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Proof of a Conjecture of De Caen and Van Dam

GARY L. EBERT, SEBASTIAN EGNER, HENK D. L. HOLLMANN † AND QING X IANG

We present a proof for a conjecture of De Caen and Van Dam (2001, Europ. J. Combinatorics,22,
297–301) concerningthe existence of a four-class association scheme on the set of all unordered pairs
of points of the projective line PG(1,q2), whereq = 2m.

c© 2002 Academic Press

1. INTRODUCTION

In this paper we present a proof for a conjecture in [3] on the existence of a certain four-
class associationscheme. In order to explain the conjecture, we briefly review some of the
results from [3], in which further background and proofs can be found.

Let Fq denote theGalois field of orderq, q a prime power. The group PGL(2,q) of Möbius
transformations is sharply three-transitive on the projective line PG(1,q); moreover, the natu-
ral induced action on unordered pairs of points from PG(1,q) is generously transitive, hence
affords a (symmetric) association scheme FT(q + 1). The relations of this scheme, a fission
scheme of the triangular (Johnson) scheme T(q+1) = J(q+1,2), can be described as follows.
Thecross-ratio

ρ(a, b; c, d) = (a − c)(b − d)/(a − d)(b − c) (1)

is a complete invariant for ordered quadruples(a, b, c, d) of distinct points of PG(1,q), that is,
a quadruple can be mapped to another quadruple if and only if they have the same cross-ratio.
As a consequence, the scheme FT(q + 1) has relationsR0 (the diagonal relation),R1 (the line
graph of the complete graph on

(q+1
2

)
vertices), and a relationR{s,s−1} for each pair{s, s−1

}

from Fq \ {0,1}, where({a, b}, {c, d}) ∈ R{s,s−1} if ρ(a, b; c, d) ∈ {s, s−1
}.

In [3], De Caen and Van Dam conjectured that fusion of certain relations in FT(q2
+ 1),

q = 2m, producesa four-class scheme. To make this precise, let us define subsetsB∗

0 andB∗

1
of Fq2 by

B∗

0 := Fq \ {0,1}, B∗

1 := {x ∈ Fq2|x 6= 1,xq
= x−1

}. (2)

Now let S0 = R0, S1 = R1, let S2 andS3 be the union of all relationsR{s,s−1} with s ∈ B∗

0
ands ∈ B∗

1, respectively, and letS4 be the union of all remaining relationsR{s,s−1}. De Caen
and Van Dam [3] conjectured the following.

THEOREM 1. The relations Si , i = 0, . . . , 4, form a four-class association scheme.

They noted that in order to prove this, it is sufficient to prove that for alli, j in {0,1} the
numbers

πi, j (r ) :=
1

2

∑
s∈B∗

i ,t∈B∗
j

|{x ∈ Fq2 | x2
+ (r + s + t + rst)x + rs + r t + st = 0}| (3)

are constant forr ∈ B∗

0, r ∈ B∗

1, andr ∈ Fq2 \ ({0,1} ∪ B∗

0 ∪ B∗

1), respectively. Note that
these (supposedly) constant values would be the intersection numbers of the fusion scheme
S(q2

+ 1) in Theorem 1 involving the relationsS2, S3, andS4, as can be easily seen from [3].
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Our proof consists of a direct evaluation of (3). Although by the time of submitting this
paper weknew of at least three other proofs [2, 4, 5], we still feel that this proof is of interest
since itis completely elementary, based only on some well-chosen substitutions.

2. PRELIMINARIES

In the remainder of this paper,q will denote a fixed power of two. We writetq(x) to denote
the image ofx ∈ Fq2 under the mapx 7→ x + x2

+ · · · + xq/2. Note that ifx ∈ Fq, thentq(x)

is just the trace fromFq to F2 of x. Also, we write Trq2(x) to denote the trace ofx ∈ Fq2 from
Fq2 to F2. Fore ∈ Fq we define

Ge := {x ∈ Fq2 | xq
= x + e}

and
Te := {x ∈ Fq2 | tq(x) = e}.

Note thatG0 = Fq, Fq2 = G0 ∪ G1 ∪ (∪e6=0,1Ge), andFq = T0 ∪ T1. Define the map
τ : Fq2 ∪ {∞} → Fq2 ∪ {∞} via

τ(x) = x/(x + 1).

We will denote the imageτ(Ge) of Ge under the mapτ by Be. Finally, for any subsetS of
Fq2 ∪ {∞}, we defineS∗

:= S\ {0,∞} and S̃ := S\ {0,1}. It is not difficult to see that the
definitions forB∗

0 andB∗

1 given earlier coincide with the definition ofB∗
e for e = 0,1 given

here (see also Lemma 1).
Wewill be interested in the number of solutionsx ∈ Fq2 of the equation

x2
+ (rst + r + s + t)x + rs + r t + st = 0, (4)

wheres, t ∈ B∗

0 ∪ B∗

1. It turns out that this equation can be transformed by some well-chosen
substitutions into an ‘equivalent’ equation (that is, an equation having the same number of
solutions) that is easy to deal with. Our approach is based on the following easily verified
observation.

LEMMA 1. The mapτ : x 7→ x/(x + 1) is 1-1on Fq2 ∪ {∞}, with τ(0) = 0, τ(1) = ∞,
andτ(∞) = 1. Moreover, we have that

(i) τ mapsG0 = Fq to B0 = (Fq ∪ {∞}) \ {1}, G1 to B1 = {x ∈ Fq2 | x 6= 1,xq
= x−1

},
andGe to Be, e 6= 0,1.

Also, for all e∈ Fq, we have the following.
(ii) The setTe (resp.T∗

e) is the image ofGe (resp.G̃e) under the map x7→ x2
+ x, hence

Te ⊆ Ge2+e.
(iii) The setTe (resp.T∗

e) is the image ofBe (resp.B∗
e) under the map x7→ 1/(x + x−1).

Now we proceed to evaluateπi, j (r ) defined in (3). Note that sinceFq2 = ∪e∈Fq Ge, we have

Fq2 \ {0,1} = B∗

0 ∪ B∗

1 ∪

⋃
k∈Fq\{0,1}

B∗

k.

So we may view the elementr in the definition ofπi, j (r ) running throughB∗

k, k ∈ Fq. When
r ∈ B∗

k, to emphasize the dependence ofπi, j (r ) onk, we writeπi, j (r ) asπk
i, j (r ).
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We now transform (4) into an equivalent equation which is easier to handle. Suppose that
s ∈ B∗

i , t ∈ B∗

j , andr ∈ B∗

k, wherei, j ∈ {0,1} andk ∈ Fq. Letα ∈ G̃i , β ∈ G̃ j , andγ ∈ G̃k

be such that
s = α/(1 + α), t = β/(1 + β), r = γ /(1 + γ ), (5)

and define
a = α2

+ α, b = β2
+ β, c = γ 2

+ γ. (6)

Remark that by Lemma 1 this is possible, anda ∈ T∗

i , b ∈ T∗

j , andc ∈ T∗

k; hencea, b ∈ Fq

andc ∈ Gk2+k. Moreover, ifs, t , andr run throughB∗

i , B∗

j , andB∗

k, thenα, β, andγ run

throughG̃i , G̃ j , andG̃k, respectively; moreover,a, b, andc run throughT∗

i , T∗

j , andT∗

k, and
attain each element in these sets exactly twice.

Using (5), we find that

rst + r + s + t = (α + β + γ )/π (7)

and
rs + r t + st = (αβγ + αβ + αγ + βγ )/π, (8)

where
π = (1 + α)(1 + β)(1 + γ ) 6= 0. (9)

So, if we multiply (4) byπ2, we obtain the equivalent equation

y2
+ (α + β + γ )y = π(αβγ + αβ + αγ + βγ ) (10)

overFq2. Next, we eliminateβ from the right-hand side of (10). To this end, write

y = z + (α + γ + αγ )β + α + γ. (11)

After a tedious but routine computation, we obtain the equivalent equation

z2
+ (α + β + γ )z = (1 + α)(1 + γ )αγ = (α2

+ α)c (12)

overFq2. From the above, we conclude that

πk
i, j (r ) =

1

2

∑
α∈G̃i

∑
β∈G̃ j

|{z ∈ Fq2 | z2
+ (α + β + γ )z = (α2

+ α)c}|

= −θ(i, j, k) + π̃k
i, j (r ), (13)

where

π̃k
i, j (r ) =

1

2

∑
α∈Gi

∑
β∈G j

|{z ∈ Fq2 | z2
+ (α + β + γ )z = (α2

+ α)c}| (14)

andθ(i, j, k) denotesthe contribution to the sum (14) fromα or β in {0,1}.
First, weevaluateθ(i, j, k). To this end, note that forα ∈ {0,1}, Eqn (12) overFq2 has

exactlyone solution ifα + β + γ = 0 and exactly two solutions otherwise. Moreover, due to
symmetry the same statement holds forβ ∈ {0,1}. Using these observations, we find that

θ(i, j, k) =
1

2
δi,0

∑
α∈{0,1}

∑
β∈G̃ j

(2 − δα+β+γ,0) +
1

2
δ j,0

∑
α∈Gi

∑
β∈{0,1}

(2 − δα+β+γ,0)

= δi,0(2|G̃ j | − δ j,k) + δ j,0(2|Gi | − δi,k)

= 2q(δi,0 + δ j,0) − 4δi,0δ j,0 − δi,0δ j,k − δ j,0δi,k, (15)
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whereδu,v is theKronecker Delta function, i.e.,δu,v = 1 if u = v, andδu,v = 0 if u 6= v.
Next, we evaluatẽπk

i, j (r ). Define

H := {x2
+ x | x ∈ Fq2} = {y ∈ Fq2 | Trq2(y) = 0}, (16)

and writee = i + j + k. We have that

π̃k
i, j (r ) =

1

2

∑
α∈Gi

∑
β∈G j

|{z ∈ Fq2 | z2
+ (α + β + γ )z = (α2

+ α)c}|

=

∑
σ∈Ge

|{z ∈ Fq2 | z2
+ σz ∈ cT i }|

=
q

2
δe,0 + 2

∑
σ∈G∗

e

|H ∩ (c/σ 2)T i |. (17)

We will use the following observation.

LEMMA 2. Letλ ∈ F∗

q2 and i ∈ {0,1}. Then

|H ∩ λT i | =

q/2, if λ ∈ G0;
q
2δi,0, if λ ∈ G1;
q/4, otherwise.

(18)

PROOF. Let a ∈ T i . We have thatλa ∈ H if and only if Trq2(λa) = Trq((λ + λq)a) = 0,
that is, if and only ifλ ∈ G0 = Fq or (λ + λq)a ∈ T0. So if λ ∈ G0 andλ 6= 0, then
|H ∩ λT i | = |T i | = q/2, and ifλ 6∈ G0, then|H ∩ λT i | = |T0 ∩ µT i |, whereµ = λ + λq.

Now bothT0 andµT0 areF2-linear subspaces ofFq, of dimensionm − 1 if q = 2m, and
T1 = Fq \ T0. So eitherT0 andµT0 are equal, or|T0 ∩ µT i | = q/4. It is well-known that
T0 = µT0 only if µ = 1 (indeed, note thatT0 is the Singer difference set inFq), so the result
follows. 2

In order to use Lemma 2 to evaluate (17), we need to determine whenc/σ 2
∈ G0 and when

c/σ 2
∈ G1. To this end, letλ = c/σ 2, wherec ∈ T∗

k ⊆ Gk2+k = Ge2+e, σ ∈ G∗
e, and put

µ = µ(σ) = λ + λq
= e(ce+ σ 2(e+ 1))/(σ4

+ e2σ 2). (19)

We determine whenµ = 0 andwhenµ = 1. Solving these equations forσ produces the
following result.

LEMMA 3. Let i, j ∈ {0,1}, k ∈ Fq, e = i + j + k, and suppose that c= γ 2
+ γ with

γ ∈ G̃k. Letµ be defined as above.

(i) We have thatµ = 0 if andonly if e= 0 or e 6= 0,1, σ = (ec/(e+ 1))1/2
∈ Ge;

(ii) we have thatµ = 1 if andonly if e 6= 0 andσ 2
∈ {eγ, e(γ + 1)}; these solutionsσ are

in Ge if and only if k= e, that is, i= j .

A straightforward application of the above results now shows that

π̃k
i, j (r ) =


q(2q − 1)/2, if e = 0;
2qδi,0 + q(q − 2)/2, if e = 1 andi = j ;
q2/2, if e = 1 andi 6= j ;
2qδi,0 + q(q − 1)/2, if e 6= 0,1 andi = j ;
q(q + 1)/2, if e 6= 0,1 andi 6= j .

(20)
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Combining (13), (15), and (20), we see that fori, j ∈ {0,1}, the numberπk
i, j (r ) does not

depend on the choice ofr ∈ B∗

k and in fact only depends on whetherk = 0, k = 1, or
k ∈ Fq \ {0,1}. So indeedS(q2

+ 1) defined in Section 1 is a four- class scheme, and the
intersection numbers are as follows.

For the cases wheree = i + j + k = 0, we obtain that

p2
22 = (2q2

−9q+12)/2, p2
33 = q(2q−1)/2, p3

23 = p3
32 = (q−2)(2q−1)/2. (21)

Here, for example,p2
22 = π0

0,0(r ) = |{z | (x, z) ∈ S2 and(z, y) ∈ S2}| for any pair(x, y) ∈

S2.
For the cases wheree = i + j + k = 1, we obtain that

p3
22 = (q − 2)(q − 4)/2, p2

23 = p2
32 = q(q − 4)/2, p3

33 = q(q − 2)/2. (22)

Finally, for the cases wheree = i + j + k 6= 0,1, weobtain that

p4
22 = (q2

− 5q + 8)/2, p4
23 = p4

32 = q(q − 3)/2, p4
33 = q(q − 1)/2. (23)

The existence of these intersection numbers together with the existence of the valencies is
sufficientto conclude that all other intersection numbers also exist and enables us to compute
them. It is then an easy exercise to compute theP-matrix of the four-class scheme and to
verify that thisP-matrix is indeed as given in [3].

Weremark that there is an even more direct way to obtain (21). Indeed, let

f = f (r, s, t) = (rs + r t + st)/(rst + r + s + t)2. (24)

We claim that Trq2( f ) = 0 if i + j + k = 0 and rst + r + s + t 6= 0. This is obvious
if r, s, t ∈ B∗

0 (since thenf ∈ Fq). Otherwise, due to the symmetry off we may assume
without loss of generality thatr ∈ B∗

0, s, t ∈ B∗

1. Thenr q
= r , sq

= s−1, tq
= t−1, and a

routine computation shows thatf q
+ f = g2

+ g, where

g = (s + t)/(rst + r + s + t). (25)

A second routine computation shows thatgq
= g, sog ∈ Fq; hence Trq2( f ) = Trq( f q

+ f ) =

Trq(g2
+ g) = 0 as claimed.

Now note that ifrst + r + s + t 6= 0, then the number of solutions to (4) overFq2 equals

1+ (−1)
Trq2( f )

= 2 by our claim and so the numbersπi, j (r ) (and hence the numbers in (21))
can easilybe computed directly from their definition (3). Further details are left to the reader.

3. CONCLUSIONS

We have shown that fusion of relations as proposed in [3] indeed produces a four-class
association scheme,whoseP-matrix is the one given there. ThisP-matrix reveals that further
fusion of the relationsS1, S2 and S3 produces a strongly regular graph. We remark that in
contrast to the suggestion in [3], this graph is isomorphic to the Brouwer-Wilbrink graph.
This isshown both in [2] and in [4]; moreover, in [4] it is shown that a similar fusion process
in a related scheme produces first a three-class scheme, then a renewed fusion produces a
strongly regular graph isomorphic to the Metz graph (for these two srgs, see e.g. [1]).
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