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Abstract. We survey recent results on constructions of difference sets and strongly regular
Cayley graphs by using union of cyclotomic classes of finite fields. Several open problems are
raised.

1. Introduction

We start by reviewing the relationship between binary sequences with two-level autocorrela-
tions and cyclic difference sets. Let a = (a0, a1, . . . , av−1) be a binary sequence with aj = ±1
for all j. We define the (periodic) autocorrelation function of a by

Aa(τ) =
v−1∑
j=0

ajaj+τ , ∀τ,

where the subscripts j + τ are taken modulo v. A binary sequence a = (a0, a1, . . . , av−1) is said
to have two-level autocorrelations if

Aa(τ) =

{
v, if τ ≡ 0 (mod v),
γ, otherwise.

Binary sequences with two-level autocorrelations have found many applications in radar,
sonar, and synchronization. Golomb may have been the first to point out that such sequences
are equivalent to cyclic (v, k, λ) difference sets. We now give the definition of difference sets
in a (not necessarily cyclic) group of order v. Let G be a finite multiplicative group of order
v. A k-element subset D of G is called a (v, k, λ) difference set in G if the list of “differences”
d1d
−1
2 , d1, d2 ∈ D, d1 6= d2, represents each nonidentity element in G exactly λ times. A

moment’s reflection shows that the translates of D by all group elements form the blocks of a
(v, k, λ) symmetric design, and G is a regular automorphism group of the design. For this reason
difference sets play an important role in combinatorial design theory.

Given a subset D in the cyclic group (Z/vZ,+), we define its characteristic sequence a =
(ai)0≤i≤v−1 by setting ai = 1 if i ∈ D, and ai = −1 otherwise. From the definition of difference
set, we see that D is a (v, k, λ) difference set in Z/vZ if and only if

Aa(τ) =

{
v, if τ ≡ 0 (mod v),
γ := v − 4(k − λ), otherwise.

This shows the equivalence of binary sequences with two-level autocorrelations and cyclic
(v, k, λ) difference sets. More generally, (v, k, λ) abelian difference sets are equivalent to binary
arrays with two-level autocorrelations. For background material on difference sets, we refer the
reader to the books [1], [23] and Chapter 6 of [5]. Several survey papers on difference sets have
also appeared during the past two decades. See [20], [21, 22], [28], and [42, 43]. In this paper we
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will focus on recent constructions of difference sets and strongly regular Cayley graphs by using
cyclotomic classes of finite fields.

2. Cyclotomy and Gauss Sums

Let q = pf be a prime power, and let γ be a fixed primitive element of Fq. Let N > 1 be a

divisor of q − 1. We define the N th cyclotomic classes C0, C1, . . . , CN−1 of Fq by

Ci = {γjN+i | 0 ≤ j ≤ q − 1

N
− 1},

where 0 ≤ i ≤ N − 1. That is, C0 is the subgroup of F∗q := Fq \ {0} consisting of all nonzero

N th powers in Fq, and Ci = γiC0, 1 ≤ i ≤ N − 1. Important in the study of cyclotomic (or
power residue) difference sets are the cyclotomic numbers. For integers a, b with 0 ≤ a, b < N ,
the cyclotomic number (a, b) is defined by

(a, b) = |(Ca + 1) ∩ Cb|.

In terms of these cyclotomic numbers, Lehmer [27] gave necessary and sufficient conditions for
C0 to be a difference set in (Fq,+).

Theorem 2.1. Let C0 be defined as above. Then C0 is a difference set in (Fq,+) if and only if
N is even, (q − 1)/N is odd, and

(a, 0) =
(q − 1−N)

N2

for a = 0, 1, 2, . . . , N2 − 1.

Theorem 2.1 has been used to construct difference sets for small values of N . When N is
large, Lehmer’s theorem is not very useful since the cyclotomic numbers involved are difficult to
compute. Cyclotomic numbers can be determined from the knowledge of Jacobi sums or Gauss
sums (cf. [4, p. 79]). Therefore it is possible to use Gauss sums to construct and study difference
sets directly. We give the definition of Gauss sums below.

Let p be a prime, f a positive integer, and q = pf . Let ξp be a fixed complex primitive pth

root of unity and let Trq/p be the trace from Fq to Z/pZ. Define

ψ : Fq → C∗, ψ(x) = ξ
Trq/p(x)
p ,

which is easily seen to be a nontrivial character of the additive group of Fq. Let χ : F∗q → C∗ be
a character of F∗q . We define the Gauss sum by

g(χ) =
∑
a∈F∗

q

χ(a)ψ(a).

If χ0 is the trivial multiplicative character of Fq, then it is easy to see that g(χ0) = −1. We are
usually concerned with nontrivial Gauss sums g(χ), i.e., those with χ 6= χ0.

While it is easy to show that the absolute value of a nontrivial Gauss sum g(χ) is equal to√
q, the explicit determination of Gauss sums is a difficult problem. However, there are a few

cases where the Gauss sums g(χ) can be explicitly evaluated. The simplest case is the so-called
semi-primitive case, where there exists an integer j such that pj ≡ −1 (mod N) and N is the

order of χ in F̂∗q (the group of multiplicative characters of Fq). Some authors [3, 4] also refer to
this case as uniform cyclotomy, or pure Gauss sums. We state the following theorem concerning
the semi-primitive case.
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Theorem 2.2. ([4, p. 364]) Let p be a prime, and N > 2 be an integer. Suppose that there is
a positive integer t such that pt ≡ −1 (mod N), with t chosen minimal. Let χ be a character of
order N of F∗pr for some positive integer r. Then r = 2ts for some positive integer s, and

p−r/2g(χ) =

{
(−1)s−1, if p = 2,

(−1)s−1+
(pt+1)s

N , if p > 2.

The next interesting case is the index 2 case, where −1 6∈ 〈p〉, the cyclic subgroup of (Z/NZ)∗

generated by p (the characteristic of the finite field Fq), and 〈p〉 has index 2 in (Z/NZ)∗ (again

here N is the order of χ in F̂∗q). Many authors have studied this case, including McEliece [32],
Langevin [25], Mbodj [31], Meijer and Van der Vlugt [33], and Yang and Xia [45]. In particular,
combined with previous work, a complete solution to the problem of evaluating Gauss sums in
the index 2 case was recently given in [45]. We state here a couple of sample results in the
index 2 case. Below we use φ(N) to denote the number of integers k with 1 ≤ k ≤ N such that
gcd(k,N) = 1, and ordN (p) to denote the order of p modulo N , which is the smallest positive
integer f such that pf ≡ 1 (mod N).

Theorem 2.3. ([25]) Let N = pm1 , where m is a positive integer, p1 is a prime such that p1 > 3
and p1 ≡ 3 (mod 4). Let p be a prime such that [(Z/NZ)∗ : 〈p〉] = 2 (that is, f := ordN (p) =
φ(N)/2) and let q = pf . Let χ be a multiplicative character of order N of Fq, and h be the class
number of Q(

√
−p1). Then the Gauss sum g(χ) over Fq is determined up to complex conjugation

by

g(χ) =
b+ c

√
−p1

2
ph0 ,

where

(1) h0 = f−h
2 ,

(2) b, c 6≡ 0 (mod p),
(3) b2 + p1c

2 = 4ph,
(4) bph0 ≡ −2 (mod p1).

Theorem 2.4. ([45], Case D; Theorem 4.12) Let N = 2pm1 , where p1 > 3 is a prime such that
p1 ≡ 3 (mod 4) and m is a positive integer. Assume that p is a prime such that [(Z/NZ)∗ :
〈p〉] = 2. Let f = φ(N)/2, q = pf , and χ be a multiplicative character of order N of Fq. Then,
for 0 ≤ t ≤ m− 1, we have

g(χp
t
1) =

 (−1)
p−1
2

(m−1)p
f−1
2
−hpt1
√
p∗
(
b+c
√
−p1

2

)2pt1
, if p1 ≡ 3 (mod 8),

(−1)
p−1
2
mp

f−1
2
√
p∗, if p1 ≡ 7 (mod 8);

g(χ2pt1) = p
f−pt1h

2

(
b+ c

√
−p1

2

)pt1
;

g(χp
m
1 ) = (−1)

p−1
2

f−1
2 p

f−1
2

√
p∗,

where p∗ = (−1)
p−1
2 p, h is the class number of Q(

√
−p1), and b and c are integers determined

by 4ph = b2 + p1c
2 and bp

f−h
2 ≡ −2 (mod p1).

Note that Theorem 2.4 above is Theorem 4.12 in [45], whose statement contains several
misprints. We corrected those misprints in the above statement. Recently, in a series of papers
[11], [12], [14], [13], we used index 2 Gauss sums to construct difference sets, strongly regular
Cayley graphs and pseudocyclic (but non-amorphic) association schemes. These constructions
will be discussed in the next two sections.
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We also mention that index 4 Gauss sums were studied in [15], [44] though the problem of
evaluating Gauss sums in the index 4 case is not completely solved.

3. Difference sets from unions of cyclotomic classes

The idea of constructing difference sets from cyclotomic classes of finite fields goes back
to Paley [36]. In the mid-20th century, Baumert, Chowla, Hall, Lehmer, Storer, Whiteman,
Yamamoto, etc. pursued this line of research vigorously. The book by Storer [38] contains a
summary of results in this direction up to 1967. See also Chapter 5 of the book by Baumert [1]
for a summary. This method for constructing difference sets, however, has had only very limited
success.

Let q = pf be a prime power, and let N > 1 be a divisor of q − 1. Let γ be a fixed primitive
element of Fq and Ci = {γjN+i | 0 ≤ j ≤ q−1

N − 1}, 0 ≤ i ≤ N − 1, be the N th cyclotomic
classes of Fq. It is known (cf. [5, p. 123–124]) that a single cyclotomic class, say C0, can form
a difference set in (Fq,+) if N = 2, 4, or 8 and q satisfies certain conditions. It should be noted
that in order to obtain difference sets this way, the conditions on q are quite restrictive when
N = 4 or 8. It is conjectured that the converse is also true.

Conjecture 3.1. Let q be a prime power, and let N > 1 be a divisor of q − 1. Let C0 be the
subgroup of F∗q consisting of all nonzero N th powers of Fq. If C0 is a difference set in (Fq,+),
then N is necessarily 2, 4, or 8.

This conjecture remains open though it has been verified (cf. [10]) up to N = 20. If one uses
a union of cyclotomic classes, instead of just one single class, for the purpose of constructing
difference sets, the only new family of difference sets found in this way is Hall’s sextic difference
sets [18] in (Fq,+) formed by taking a union of three cyclotomic classes of order 6, where
q = 4x2 + 27 is a prime power congruent to 1 modulo 6. One of the reasons that very few
difference sets have been discovered by using union of cyclotomic classes is that the investigations
often relied on cyclotomic numbers and these numbers are in general very difficult to compute
if N is large.

It is therefore a great surprise that more than fifty years after the construction of Hall’s sextic
difference sets, Feng and this author [11] constructed a class of Hadamard difference sets in
(Fq,+) by using a union of cyclotomic classes of order N = 2pm1 , where p1 is a prime. We give
the detailed statement below. (A difference set D in an additively written finite group G is
called skew Hadamard if G is the disjoint union of D, −D, and {0}.)

Theorem 3.2. Let p1 ≡ 7 (mod 8) be a prime, N = 2pm1 , and let p be a prime such that f :=
ordN (p) = φ(N)/2. Let s be an odd integer, I any subset of Z/NZ such that {i (mod pm1 ) | i ∈
I} = Z/pm1 Z, and let

D =
⋃
i∈I

Ci ⊆ F∗pfs .

Then D is a skew Hadamard difference set if p ≡ 3 (mod 4).

Several remarks are in order. First we comment that the difference sets from Theorem 3.2 are
not cyclic since the f satisfying the conditions of theorem is greater than 1. Secondly, it should
be noted that there is a great deal of flexibility in choosing the index set I in Theorem 3.2.
Namely, there are 2p

m
1 choices of the index set I since each pair {i, i + pm1 }, 0 ≤ i ≤ pm1 − 1,

contributes exactly one element to I. This flexibility has interesting implications in terms of
association schemes [35]. Thirdly, as we have seen above, Theorem 3.2 produces 2p

m
1 skew

Hadamard difference sets in (Fq,+), where q = pfs. Sorting out inequivalent ones from these
difference sets seems to be a very difficult problem.
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The case where p1 is a prime congruent to 3 modulo 8 and N = 2pm1 is more complicated.
Feng and this author [11] first gave a construction of skew Hadamrd difference sets in the case
where N = 2p1, p1 ≡ 3 (mod 8) is a prime. Later on, this construction was generalized by Feng,
Momihara and this author [14] to work in the case where N = 2pm1 , p1 ≡ 3 (mod 8) is a prime.
Below we state the construction from [14].

Theorem 3.3. Let p1 ≡ 3 (mod 8) be a prime, p1 6= 3, N = 2pm1 , and let p ≡ 3 (mod 4) be a
prime such that f := ordN (p) = φ(N)/2. Let q = pf , J = 〈p〉∪2〈p〉∪{0} (mod 2p1), and define

D =

pm−1
1 −1⋃
i=0

⋃
j∈J

C2i+pm−1
1 j .

Assume that 1+p1 = 4ph, where h is the class number of Q(
√
−p1). Then D is a skew Hadamard

difference set in the additive group of Fq.

Note that in Theorem 3.3, we need to choose a suitable primitive element γ of Fq in order
for the construction to work. We refer the reader to [14] for details on how to choose such a
primitive element of Fq.

The difference sets constructed in both Theorem 3.2 and Theorem 3.3 are skew Hadamard.
Such difference sets are currently under intensive study. We refer the reader to [11] for a short
summary of recent results on skew Hadamard difference sets.

4. Strongly regular graphs from unions of cyclotomic classes

A strongly regular graph srg(v, k, λ, µ) is a simple and undirected graph, neither complete nor
edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.
(2) For each pair of adjacent vertices x, y, there are λ vertices adjacent to both x and y.
(3) For each pair of nonadjacent vertices x, y, there are µ vertices adjacent to both x and y.

Let q = 4t + 1 be a prime power. The Paley graph P(q) is the graph with the elements
of the finite field Fq as vertices; two vertices are adjacent if and only if their difference is a
nonzero square in Fq. One can readily check that P(q) is an srg(4t+ 1, 2t, t− 1, t). For a survey
on strongly regular graphs, we refer the reader to [6], [17] and [9]. Strongly regular graphs are
closely related to two-weight codes, two-intersection sets in finite geometry, and partial difference
sets. For these connections, we refer the reader to [8, 30].

One of the most effective methods for constructing strongly regular graphs is by the Cayley
graph construction. For example, the Paley graph P(q) and the Clebsch graph are both Cayley
graphs (moreover they are cyclotomic). Let G be an additively written group of order v, and
let D be a subset of G such that 0 6∈ D and −D = D, where −D = {−d | d ∈ D}. The Cayley
graph on G with connection set D, denoted Cay(G,D), is the graph with the elements of G
as vertices; two vertices are adjacent if and only if their difference belongs to D. In the case
when Cay(G,D) is a strongly regular graph, the connection set D is called a (regular) partial
difference set. The survey of Ma [30] contains much of what is known about partial difference
sets.

Next we consider the so-called cyclotomic srg. Let q = pf be a prime power, N > 1 be a
divisor of q − 1, and let D be the subgroup of F∗q of index N . If Cay(Fq, D) is strongly regular,
then we speak of a cyclotomic strongly regular graph. Cyclotomic srg have been extensively
studied by many authors; see [32, 29, 7, 25, 37, 19]. Some of these authors used the language
of cyclic codes in their investigations. Here we use the language of srg. Let D be the subgroup
of F∗

pf
of index N > 1. If D is the multiplicative group of a subfield of Fpf , then it is easy
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to show that Cay(Fpf , D) is an srg. These cyclotomic srg are usually called subfield examples.

Next if there exists a positive integer t such that pt ≡ −1 (mod N), then Cay(Fpf , D) is an
srg by Theorem 2.2. These examples are usually called semi-primitive cyclotomic srg. The
following conjecture of Schmidt and White [37] says that besides the two classes of cyclotomic
srg mentioned above, there are only 11 sporadic examples of cyclotomic srg.

Conjecture 4.1. (Conjecture 4.4, [37]) Let Fpf be the finite field of order pf , N |(p
f−1
p−1 ), N > 1,

and let C0 be the subgroup of F∗
pf

of index N . Assume that −C0 = C0. If Cay(Fpf , C0) is an

srg, then one of the following holds:

(1) (subfield case) C0 = F∗pe, where e|f ,

(2) (semi-primitive case) There exists a positive integer t such that pt ≡ −1 (mod N),

(3) (exceptional case) Cay(Fpf , C0) is one of the eleven “sporadic” examples appearing in
the following table.

N p f [(Z/NZ)∗ : 〈p〉]
11 3 5 2
19 5 9 2
35 3 12 2
37 7 9 4
43 11 7 6
67 17 33 2
107 3 53 2
133 5 18 6
163 41 81 2
323 3 144 2
499 5 249 2

Table I

This conjecture can be thought as the counterpart of Conjecture 3.1 in the context of cyclo-
tomic srg. It remains largely open. Also this conjecture is closely related to cyclic difference
sets which are “subdifference sets” of the Singer difference sets. For details, see [37].

In order to construct more srg by using cyclotomic classes of finite fields, one is natually led
to consider strongly regular Cayley graphs over finite fields with connection sets being unions
of cyclotomic classes (instead of a single cyclotomic class). Some sporadic examples of such srg
had been found by computer search. For example, the following are known:

(i) (De Lange [24]) Let q = 212 and N = 45. Then, Cay(Fq, C0 ∪ C5 ∪ C10) is a strongly
regular graph.

(ii) (Ikuta and Munemasa [19]) Let q = 220 and N = 75. Then, Cay(Fq, C0 ∪C3 ∪C6 ∪C9 ∪
C12) is a strongly regular graph.

(iii) (Ikuta and Munemasa [19]) Let q = 221 and N = 49. Then, Cay(Fq, C0 ∪C1 ∪C2 ∪C3 ∪
C4 ∪ C5 ∪ C6) is a strongly regular graph.

Recently Feng and this author [12] extended the above examples to infinite families by using
index 2 Gauss sums over Fq. Below is the main theorem from [12].
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Theorem 4.2. (i) Let p1 ≡ 3 (mod 4) be a prime, p1 6= 3, N = pm1 , and let p be a prime
such that f := ordN (p) = φ(N)/2. Let q = pf and

D =

pm−1
1 −1⋃
i=0

Ci ⊂ F∗q .

Assume that 1 + p1 = 4ph, where h is the class number of Q(
√
−p1). Then Cay(Fq, D)

is a strongly regular graph.
(ii) Let p1 and p2 be primes such that {p1 (mod 4), p2 (mod 4)} = {1, 3}, N = pm1 p2, and let

p be a prime such that ordpm1 (p) = φ(pm1 ), ordp2(p) = φ(p2), and f := ordN (p) = φ(N)/2.

Let q = pf and

D =

pm−1
1 −1⋃
i=0

Cip2 ⊂ F∗q .

Assume that p1 = 2ph/2 + (−1)
p1−1

2 b, p2 = 2ph/2 − (−1)
p1−1

2 b, h is even, and 1 + p1p2 =
4ph, where b ∈ {1,−1} and h is the class number of Q(

√
−p1p2). Then Cay(Fq, D) is a

strongly regular graph.

For explicit families of strongly regular Cayley graphs arising from Theorem 4.2 we refer
the reader to [12]. Very recently, Feng, Momihara and this author [14] could generalize the
construction of strongly regular Cayley graphs in Theorem 4.2 (ii) to the case where N = pm1 p

n
2 .

Theorem 4.3. Let p1 and p2 be primes such that p1 ≡ 1 (mod 4) and p2 ≡ 3 (mod 4), N =
pm1 p

n
2 , where m,n are positive integers. Let p be a prime such that ordpm1 (p) = φ(pm1 ), ordpn2 (p) =

φ(pn2 ), and f := ordN (p) = φ(N)/2. Let q = pf and

D =

pm−1
1 −1⋃
i=0

pn−1
2 −1⋃
j=0

Cpn2 i+pm1 j ⊂ F∗q .

Assume that p1 = 2ph/2 + b, p2 = 2ph/2 − b, h is even, and 1 + p1p2 = 4ph, where b ∈ {1,−1}
and h is the class number of Q(

√
−p1p2). Then Cay(Fq, D) is a strongly regular graph.

Applying Theore 4.3 we obtain three infinite families of strongly regular graphs, whose pa-
rameters are listed in the following table.

Table 1. The parameters λ and µ of the srg can be computed by λ = s+ r +
sr+k and µ = k+sr. The parameters r and s are the two nontrivial eigenvalues
of the srg.

No. p N h b v k r, s

1 2 3m · 5n 2 1 24·3
m−1·5n−1 24·3

m−1·5n−1−1
15 r = 8·22·3m−1·5n−1−1−1

15

s = −7·22·3m−1·5n−1−1−1
15

2 3 5m · 7n 2 −1 312·5
m−1·7n−1 312·5

m−1·7n−1−1
35 r = 17·36·5m−1·7n−1−1−1

35

s = −18·36·5m−1·7n−1−1−1
35

3 3 17m · 19n 4 −1 3144·17
m−1·19n−1 3144·17

m−1·19n−1−1
323 r = 161·372·17m−1·19n−1−2−1

323

s = −162·372·17m−1·19n−1−2−1
323
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Both Theorem 4.2 and 4.3 make use of index 2 Gauss sums. Recently we [16] also used index 4
Gauss sums to construct strongly regular Cayley graphs. Two infinite families of srg were found
in this way. Below r and s denote the nontrivial eigenvalues of the strongly regular graphs.

Example 4.4. (i) Let p1 = 37, p = 7, N = pm1 where m ≥ 1 is any integer. We have

ord37m(7) = φ(37m)
4 . Let f = φ(37m)

4 and q = 7f . Let γ be a fixed primitive element of

Fq. Let C0 = 〈γN 〉, C1 = γC0, . . . , CN−1 = γN−1C0 be the N th cyclotomic classes of Fq
and

D =
37m−1−1⋃
i=0

Ci.

Then the Cayley graph Cay(Fq, D) is strongly regular, with parameters

v = 79·37
m−1

, k =
v − 1

37
, r =

9 · 7
9·37m−1−1

2 − 1

37
, and s =

−4 · 7
9·37m−1+1

2 − 1

37
.

(ii) Let p1 = 13, p = 3, N = pm1 , where m ≥ 1 is an integer. We have ord13m(3) = φ(13m)
4 .

Let f = φ(13m)
4 and q = 3f . Let γ be a fixed primitive element of Fq. Let C0 = 〈γN 〉, C1 =

γC0, . . . , CN−1 = γN−1C0 be the N th cyclotomic classes of Fq and

D =
13m−1−1⋃
i=0

Ci.

Then the Cayley graph Cay(Fq, D) is strongly regular, with parameters

v = 33·13
m−1

, k =
v − 1

13
, r =

3
3·13m−1+3

2 − 1

13
, and s =

−4 · 3
3·13m−1−1

2 − 1

13
.

So far we have succeeded in generalizing 8 of the 11 sporadic examples in Table I (in the
statement of Conjecture 4.1) into infinite families. When we first submitted the current paper
in Jan. 2012, we remarked that it should be possible to use index 6 Gauss sums to construct
strongly regular Cayley graphs also. This and much more have been done in two recent preprints
[34] and [41]. The constructions in [34] are recursive, and they are more general than that in
[41], while the construction in [41] is direct, and leads to an interesting connection between srg
and cyclic difference sets in (Z/p1Z,+).

5. Open problems

In this section, we raise a few open problems on cyclotomic constructions of difference sets and
strongly regular Cayley graphs. Of course the most obvious problems are to settle Conjecture 3.1
and 4.1. It is known [39, 40] that the truth of Conjecture 3.1 implies that the only flag-transitive
finite projective planes are the Desarguesian ones. Therefore the solution of Conjecture 3.1 will
lead to the solution of an old problem in finite geometry. On the constructive side, we raise the
following questions.

Problem 5.1. Is it possible to generalize Hall’s construction of sextic difference sets in the case
where N = 2 · 3m, for some m > 1.

Problem 5.2. In the two-page paper [24], De Lange constructed four strongly regular Cayley
graphs by using union of cyclotomic classes of finite fields. Now all but one example have been
explained and generalized into infinite families. See [7, 12]. Find a generalization of De Lange’s
last example (Example (b) of [24]).
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Problem 5.3. In [2], Baumert and Fredricksen showed how to construct all 6 inequivalent
(127, 63, 31) cyclic difference sets by taking unions of 18th cyclotomic classes of the finite field
Z/127Z. Can this cyclotomic construction be generalized to obtain more cyclic difference sets
with Singer parameters?
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