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Abstract Let (K, +, ∗) be an odd order presemifield with commutative multiplica-
tion. We show that the set of nonzero squares of (K, ∗) is a skew Hadamard difference
set or a Paley type partial difference set in (K, +) according as q is congruent to 3 mod-
ulo 4 or q is congruent to 1 modulo 4. Applying this result to the Coulter–Matthews
presemifield and the Ding–Yuan variation of it, we recover a recent construction of
skew Hadamard difference sets by Ding and Yuan [7]. On the other hand, applying
this result to the known presemifields with commutative multiplication and having
order q congruent to 1 modulo 4, we construct several families of pseudo-Paley graphs.
We compute the p-ranks of these pseudo-Paley graphs when q = 34, 36, 38, 310, 54, and
74. The p-rank results indicate that these graphs seem to be new. Along the way, we
also disprove a conjecture of René Peeters [17, p. 47] which says that the Paley graphs
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of nonprime order are uniquely determined by their parameters and the minimality
of their relevant p-ranks.
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1 Introduction

Let G be a finite (multiplicative) group of order v. A k-element subset D of G is called
a (v, k, λ) difference set if the list of “differences” xy−1, x, y ∈ D, x �= y, represents
each nonidentity element in G exactly λ times. As an example of difference sets, we
mention the classical Paley difference set (in the additive group of Fq) consisting of
the nonzero squares of Fq, where q ≡ 3 (mod 4). Difference sets are the same objects
as regular (i.e., sharply transitive) symmetric designs. They are the subject of much
study in the past 50 years. For a recent survey, see [19].

Again let G be a finite (multiplicative) group of order v. A k-element subset D of
G is called a (v, k, λ, µ) partial difference set (PDS, in short) provided that the list of
“differences” xy−1, x, y ∈ D, x �= y, contains each nonidentity element of D exactly
λ times and each nonidentity element of G\D exactly µ times. The set of nonzero
squares in Fq, q ≡ 1 (mod 4), is a (q, q−1

2 , q−5
4 , q−1

4 ) PDS in the additive group of Fq.
Given a (v, k, λ, µ) partial difference set D in G with 1 �∈ D and D(−1) = D, where
D(−1) = {d−1 | d ∈ D}, one can construct a strongly regular Cayley graph Cay(G, D)

whose vertex set is G, and two vertices x, y are adjacent if and only if xy−1 ∈ D. Such
a strongly regular graph Cay(G, D) has G as a regular automorphism group. On the
other hand, if a strongly regular graph has a regular automorphism group G, one can
obtain a partial difference set in G. Therefore, partial difference sets are equivalent
to strongly regular graphs with a regular automorphism group. For a survey on partial
difference sets, we refer to [14].

A difference set D in a finite group G is called skew Hadamard if G is the disjoint
union of D, D(−1), and {1}. A classical example of skew Hadamard difference sets is
the Paley difference set just mentioned above. Let D be a (v, k, λ) skew Hadamard
difference set in an abelian group G. Then we have

1 /∈ D, k = v − 1
2

and λ = v − 3
4

.

That is, D will have the so-called Hadamard parameters; justifying the name skew
Hadamard difference set.

As a counterpart of skew Hadamard difference sets, we mention Paley type PDS.
Let G be a group of order v, v ≡ 1 (mod 4). A subset D of G, 1 �∈ D, is called a Paley
type PDS if D is a (v, v−1

2 , v−5
4 , v−1

4 ) PDS. Again the set of nonzero squares in Fq,
q ≡ 1 (mod 4), is an example of Paley type PDS, which is usually called the Paley PDS
in Fq. The strongly regular Cayley graph constructed from the Paley PDS is called the
Paley graph. A strongly regular graph with parameters (q, q−1

2 , q−5
4 , q−1

4 ), where q is
a prime power congruent to 1 modulo 4, is called a Pseudo-Paley graph.
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Let G be an abelian group of order p2s+1, where p is a prime, s is a non-negative
integer. It was conjectured that if G contains either a skew Hadamard difference set
or a Paley type PDS, then G has to be elementary abelian. This conjecture is still open
in general. See [3,20] for some results on this conjecture. It was further conjectured
some time ago that the Paley difference sets are the only examples of skew Hadamard
difference sets in abelian groups. This latter conjecture is now disproved by Ding
and Yuan [7], who constructed new skew Hadamard difference sets in F3m by using
certain planar functions. Recently more new skew Hadamard difference sets were
constructed in [8] by using certain permutation polynomials of F3m associated to the
Ree-Tits slice spread in PG(3, 3m). However, both constructions in [7,8] seemed to be
mysterious, and we did not have a satisfactory explanation for them.

In this paper, we show that the Ding–Yuan construction is a special case of a
much more general construction. It turns out that just as in the field case, for any
presemifield (K, +, ∗) with commutative multiplication, where |K| = q is odd, the set
of nonzero squares of (K, ∗) is either a skew Hadamard difference set or a Paley type
PDS in (K, +) according as q ≡ 3 (mod 4) or q ≡ 1 (mod 4). We remark that this
result is actually proved in the more general context of planar functions. Specializing
to the Coulter–Matthews presemifield and the Ding–Yuan variation of it, we obtain
the Ding–Yuan skew Hadamard difference sets. On the other hand, applying our con-
struction to other known odd order presemifields with commutative multiplication,
we obtain three families and one sporadic example of Paley type PDS. From these
PDS, we get pseudo-Paley graphs. We compute the p-ranks of these pseudo-Paley
graphs when the orders of the graphs are 34, 36, 38, 310, 54 or 74. The p-rank results
indicate that these graphs seem to be new. We also give a formula for the p-ranks
of the P∗-graphs (see the definition of the P∗-graphs in Sect. 2). By comparing the
p-ranks of the Paley graphs and the the P∗-graphs, we disprove a conjecture of René
Peeters [17, p. 47] which says that the Paley graphs of nonprime order are uniquely
determined by their parameters and the minimality of their relevant p-ranks.

2 Skew Hadamard difference sets and Paley type PDS from planar functions
and presemifields

Let G and H be groups of the same order v. A map f : G → H is called a planar func-
tion of degree v if for every nonidentity element a ∈ G, both �f ,a: x �→ f (ax)f (x)−1 and
∇f ,a: x �→ f (x)−1f (xa) are bijective. Planar functions were introduced in 1968 by Dem-
bowski and Ostrom [5], in which they used such functions to construct affine planes
with certain collineation group. We refer the reader to [6, p. 227] for an introduction
to planar functions.

Let G and H be two finite groups, and f : G → H be a map. For y ∈ H, let
f −1(y) = {x ∈ G | f (x) = y} and w(y) = |f −1(y)|. Also we use 1H to denote the
identity element of H.

Lemma 2.1 Let G and H be two groups of the same order v. Let f : G → H be a planar
function. For any y ∈ H, we have

∑

u∈H

w(yu)w(u) =
{

v − 1, if y �= 1H ,
2v − 1, if y = 1H .

(1)



52 Des. Codes Cryptogr. (2007) 44:49–62

Proof We consider two cases.

Case 1 y �= 1H .
∑

u∈H

w(yu)w(u) =
∑

u∈H

|{(z1, z2) ∈ G × G | f (z1) = yu, f (z2) = u}|

= |{(z1, z2) ∈ G × G | f (z1)f (z2)
−1 = y}|.

Let Sy = {(z1, z2) ∈ G × G | f (z1)f (z2)
−1 = y}. Define the map φ as follows:

φ : Sy → G \ {1},
(z1, z2) �→ z1z−1

2 .
(2)

We claim that φ is a bijection between Sy and G \ {1}.
(1) φ(z1, z2) �= 1 (so that the map φ is well defined). If φ(z1, z2) = 1, then z1 = z2,

which implies that y = 1H , a contradiction.
(2) φ is one to one.

If (z1, z2) ∈ Sy and (z3, z4) ∈ Sy satisfy φ(z1, z2) = φ(z3, z4), then

z1z−1
2 = z3z−1

4 := a ∈ G \ {1}. (3)

It follows that z1 = az2, z3 = az4, and f (az2)f (z2)
−1 = f (az4)f (z4)

−1 = y. Hence
z2 = z4 by the assumption that f is planar. As a result, we also have z1 = z3.

(3) φ is onto.

For any a ∈ G \ {1}, since f is planar, we can find a unique z ∈ G such that
f (az)f (z)−1 = y. Hence (az, z) ∈ Sy and φ(az, z) = a ∈ G \ {1}.

Summing up, we have
∑

u∈H

w(yu)w(u) = |Sy| = |φ(Sy)| = |G \ {1}| = v − 1. (4)

Case 2 y = 1H .
∑

u∈H

w(u)2 = |{(z1, z2) ∈ G × G|f (z1)f (z2)
−1 = 1}

= |{(z1, z2) ∈ G × G|z1 �= z2, f (z1)f (z2)
−1 = 1}| + |{(z1, z1) ∈ G × G}|

= (v − 1) + v = 2v − 1.

The proof is complete. �	
Let G and H be two groups of the same odd order v. A map f : G → H is said to

be 2-to-1 if for every nonidentity y ∈ H, |f −1(y)| = 0 or 2, and f −1(1H) = {1G}, where
1G and 1H are the identities of G and H, respectively.

Theorem 2.2 Let G and H be two finite groups of the same order v. Let f : G → H be
a 2-to-1 planar function and D = f (G) \ {1H}.
(1) If v ≡ 3 (mod 4), then D is a skew Hadamard difference set in H.
(2) If v ≡ 1 (mod 4), then D is a (v, (v − 1)/2, (v − 5)/4, (v − 1)/4) partial difference

set in H.
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Proof Since f is planar, by Lemma 2.1, we have for y ∈ H,

∑

u∈H

w(yu)w(u) =
{

v − 1, if y �= 1H ,
2v − 1, if y = 1H .

(5)

By the assumption that f is 2-to-1, we have for u ∈ H,

w(u) =
⎧
⎨

⎩

1, if u = 1H ,
2, if u ∈ D,
0, if u /∈ f (G).

(6)

For any y ∈ H, y �= 1H , it follows from (5) and (6) that

v − 1 = 4|{u | yu, u ∈ D}| + 2|{u | u ∈ D, u = y, y−1}|. (7)

(1) If v ≡ 3 (mod 4), then v − 1 ≡ 2 (mod 4). Note that

0 ≤ |{u | u ∈ D, u = y, y−1}| ≤ 2.

We see from (7) that

|{u | u ∈ D, u = y, y−1}| = 1

and

|{u | yu, u ∈ D}| = (v − 3)/4.

Hence D is a skew Hadamard difference set in H.
(2) If v ≡ 1 (mod 4), then v − 1 ≡ 0 (mod 4). Again note that

0 ≤ |{u | u ∈ D, u = y, y−1}| ≤ 2.

We see from (7) that

|{u | u ∈ D, u = y, y−1}| = 0 or 2

and

|{u | yu, u ∈ D}| =
{

(v − 5)/4, if y ∈ D,
(v − 1)/4, if y /∈ D.

Thus, D is a Paley type PDS in H. �	
Our next observation is that under a reasonable assumption on the size of the

image of a planar function f : G → H, one can actually show that the planar function
f must be 2-to-1. We state the observation as a lemma.

Lemma 2.3 Let G and H be two finite groups of the same odd order v. Let f : G → H
be a planar function, and D = f (G) \ {1H}. If |D| ≤ v−1

2 and f −1(1H) = {1G}, then f is
2-to-1 from G to H. In particular, if f (x−1) = f (x) for every x ∈ G and f −1(1H) = {1G},
then f is 2-to-1.

Proof Since f is a planar function from G to H, by Lemma 2.1, we have
∑

u∈D

w(u)2 + w(1H)2 = 2v − 1 (8)
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and
∑

u∈D

w(u) + w(1H) = v. (9)

Combining (8) and (9), we have
∑

u∈D

(w(u) − 2)2 + (w(1H) − 2)2 = 4|D| − 2v + 3. (10)

Since the left hand side of (10) is non-negative, it follows that 4|D| − 2v + 3 ≥ 0. That
is,

|D| ≥ 2v − 3
4

.

Now since v is odd, it follows that

|D| ≥ v − 1
2

. (11)

If we assume that |D| ≤ v−1
2 , then by (11) we must have |D| = v−1

2 . Now (10) becomes

∑

u∈D

(w(u) − 2)2 + (w(1H) − 2)2 = 4(v − 1)

2
− 2v + 3 = 1.

It follows that there exists a unique u0 ∈ f (G) satisfying w(u0) = 1 or w(u0) = 3 while
w(u) = 2 for any other u ∈ f (G). Furthermore, we see from (9) that w(u0) cannot
be 3.

If we furthermore assume that f −1(1H) = {1G}, then the above u0 must be 1H . And
for any u ∈ f (G), u �= 1H , there are precisely two preimages of u. That is, f is a 2-to-1
function from G to H.

In particular, if f (x−1) = f (x) for every x ∈ G and f −1(1H) = {1G}, then |D| ≤ v−1
2 .

By the above arguments, we see that f is a 2-to-1 function. The proof is complete. �	
Let G and H be two finite groups. For convenience, a map f : G → H is called even

if f (x−1) = f (x) for every x ∈ G and f −1(1H) = {1G}.
Corollary 2.4 Let G and H be two groups of the same odd order v, let f : G → H
be a planar function, and D = f (G) \ {1H}. If f is even, then D is a skew Hadamard
difference set in H or a Paley type PDS in H according as v ≡ 3 (mod 4) or v ≡ 1
(mod 4).

The proof of the corollary is immediate from Lemma 2.3 and Theorem 2.2.
Next, we will examine the known planar functions to see which ones are even. It

turns out that the planar functions coming from odd order presemifields with com-
mutative multiplication are always even. We first give the definition of presemifields
and semifields.

Definition 2.5 Let (K, +, ∗) be a set equipped with two binary operations + and ∗.
We call (K, +, ∗) a presemifield if the two operations satisfy the following conditions:

(1) K is an abelian group with respect to +;
(2) x ∗ (y + z) = x ∗ y + x ∗ z, (x + y) ∗ z = x ∗ z + y ∗ z for all x, y, z ∈ K;
(3) if x ∗ y = 0, then x = 0 or y = 0.
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If furthermore there exists 1 ∈ K such that 1 ∗ x = x ∗ 1 = x for all x ∈ K, then we
call (K, +, ∗) a semifield.

The following theorem is well known. For example, see [11,9].

Theorem 2.6 Let (K, +, ∗) be a finite presemifield with commutative multiplication and
|K| = q odd. Define f : K → K by f (x) = x ∗ x. Then f is a planar function from (K, +)

to itself.

For the convenience of the reader, we give a quick proof of Theorem 2.6 here.

Proof For any a ∈ K, define the map �f ,a : K → K by setting �f ,a(x) = f (x+a)− f (x)

for all x ∈ K. Straightforward computations show that �f ,a(x) = 2a ∗ x + a ∗ a for
all x ∈ K. If a �= 0 and �f ,a(x) = �f ,a(y), for some x, y ∈ K, then 2a ∗ x = 2a ∗ y. It
follows that x = y. Hence �f ,a is a bijection from K to itself for all a �= 0. Therefore,
f is planar. The proof is complete. �	
Corollary 2.7 Let (K, +, ∗) be an odd order presemifield with commutative multipli-
cation. Then {x ∗ x | x ∈ K, x �= 0}, i.e., the set of nonzero squares of K, is a skew
Hadamard difference set in (K, +) or a Paley type PDS in (K, +) according as q ≡ 3
(mod 4) or q ≡ 1 (mod 4).

Proof Define f : K → K by f (x) = x ∗ x. The conclusion of the corollary will follow
from Corollary 2.4 if we can show that f is an even planar function from K to itself.

(1) By Theorem 2.6, we know that f is a planar function.
(2) The only preimage of 0 is 0. (If f (x) = x ∗ x = 0, then x = 0.)
(3) For any x ∈ K, f (−x) = (−x) ∗ (−x) = x ∗ x = f (x).

Hence we have shown that f is indeed an even planar function from K to itself. The
proof of the corollary is complete. �	

Now we examine the list of all known presemifields with commutative multipli-
cation in the recent survey [12] by Kantor. Certain special Albert twisted fields can
have commutative multiplication. But these presemifields give rise to difference sets
equivalent to the Paley difference sets. Other than the Albert twisted semifields, only
the Coulter–Matthews presemifield [4] and the Ding–Yuan variation of it [7] have
orders congruent to 3 modulo 4. Applying Corollary 2.7 to these two presemifields,
we recover the Ding–Yuan construction of skew Hadamard difference sets in [7].
Therefore, we now have a satisfactory explanation for the Ding–Yuan construction.
(We remark that the construction in [8] still looks mysterious since it does not seem
to follow from Corollary 2.7.) The rest of the known odd-order presemifields all have
orders congruent to 1 modulo 4. By Corollary 2.7, they produce Paley type PDS in
elementary abelian p-groups, which are listed below.

Example 2.8 (Dickson semifields) Assume that q is an odd prime power. Let j be a
nonsquare in K = Fq, and let 1 �= σ ∈ Aut(K). The Dickson semifield (K2, +, ∗) is
defined by

(a, b) ∗ (c, d) = (ac + jbσ dσ , ad + bc).

By Corollary 2.7, the subset

D(q, σ) = {(x2 + jy2σ , 2xy) | (x, y) ∈ K2, (x, y) �= (0, 0)} (12)

is a Paley type PDS in (K2, +), where |K2| = q2 ≡ 1 (mod 4).
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Example 2.9 (Ganley semifields) Let K = Fq, q = 3r, with r ≥ 3 odd. The Ganley
semifield (K2, +, ∗) is defined by

(a, b) ∗ (c, d) = (ac − b9d − bd9, ad + bc + b3d3).

By Corollary 2.7, the subset

G(q) = {(x2 + y10, 2xy + y6) | (x, y) ∈ K2, (x, y) �= (0, 0)} (13)

is a Paley type PDS in (K2, +), where |K2| = 32r ≡ 1 (mod 4).

Example 2.10 (Cohen–Ganley semifields) Let q ≥ 9 be a power of 3 and let j ∈ K = Fq
be a nonsquare. The Cohen–Ganley semifield (K2, +, ∗) is defined by

(a, b) ∗ (c, d) = (ac + jbd + j3(bd)9, ad + bc + j(bd)3).

By Corollary 2.7, the subset

CG(q) = {(x2 + jy2 + j3y18, 2xy + jy6) | (x, y) ∈ K2, (x, y) �= (0, 0)} (14)

is a Paley type PDS in (K2, +), where |K2| = q2 ≡ 1 (mod 4) is an even power of 3.

Example 2.11 (Penttila–Williams semifield) Let K = F35 . The Penttila–Williams semi-
field is defined by

(a, b) ∗ (c, d) = (ac + (bd)9, ad + bc + (bd)27).

By Corollary 2.7, the subset

PW = {(x2 + y18, 2xy + y54) | (x, y) ∈ K2, (x, y) �= (0, 0)} (15)

is a Paley type PDS in (K2, +).

There exists a construction of Paley type PDS by using partial congruence partitions
(PCP, in short). Following [14], we describe the construction as follows.

Construction 2.12 (PCP construction) Let G be the additive group of a 2-dimensional
vector space V over Fq. Let H1, H2, . . . , Hr, where r ≤ q + 1, be r hyperplanes of V.
Then D = (H1 ∪ H2 ∪ · · · ∪ Hr) \ {0} is a (q2, r(q − 1), q + r2 − 3r, r2 − r)-PDS in G.
Choosing r = (q + 1)/2, one obtains a Paley type PDS in G.

Besides the Paley type PDS produced by the above construction, two infinite fam-
ilies of Paley type PDS in elementary abelian p-groups were previously known. The
corresponding Cayley graphs are the Paley graphs and the P∗-graphs (see [18]). We
give the definitions of these graphs below. (We mention that in the process of deter-
mining all PDS in groups of order p2, Heinze [10] also constructed some Paley type
PDS whose corresponding Cayley graphs are not isomorphic to the Paley graphs.)

Definition 2.13 (Paley graphs) Let q be a prime power congruent to 1 modulo 4.
Then the set S of nonzero squares of Fq is a (q, 1

2 (q − 1), 1
4 (q − 5), 1

4 (q − 1)) PDS in
(Fq, +). We mention that if q is a square, then S can also be obtained by using the
above PCP construction. The Paley graph P(q) is obtained from the Paley PDS by the
standard Cayley graph construction. Namely P(q) has the elements of Fq as vertices;
two vertices are adjacent if and only if their difference is in S.
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Definition 2.14 (P∗-graphs) Let q = p2s, where p is a prime congruent to 3 modulo 4.
Let g be a primitive element of Fq, and let C0 = {g4k | k = 0, 1, . . . , q−5

4 }, C1 = gC0.
Then the set S′ = C0 ∪ C1 is a Paley type PDS in (Fq, +). The P∗-graph P∗(q) is
obtained from S′ by the standard Cayley graph construction.

A graph is said to be self-complementary if it is isomorphic to its complement. A
graph is said to be vertex (resp. edge) transitive if the automorphism group of the
graph acts transitively on the vertex (resp. edge) set. A graph which is both vertex
transitive and edge transitive is called a symmetric graph. Both the Paley graphs and
P∗-graphs are self-complementary symmetric graphs (see [18]). Peisert [18] classified
all self-complementary and symmetric graphs.

Theorem 2.15 (Peisert [18]) With one exception, every self-complementary, symmetric
graph is ismorphic to either a Paley graph or a P∗-graph.

3 Inequivalence issues

Now we have to consider the question whether the PDS constructed from presemi-
fields are new or not. We first give the precise definitions of equivalence of PDS.

Definition 3.1 Let D1, D2 ⊂ G be two partial difference sets in a group G. The partial
difference sets D1, D2 are said to be CI-equivalent if there exists an automorphism
φ ∈ Aut(G) such that φ(D1) = D2.

Definition 3.2 Let D1, D2 ⊂ G be two partial difference sets in a group G. The par-
tial difference sets D1, D2 are said to be srg-equivalent if the corresponding Cayley
graphs are isomorphic, i.e., Cay(G, D1) ∼= Cay(G, D2).

It is clear that CI-equivalence implies srg-equivalence. The converse is not true:
there are examples [10] of PDS which are srg-equivalent but not CI-equivalent.

Since the partial congruence partition construction produces a large number of
Paley type PDS, it seems quite difficult to decide whether the PDS constructed from
presemifields (presemifield PDS, in short) are inequivalent to the PDS from the PCP
construction. We will only address the problem whether the presemifield PDS are
inequivalent to S and S′ defined in Definitions 2.13 and 2.14.

If we can show that the SRG obtained from the presemifield PDS (presemifield
SRG, in short) are not isomorphic to the Paley graph or the P∗-graph, then not only
we prove that the PDS are inequivalent to S and S′, but also the presemifield SRG
are not isomorphic to the Paley graph or the P∗-graph. For this purpose, we introduce
p-ranks of strongly regular graphs.

Let � be a strongly regular graph with parameters (v, k, λ, µ), and let A be its adja-
cency matrix. Then A has three eigenvalues k, r, and s, with multiplicities 1, f and g,
respectively, where

f + g = v − 1, k + fr + gs = 0.

If f = g (i.e., the so-called “half case”), then v must be congruent to 1 modulo 4,

(v, k, λ, µ) =
(

v,
v − 1

2
,

v − 5
4

,
v − 1

4

)
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and � has eigenvalues (−1 ± √
v)/2. Otherwise the eigenvalues r and s are integers.

Let p be a prime and c be an integer. Then it was shown in [2] that the p-rank
of A + cI is completely determined by the parameters of � except possibly for the
p-ranks

rkp(2A + I), with p|v in the half case, and (16)

rkp(A − sI), with p|(r − s) in all other cases. (17)

So only for these p-ranks, the structure of � can play a role. Hence these p-ranks can
be used to distinguish between nonisomorphic SRG with the same parameters. We
will only be concerned with p-ranks in (16) since the presemifield SRG all fall into
the half case.

The p-ranks of the Paley graphs were computed in [2]. We state the result below.

Theorem 3.3 ([2]) Let q = pt be a prime power congruent to 1 modulo 4, and let A be
the adjacency matrix of the Paley graph P(q). Then

rkp(2A + I) =
(

p + 1
2

)t

.

Next we compute the p-ranks of the P∗-graphs.

Theorem 3.4 Let p be a prime congruent to 3 modulo 4, t = 2s be a positive integer,
and q = pt. Let A be the adjacency matrix of the P∗-graph P∗(q). Then

rkp(2A + I) = 2
(

p + 1
4

)s ((
3(p + 1)

4

)s

−
(

p + 1
4

)s)
.

The technique is based on the following lemma, which was used in [2] for the Paley
graphs.

Lemma 3.5 ([2]) Let p(x, y) = ∑d−1
i=0

∑e−1
j=0 cijxiyj be a polynomial with coefficients in

a field F. Let M, N ⊆ F, with m := |M| ≥ d and n := |N| ≥ e. Consider the m × n
matrix B = (p(a, b))a∈M,b∈N and the d × e matrix C = (cij). Then rkF(B) = rkF(C).

We are now ready to give the proof of Theorem 3.4.

Proof of Theorem 3.4 Let B = 2A + I − J, where I is the identity matrix of order q
and J is the all-one matrix of order q. We will first determine rkp(B).

Let g be a primitive element of Fq, and β = g
q−1

4 . Also let C0 = {g4i |
i = 0, 1, . . . , q−5

4 }, C1 = gC0 and S′ = C0 ∪ C1. Define

f (x) = 1
1 + β

(
x

q−1
4 + βx

3(q−1)
4

)
∈ Fq[x]. (18)

Then we have

f (x) =
⎧
⎨

⎩

1, x ∈ S
′
,

0, x = 0,
−1, x /∈ S

′
, x �= 0.

(19)
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The above property of f (x) allows us to represent the entries of B in a compact man-
ner, that is, B = (f (a−b))a∈Fq,b∈Fq . Let p(x, y) := f (x−y) = ∑q−1

i=0
∑q−1

j=0 cijxiyj, where
cij ∈ Fq, and C = (cij)0≤i≤q−1, 0≤j≤q−1. By Lemma 3.5, we have rkFq(B) = rkFq(C).
Now we want to find explicit expressions for cij. From (18), we have

p(x, y) = 1
1 + β

(
(x − y)

q−1
4 + β(x − y)

3(q−1)
4

)

= 1
1 + β

q−1∑

k=0

((q−1
4
k

)
x

q−1
4 −k + β

( 3(q−1)
4
k

)
x

3(q−1)
4 −k

)
(−y)k. (20)

Denote by 〈at−1at−2 · · · a1a0〉p the integer at−1pt−1 +at−2pt−2+· · ·+a1p+a0, where
0 ≤ ai ≤ p − 1, for all i. Then q−1

4 = 〈abab · · · ab〉p, and 3(q−1)
4 = 〈baba · · · ba〉p, where

a = p−3
4 , b = 3p−1

4 .
From (20) and the well-known Lucas theorem (for example, see [13]), we have

(1 + β)p(x, y) =
q−1∑

k=0

((q−1
4
k

)
x

q−1
4 −k + β

( 3(q−1)
4
k

)
x

3(q−1)
4 −k

)
(−y)k

=
∑

0≤ai≤p−1,∀i

gat−1at−2···a0(x)(−y)〈at−1at−2···a0〉p , (21)

where

gat−1at−2···a0(x) =
(

a
at−1

)(
b

at−2

)
· · ·

(
a
a1

)(
b
a0

)
x〈(a−at−1)(b−at−2)···(a−a1)(b−a0)〉p

+β

(
b

at−1

)(
a

at−2

)
· · ·

(
b
a1

)(
a
a0

)
x〈(b−at−1)(a−at−2)···(b−a1)(a−a0)〉p .

We consider the columns of C, which are labeled by k, k = 〈at−1at−2 · · · a0〉p,
0 ≤ ai ≤ p − 1, for all i. There are three cases where a column of C is nonzero.

Case 1 When 0 ≤ ai ≤ a, i = 0, 1, . . . , t − 1, the kth column of C has two nonzero
entries, one in row r1 = 〈(a − at−1)(b − at−2) · · · (a − a1)(b − a0)〉p, the other in row
r2 = 〈(b−at−1)(a−at−2) · · · (b−a1)(a−a0)〉p, where 0 ≤ r1 ≤ q−1

4 , q−1
2 ≤ r2 ≤ 3(q−1)

4 .
Denote the Fq-vector space spanned by such column vectors of C by V1.

Case 2 When a2i0 > a for some i0, and at−1 ≤ a, at−2 ≤ b, . . ., a1 ≤ a, a0 ≤ b, the
kth column of C has exactly one nonzero entry, which is in row r = 〈(a − at−1)(b −
at−2) · · · (a − a1)(b − a0)〉p, where 0 ≤ r ≤ q−1

4 . Denote the Fq-vector space spanned
by such column vectors of C by V2.

Case 3 When a2i0−1 > a for some i0, and at−1 ≤ b, at−2 ≤ a, . . ., a1 ≤ b, a0 ≤ a, the
kth column of C has exactly one nonzero entry, which is in row r = 〈(b − at−1)(a −
at−2) · · · (b−a1)(a−a0)〉p, where 0 ≤ r ≤ 3(q−1)

4 . Denote the Fq-vector space spanned
by such column vectors of C by V3.

So rkp(C) = dim(V1 + V2 + V3). It is easy to see that V1 ∩ (V2 + V3) = {0}. Hence

rkp(C) = dim(V1 + V2 + V3) = dim(V1) + dim(V2 + V3)

= dim(V1) + dim(V2) + dim(V3) − dim(V2 ∩ V3) (22)
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From the definitions of V1, V2, and V3, we see that

dim(V1) = (a + 1)t, and dim(V2) = dim(V3) = (a + 1)s(b + 1)s − (a + 1)t.

It remains to find dim(V2 ∩ V3), which can be obtained by counting the number of
row vectors of C having at least two nonzero entries. To this end, we expand p(x, y) in
a different way:

p(x, y) =
∑

0≤bi≤p−1,∀i

hbt−1bt−2···b0(−y)x〈bt−1bt−2···b0〉(p) ,

where

hbt−1bt−2···b0(−y) =
(

a
bt−1

)(
b

bt−2

)
· · ·

(
a
b1

)(
b
b0

)
(−y)〈(a−bt−1)(b−bt−2)···(a−b1)(b−b0)〉p

+β

(
b

bt−1

)(
a

bt−2

)
· · ·

(
b
b1

)(
a
b0

)
(−y)〈(b−bt−1)(a−bt−2)···(b−b1)(a−b0)〉p .

Let � = 〈bt−1bt−2 · · · b0〉p. From above expansion, it is easy to see that the �th row
of C has at least two nonzero entries (hence exactly two nonzero entries) if and only
if 0 ≤ bi ≤ a, i = 0, 1, . . . , t − 1. There are (a + 1)t such rows of C.

As 0 ≤ bi ≤ a implies that b − bi ≥ b − a > a, if a row vector of C has at least two
nonzero entries, then none of those nonzero entries is in a column vector of V1. We
therefore find that dim(V2 ∩ V3) = (a + 1)t.

Hence

rkp(C) = dim(V1) + dim(V2) + dim(V3) − dim(V2 ∩ V3)

= (a + 1)t + 2
(
(a + 1)s(b + 1)s − (a + 1)t) − (a + 1)t

= 2(a + 1)s[(b + 1)s − (a + 1)s]
As B = 2A+ I −J, where A is the adjacency matrix of the P∗-graph P∗(q), we have

B2 ≡ −J (mod p) and (2A + I)2 ≡ −J (mod p). From 2A + I = B + J ≡ B − B2 ≡
B(I − B) (mod p), it follows that rkp(2A + I) ≤ rkp(B). From B = 2A + I − J ≡
(2A + I)+ (2A + I)2 ≡ (2A + I)(2A + 2I), it follows that rkp(B) ≤ rkp(2A + I). Hence

rkp(2A + I) = rkp(B) = rkp(C) = 2
(

p+1
4

)s ((
3(p+1)

4

)s − (
p+1

4 )s
)

, as claimed. The

proof of the theorem is now complete. �	

Proposition 3.6 Let p be a prime congruent to 3 modulo 4, t = 2s be a positive integer,
and q = pt. Let A1, A2 be the adjacency matrices of the Paley graph P(q) and the
P∗-graph P∗(q), respectively. Then rkp(2A1 + I) > rkp(2A2 + I) except when t = 2
or 4.

Proof By Theorems 3.3 and 3.4, we have

rkp(2A1 + I) =
(

p + 1
2

)t

and

rkp(2A2 + I) = 2
(

p + 1
4

)s ((
3(p + 1)

4

)s

−
(

p + 1
4

)s)
.
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Table 1 rkp(2A + I) of the Paley graph, P∗-graph and presemifield SRGs

Order q Paley graph P∗-graph Dickson SRG Ganley SRG CG SRG PW SRG

34 24 = 16 16 20 N/A 20 N/A
36 26 = 64 52 85 88 94 N/A
38 28 = 256 160 376 N/A 448 N/A
310 210 = 1, 024 484 1,654 1,534 2,084 2,059
54 34 = 81 N/A 105 N/A N/A N/A
74 44 = 256 256 336 N/A N/A N/A

Let r = p+1
4 . Then

rkp(2A1 + I) = (2r)2s = 4s · r2s

and

rkp(2A2 + I) = 2rs (
(3r)s − rs) = 2(3s − 1)r2s.

Since 4s > 2(3s −1) for s > 2, we see that rkp(2A1 + I) > rkp(2A2 + I) except when
t = 2 or 4. �	

Some comments are in order. Let p be a prime congruent to 1 modulo 4. In [16,17],
it is shown that

rkp(2A + I) = p + 1
2

,

where A is the adjacency matrix of an arbitrary
(

p, p−1
2 , p−5

4 , p−1
4

)
SRG. Therefore,

it is not possible to use p-rank to distinguish the Paley graph of prime order from
other SRG with the same parameters. It was then conjectured in [17, p. 47] that the
Paley graphs of nonprime order are characterized among the SRG with the same
parameters by the property that their relevant p-ranks are minimal. The idea behind
this conjecture is similar to that behind Hamada’s conjecture (see [1]), namely, the
“nicest” or “most regular” SRG with some given parameters can be characterized by
its parameters and the minimality of its p-rank for suitable prime p. Proposition 3.6
shows that the Peeters conjecture is not true. We mention that Aut(P∗(q)) is smaller
than Aut(P(q)), when q > 232 (see [18]). So in a sense, the Paley graphs are nicer than
the P∗-graphs. However, as shown by Proposition 3.6, the p-ranks of the P∗-graphs
are smaller than those of the Paley graphs.

It seems difficult to compute theoretically the p-ranks of the presemifield SRG. The
difficulty lies in the fact that we do not have compact representations for the entries
of the adjacency matrices of the presemifield SRG. Currently, we have the following
computer results on p-ranks of the presemifield SRG (see Table 1 below). Based on
these results, we see that the presemifield SRG of orders 34, 36, 38, 310, 54, and 74 are
not isomorphic to Paley graphs or the P∗-graphs. Furthermore, except when q = 34,
the presemifield SRG are pairwise nonisomorphic.

There are of course other ways to show that the presemifield SRG are not isomor-
phic to Paley graphs or the P∗-graphs. Since the Paley graphs and the P∗-graphs are
both self-complementary, we may try to argue that the presemifield SRG are not self-
complementary. Using a computer, we can show that the Cohen–Ganley SRG and the
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Dickson SRG on 34 vertices are isomorphic, and they are self-complementary. So we
have found a new example of self-complementary SRG on 81 vertices (cf. [15]). Other
presemifield SRG in Table 1 are not self-complementary. We conjecture that the pre-
semifield SRG are not self-complementary if the order is greater than 81. Finally, we
mention that since the Paley graphs and the P∗-graphs are both rank-3 graphs, we
may try to argue that the presemifield SRG are not rank-3. Using a computer, we
have checked that all presemifield SRG in Table 1 are not rank-3. We conjecture that
the presemifield SRG are always nonrank-3.
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