s, ε)/R is semisimple, we have R = radY<(s, ε). We have therefore proved that Yf

maps onto Y(s, ε)/ radY<(s, ε). Then Yf contains a submodule of Y<(s, ε) which maps onto
Y<(s, ε)/ radY<(s, ε). Since the radical of a module is the intersection of the maximal submod-
ules, the above submodule of Y<(s, ε) must be all of Y<(s, ε). Hence Yf contains Y<(s, ε) and
we conclude that Yf = Y(s, ε). The theorem is proved. �

The following corollary is immediate.

Corollary 5.9. Let (s, ε) ∈ S[d]. Then any f ∈ Y(s, ε)[d] \ Y<(s, ε)[d] generates Y(s, ε)[d].
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The k GL(V )-radical series of Y(s)[d] ([d] 
= [0]) and Y(s) are given by digit sums as follows.
Let radi

GL(V ) M denote the ith k GL(V )-radical of the k GL(V )-module M . Then

radi
GL(V ) Y (s)[d] =

∑
|s′|=|s|−i

Y (s′)[d], (26)

with a similar equation for Y(s). These results can be read off from [2].
Our next result gives the analogous statements for Y(s, ε)[d] and Y(s, ε).

Corollary 5.10.

(i) If [d] 
= [0] then

radi Y (s, ε)[d] =
∑

(s′′,ε′′)
Y (s′′, ε′′)[d]

where the sum is over all (s′′, ε′′) ∈ S[d] such that (s′′, ε′′) � (s, ε) and |s′′| = |s| − i.
(ii) If (s, ε) ∈ S , then

radi Y (s, ε) =
∑

(s′′,ε′′)
Y (s′′, ε′′)

where the sum is over all (s′′, ε′′) � (s, ε) such that |s′′| = |s| − i.

Proof. We will only prove (i), since (ii) is similar. Let Mi denote the module on the right side
of the equation in (i). By Remark 5.2, and Theorem 5.8 we see that Mi+1 is the sum of all of
the radicals of the Y(s′, ε′)[d] occurring in Mi , and therefore Mi+1 � radMi , since the radical
of a sum of submodules of a module contains the sum of their radicals. It remains to show that
Mi/Mi+1 is semisimple, which will show Mi+1 � radMi , completing the proof.

We claim that

Mi = radi
GL(V ) Y (s)[d] ∩ Y(s, ε)[d]. (27)

From the claim, Mi/Mi+1 is isomorphic to a k Sp(V )-submodule of the semisimple k GL(V )-
module (radi

GL(V ) Y (s)[d])/(radi+1
GL(V ) Y (s)[d]); so it is a semisimple k Sp(V )-module, since

every simple k GL(V )-composition factor is semisimple as a k Sp(V )-module. To prove our
claim, we consider the basis of Y(s)[d] consisting of all symplectic basis functions with H-
types � s. The subset of this basis consisting of those functions whose H-types satisfy |s′| �
|s| − i form a basis of radi

GL(V ) Y (s)[d], by the description of k GL(V )-radical series above. By
Lemma 5.1, the subset of this basis consisting of those elements whose signed types are � (s, ε)
form a basis Y(s, ε)[d]. And, by Lemma 5.1 and the definition of Mi , the subset of the above
basis of Y(s)[d] of functions whose signed H-types satisfy both conditions (s′, ε) � (s′, ε) and
|s′| � |s| − i form a basis of Mi . The claim is established and the proof complete. �
Remark 5.11. The above corollary may be restated as saying the k Sp(V )-radical series of
Y(s, ε)[d] and Y(s, ε) are given by intersecting the modules with the k GL(V )-radical series
of Y(s)[d] and Y(s), respectively.
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6. The dimensions of Im(ηr)

Recall from Section 1 that for 1 � r � m, ηr denotes the incidence map from k[Ir ] to k[P ]
sending a totally isotropic r-dimensional subspace of V to its characteristic function in P . For
m + 1 � r � 2m − 1, we can define Ir to be the set of r-dimensional subspaces of the form
W⊥ = {v ∈ V | 〈v,w〉 = 0, for all w ∈ W }, for some totally isotropic (2m − r)-dimensional
subspace W . We can also consider the incidence maps ηr in this case.

Theorem 6.1.

(i) We have

Im(ηm) = k1 ⊕ Y(sm, εm),

where sm = (m,m, . . . ,m) and εm = {0,1, . . . , t − 1}.
(ii) If 1 � r � 2m − 1 and r 
= m, then

Im(ηr) = k1 ⊕ Y(sr ),

where sr = (2m − r,2m − r, . . . ,2m − r). In particular, if 1 � r < m, then the Fq -code
generated by the characteristic functions of all totally isotropic r-dimensional subspaces of
V is equal to the Fq -code generated by the characteristic functions of all r-dimensional
subspaces of V .

Proof. We shall assume that t > 1. When t = 1, a similar and easier argument works, but we
omit the details to keep the argument clear, since this case is already known [14].

(i) Since each point of P is contained in
∏m−1

i=1 (1 + qi) totally isotropic m-dimensional sub-
spaces of V , by adding up the characteristic functions of all totally isotropic m-dimensional
subspaces of V , we get a nonzero constant function. Hence k1 ⊂ Im(ηm), where k1 is the space
of constant functions. Therefore we have a k Sp(V )-decomposition

Im(ηm) = k1 ⊕ M,

where M ⊂ YP (cf. (7)).
Let L be the totally isotropic m-dimensional subspace of V defined by the equations xi = 0,

i = 1,2, . . . ,m, and χL be the characteristic function of L. Since Sp(V ) is transitive on Im, we
have

Im(ηm) = k Sp(V )χL.

Note that

χL = (
1 − x

q−1
1

)(
1 − x

q−1
2

) · · · (1 − x
q−1
m

)
= 1 + f,

where f = ∑
∅
=I⊆{1,2,...,m}(−1)|I |xq−1

I , and xI stands for
∏

i∈I xi . Therefore, we have M =
k Sp(V )f . For 0 < |I | < m, the monomial xq−1 is a symplectic basis function of signed type
I
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((|I |, |I |, . . . , |I |),∅), which lies below the signed type (sm, εm) of the symplectic basis function
x

q−1
1 x

q−1
2 · · ·xq−1

m in the poset S . Hence f ∈ Y(sm, εm) \ Y<(sm, εm). Therefore by Corol-
lary 5.9, we have

M = Y(sm, εm).

We have proved (i).
(ii) First we deal with the case where 1 � r < m. Choose L to be the totally isotropic r-

dimensional subspace of V defined by the equations x1 = x2 = · · · = xm = 0 and y1 = y2 =
· · · = ym−r = 0. Then the characteristic function of L in P is

χL = (
1 − x

q−1
1

)(
1 − x

q−1
2

) · · · (1 − x
q−1
m

)(
1 − y

q−1
1

) · · · (1 − y
q−1
m−r

)
.

Since Sp(V ) is transitive on Ir , we have Im(ηr) = k Sp(V )χL. This module also has the splitting

k Sp(V )χL = k1 ⊕ N,

where N = k Sp(V )f , f = χL − 1. Note that

f = (−1)rx
q−1
1 · · ·xq−1

m y
q−1
1 · · ·yq−1

m−r + (−1)r−1x
q−1
2 · · ·xq−1

m y
q−1
1 · · ·yq−1

m−r + · · · .

The symplectic basis function x
q−1
1 · · ·xq−1

m y
q−1
1 · · ·yq−1

m−r has signed type (sr ,∅). The remaining
terms in f have signed types strictly less than (sr ,∅). Hence by Corollary 5.9, we have N =
Y(sr ,∅), which in turn is equal to Y(sr ) since (s′, ε′) � (sr ,∅) simply means s′ � sr . The proof
of (ii) is complete in the case where 1 � r < m. A similar argument works for the m < r � 2m−1
case. �

Next we give the symplectic analogue of Hamada’s formula for the p-rank of the incidence
matrix between points and m-flats of W(2m− 1, q) in terms of t , where q = pt , p an odd prime.
In particular, we will give a proof for Theorem 1.1.

Theorem 6.2. Let Am
1,m(pt ) be the incidence matrix between points and m-flats of W(2m −

1,pt ), as defined in Section 1. Assume that p is odd. Then

rankp

(
Am

1,m

(
pt

)) = 1 +
∑

(s0,...,st−1)
(∀j)1�sj �m

t−1∏
j=0

d(sj ,sj+1),

where

d(sj ,sj+1) =
{

dim(S+) = (dm(p−1) + pm)/2, if sj = sj+1 = m,

dλj
, where λj = psj+1 − sj , otherwise.

Proof. By (i) of Theorem 6.1, the p-rank of Am
1,m(pt ) is 1 plus the dimension of Y(sm, εm),

where sm = (m,m, . . . ,m) and εm = {0,1, . . . , t − 1}. By Theorem 5.8, the k Sp(V ) module
Y(sm, εm) is multiplicity-free, and has as composition factors all L(s′, ε′), (s′, ε′) � (sm, εm).



D.B. Chandler et al. / Journal of Algebra 318 (2007) 871–892 891
Adding up the dimensions of these composition factors (recall (5) and (12)), we obtain the sum-
mation formula for rankp(Am

1,m(pt )). �
Corollary 6.3. The p-rank of Am

1,m(pt ), when p is an odd prime, is given by

rankp

(
Am

1,m

(
pt

)) = 1 + Trace
(
Dt

) = 1 + αt
1 + · · · + αt

m,

where

D =

⎛
⎜⎜⎝

d(1,1) d(1,2) · · · d(1,m)

d(2,1) d(2,2) · · · d(2,m)

...
...

. . .
...

d(m,1) d(m,2) · · · d(m,m)

⎞
⎟⎟⎠ ,

and α1, α2, . . . , αm are the eigenvalues of D.

Note that some of the entries of D may be zero. We are now ready to give the proof of
Theorem 1.1.

Proof of Theorem 1.1. We are dealing with W(3,pt ), i.e., the case where m = 2. To simplify
notation, we write A2

1,2(p
t ) simply as A(t). In this case, we have

d(1,1) = dim
(
Sp−1) = p(p + 1)(p + 2)

6
,

d(1,2) = dim
(
S2p−1) = 2p(p − 1)(p + 1)

3
,

d(2,1) = dim
(
Sp−2) = p(p + 1)(p − 1)

6
,

d(2,2) = dim
(
S+) = p(p + 1)(2p + 1)

6
.

Therefore

D = p(p + 1)

6

(
p + 2 4(p − 1)

p − 1 2p + 1

)
.

This matrix D has two distinct eigenvalues

α1, α2 = p(p + 1)2

4
± p(p + 1)(p − 1)

12

√
17.

Therefore we have

rankp

(
A(t)

) = 1 + αt
1 + αt

2. �
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The case where m = 3 can be similarly analyzed. The matrix D in this case is given as follows.

D = 1

120

⎛
⎝ (p + 4)!/(p − 1)! (p3 − p)(p + 2)(26p + 48) 66p5 − 210p3 + 144p

(p + 3)!/(p − 2)! 26p5 + 50p4 + 10p3 + 10p2 + 24p 66p5 − 30p3 − 36p

(p + 2)!/(p − 3)! 26p5 − 10p3 − 16p 33p5 + 75p3 + 12p

⎞
⎠ .

The eigenvalues of D have very complicated expressions: we will not write down them here.
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