SYMMETRIC BUSH-TYPE HADAMARD MATRICES OF ORDER $4 m^{4}$ EXIST FOR ALL ODD m

MIKHAIL MUZYCHUK AND QING XIANG

(Communicated by John R. Stembridge)

Abstract

Using reversible Hadamard difference sets, we construct symmetric Bush-type Hadamard matrices of order $4 m^{4}$ for all odd integers m.

1. Introduction

A Hadamard matrix of order n is an n by n matrix H with entries ± 1, such that

$$
H H^{\top}=n I_{n}
$$

where I_{n} is the identity matrix of order n. It can be easily shown that if n is the order of a Hadamard matrix, then $n=1,2$ or $n \equiv 0(\bmod 4)$. The famous Hadamard matrix conjecture states that for every positive integer n divisible by 4 , there exists a Hadamard matrix of order n. This conjecture is far from being proved. We refer the reader to 13 for a recent construction of a Hadamard matrix of order 428 (the smallest order for which an example of a Hadamard matrix was not known for many years). In this note, we concentrate on a class of Hadamard matrices of highly specialized form, namely the Bush-type Hadamard matrices.

Let n be a positive integer and let $J_{2 n}$ denote the matrix of order $2 n$ with all entries being ones. A Hadamard matrix $H=\left(H_{i j}\right)$ of order $4 n^{2}$, where $H_{i j}$ are $2 n \times 2 n$ block matrices, is said to be of Bush-type if

$$
\begin{equation*}
H_{i i}=J_{2 n} \text { and } H_{i j} J_{2 n}=J_{2 n} H_{i j}=0 \tag{1.1}
\end{equation*}
$$

for $i \neq j, 1 \leq i, j \leq 2 n$. K. A. Bush [3] proved that the existence of a projective plane of order $2 n$ implies the existence of a symmetric Bush-type Hadamard matrix of order $4 n^{2}$. So if one can prove the nonexistence of symmetric Bush-type Hadamard matrices of order $4 n^{2}$, where n is odd, then the nonexistence of a projective plane of order $2 n$, where n is odd, will follow. This was Bush's original motivation for introducing Bush-type Hadamard matrices. Wallis [18] showed that $n-1$ mutually orthogonal Latin squares of order $2 n$ lead to a symmetric Bush-type Hadamard matrix of order $4 n^{2}$. Goldbach and Claasen [7] also proved that certain 3-class association schemes can give rise to symmetric Bush-type Hadamard

[^0]matrices. More recently, Kharaghani and his coauthors 15, 9, 10, 11, 12, rekindled the interest in Bush-type Hadamard matrices by showing that these matrices are very useful for constructions of symmetric designs and strongly regular graphs. Kharaghani [15] conjectured that Bush-type Hadamard matrices of order $4 n^{2}$ exist for all n. While it is relatively easy to construct Bush-type Hadamard matrices of order $4 n^{2}$ for all even n for which a Hadamard matrix of order $2 n$ exists (see [14), it is not easy to decide whether such matrices of order $4 n^{2}$ exist if $n>1$ is an odd integer. In a recent survey [12], Jungnickel and Kharaghani wrote "Bush-type Hadamard matrices of order $4 n^{2}$, where n is odd, seem pretty hard to construct. Examples are known for $n=3, n=5$, and $n=9$ (see 9], [10, and [11] respectively); all other cases are open". In this note, we will show that symmetric Bush-type Hadamard matrices of order $4 m^{4}$ exist for all odd m.

We first note a relation between symmetric Bush-type Hadamard matrices and strongly regular graphs with certain properties. The following lemma is well known. A weaker form of the lemma appeared in [18]. For convenience of the reader, we provide a proof.

Lemma 1.1. There exists a symmetric Bush-type Hadamard matrix of order $4 n^{2}$ if and only if there exists a strongly regular graph (SRG in short) with parameters

$$
v=4 n^{2}, k=2 n^{2}-n, \lambda=\mu=n^{2}-n
$$

and with the additional property that the vertex set can be partitioned into $2 n$ disjoint cocliques of size $2 n$.
Proof. If $H=\left(H_{i j}\right)$, where $H_{i j}$ are $2 n \times 2 n$ block matrices, is a symmetric Bushtype Hadamard matrix of order $4 n^{2}$, then the matrix $A=\frac{1}{2}(J-H)$ is symmetric and satisfies

$$
A^{2}=n^{2} I+\left(n^{2}-n\right) J
$$

Moreover the $2 n \times 2 n$ block matrices on the main diagonal of A are all zero matrices. Hence A is the adjacency matrix of an SRG with parameters $v=4 n^{2}, k=2 n^{2}-$ $n, \lambda=\mu=n^{2}-n$, and with the additional property that the vertex set can be partitioned into $2 n$ disjoint cocliques of size $2 n$. Conversely, if A is the adjacency matrix of such an SRG, then the matrix $H=J-2 A$ is symmetric and satisfies $H^{2}=4 n^{2} I$. Since the vertex set of the SRG can be partitioned into $2 n$ cocliques, each of size $2 n$, we may arrange the rows and columns of H so that we can partition H into $H=\left(H_{i j}\right)$, where the $H_{i j}$ are $2 n \times 2 n$ block matrices and $H_{i i}=J_{2 n}$. It remains to show that $H_{i j} J_{2 n}=J_{2 n} H_{i j}=0$ for $i \neq j, 1 \leq i, j \leq 2 n$. Noting that the SRG has the smallest eigenvalue $-n$, we see that the cocliques of size $2 n$ of the SRG meet the Delsarte bound (sometimes called the Hoffman bound also). By Proposition 1.3.2 [2, p. 10], every vertex in the SRG outside a coclique is adjacent to exactly n vertices of the coclique. This proves that $H_{i j} J_{2 n}=J_{2 n} H_{i j}=0$ for $i \neq j, 1 \leq i, j \leq 2 n$. The proof is complete.

2. Symmetric Bush-type Hadamard matrices from Reversible Hadamard difference sets

We start with a very brief introduction to difference sets. For a thorough treatment of difference sets, we refer the reader to [1, Chapter 6]. Let G be a finite group of order v. A k-element subset D of G is called a (v, k, λ) difference set in G if the
list of "differences" $d_{1} d_{2}^{-1}, d_{1}, d_{2} \in D, d_{1} \neq d_{2}$, represents each non-identity element in G exactly λ times. Using multiplicative notation for the group operation, D is a (v, k, λ) difference set in G if and only if it satisfies the following equation in $\mathbb{Z}[G]$:

$$
\begin{equation*}
D D^{(-1)}=(k-\lambda) 1_{G}+\lambda G \tag{2.1}
\end{equation*}
$$

where $D=\sum_{d \in D} d, D^{(-1)}=\sum_{d \in D} d^{-1}$, and 1_{G} is the identity element of G. A subset D of G is called reversible if $D^{(-1)}=D$. Note that if D is a reversible difference set, then

$$
\begin{equation*}
D^{2}=(k-\lambda) 1_{G}+\lambda G \tag{2.2}
\end{equation*}
$$

If furthermore we require that $1_{G} \notin D$, then from (2.2) we see that the Cayley graph $\mathbf{C a y}(G, D)$, with vertex set G and two vertices x and y being adjacent if and only if $x y^{-1} \in D$, is an SRG with parameters (v, k, λ, λ).

The difference sets considered in this note have parameters

$$
(v, k, \lambda)=\left(4 n^{2}, 2 n^{2}-n, n^{2}-n\right)
$$

These difference sets are called Hadamard difference sets (HDS), since their ($1,-1$)incidence matrices are Hadamard matrices. Alternative names used by other authors are Menon difference sets and H-sets. We will show that reversible HDSs give rise to symmetric Bush-type Hadamard matrices.

Proposition 2.1. Let D be a reversible $H D S$ in a group G with parameters $\left(4 n^{2}\right.$, $2 n^{2}-n, n^{2}-n$. If there exists a subgroup $H \leq G$ of order $2 n$ such that $D \cap H=\emptyset$, then there exists a Bush-type symmetric Hadamard matrix of order $4 n^{2}$.

Proof. First note that the Cayley graph $\operatorname{Cay}(G, D)$ is strongly regular with parameters $v=4 n^{2}-n, k=2 n^{2}-n, \lambda=\mu=n^{2}-n$. The cosets of H in G partition G. Let $H g$ be an arbitrary coset of H in G. Then any two elements $x, y \in H g$ are not adjacent in $\operatorname{Cay}(G, D)$ since $x y^{-1} \in H$ and $D \cap H=\emptyset$. Therefore the vertex set of $\operatorname{Cay}(G, D)$ can be partitioned into $2 n$ disjoint cocliques of size $2 n$. By Lemma 1.1 , the $(1,-1)$-adjacency matrix of $\mathbf{C a y}(G, D)$ is a symmetric Bush-type Hadamard matrix of order $4 n^{2}$.

Let $G=K \times W$ where $K=\left\{g_{0}=1, g_{1}, g_{2}, g_{3}\right\}$ is a Klein four group and W is a group of order n^{2}. Each subset D of G has a unique decomposition into a disjoint union $D=\bigcup_{i=0}^{3}\left(g_{i}, D_{i}\right)$ where $D_{i} \subset W$. Note that if D is a reversible HDS in G, then $\left(g_{i}, 1\right) D$ are also reversible HDSs for all $i, 0 \leq i \leq 3$. This observation implies the following.

Proposition 2.2. Let $K=\left\{g_{0}=1, g_{1}, g_{2}, g_{3}\right\}$ be a Klein four group. Let $D=$ $\bigcup_{\ell=0}^{3}\left(g_{\ell}, D_{\ell}\right)$ be a reversible Hadamard difference set in the group $G=K \times W$, where $D_{\ell} \subseteq W$ and $|W|=n^{2}$. If there exists a subgroup $P \leq W$ of order n such that $P \cap D_{i}=P \cap D_{j}=\emptyset$ for some $i \neq j, 0 \leq i, j \leq 3$, then there exists a symmetric Bush-type Hadamard matrix of order $4 n^{2}$.

Proof. Let $E=\left(g_{i}, 1\right) D$. By the above observation, E is a reversible HDS in G. Let $H=\left(g_{0}, 1\right) P \cup\left(g_{i} g_{j}, 1\right) P$. Then H is a subgroup of G of order $2 n$ and $H \cap E=\emptyset$. By Proposition [2.1. E gives rise to a symmetric Bush-type Hadamard matrix of order $4 n^{2}$.

3. Construction of symmetric Bush-type Hadamard matrices

 OF ORDER $4 m^{4}$ FOR ALL ODD mA symmetric Bush-type Hadamard matrix H of order 4 is exhibited below:

$$
H=\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right)
$$

So we will only be concerned with constructions of symmetric Bush-type Hadamard matrices of order $4 m^{4}$ for odd $m>1$. We will first construct symmetric Bush-type Hadamard matrices of order $4 p^{4}$, where p is an odd prime, from certain $\left(4 p^{4}, 2 p^{4}-\right.$ $p^{2}, p^{4}-p^{2}$) HDS. To this end, we need to recall a construction of an HDS with these parameters from [19]. Let p be an odd prime and $\operatorname{PG}(3, p)$ be a three-dimensional projective space over $\operatorname{GF}(p)$. We will say that a set C of points in $\operatorname{PG}(3, p)$ is of type Q if

$$
|C|=\frac{\left(p^{4}-1\right)}{4(p-1)}
$$

and each plane of $\mathrm{PG}(3, p)$ meets C in either $\frac{(p-1)^{2}}{4}$ points or $\frac{(p+1)^{2}}{4}$ points. For each set X of points in $\operatorname{PG}(3, p)$ we denote by \widetilde{X} the set of all non-zero vectors $v \in \operatorname{GF}(p)^{4}$ with the property that $\langle v\rangle \in X$, where $\langle v\rangle$ is the 1-dimensional subspace of $\operatorname{GF}(p)^{4}$ generated by v.

Let $S=\left\{L_{1}, L_{2}, \ldots, L_{p^{2}+1}\right\}$ be a spread of $\mathrm{PG}(3, p)$ and let C_{0}, C_{1} be two sets of type Q in $\mathrm{PG}(3, p)$ such that

$$
\begin{equation*}
\forall_{1 \leq i \leq s}\left|C_{0} \cap L_{i}\right|=\frac{p+1}{2} \text { and } \forall_{s+1 \leq i \leq 2 s} \quad\left|C_{1} \cap L_{i}\right|=\frac{p+1}{2} \tag{3.1}
\end{equation*}
$$

where $s:=\frac{p^{2}+1}{2}$. (We note that if we take S to be the regular spread in $\operatorname{PG}(3, p)$, then examples of type Q sets C_{0}, C_{1} in $\mathrm{PG}(3, p)$ satisfying (3.1) were first constructed in 20 when $p \equiv 3(\bmod 4)$, in [6, 19] when $p=5,13,17$, and in 4 for all odd primes p.) As in [19] we set

$$
\begin{aligned}
& C_{2}:=\left(L_{1} \cup \ldots \cup L_{s}\right) \backslash C_{0}, \\
& C_{3}:= \\
& \left(L_{s+1} \cup \ldots \cup L_{2 s}\right) \backslash C_{1}
\end{aligned}
$$

Note that $C_{0} \cup C_{2}=L_{1} \cup \ldots \cup L_{s}$ and $C_{1} \cup C_{3}=L_{s+1} \cup \ldots \cup L_{2 s}$.
Let A (respectively B) be a union of $(s-1) / 2$ lines from $\left\{L_{s+1}, \ldots, L_{2 s}\right\}$ (respectively $\left.\left\{L_{1}, \ldots, L_{s}\right\}\right)$. Let $K=\left\{g_{0}=1, g_{1}, g_{2}, g_{3}\right\}$ and $W=\left(\operatorname{GF}(p)^{4},+\right)$. Denote

$$
\begin{aligned}
& D_{0}:=\widetilde{C_{0}} \cup \widetilde{A} \\
& D_{2}:=\widetilde{C_{2}} \cup \widetilde{A} \\
& D_{1}:=\widetilde{C_{1}} \cup \widetilde{B}, \\
& D_{3}:=W \backslash\left(\widetilde{C_{3}} \cup \widetilde{B}\right)
\end{aligned}
$$

Then

$$
\left|D_{0}\right|=\left|D_{1}\right|=\left|D_{2}\right|=\frac{p^{4}-p^{2}}{2},\left|D_{3}\right|=\frac{p^{4}+p^{2}}{2}
$$

By Theorem 2.2 [19] the set

$$
D:=\left(g_{0}, D_{0}\right) \cup\left(g_{1}, D_{1}\right) \cup\left(g_{2}, D_{2}\right) \cup\left(g_{3}, D_{3}\right)
$$

is a reversible $\left(4 p^{4}, 2 p^{4}-p^{2}, p^{4}-p^{2}\right)$ difference set in the group $K \times W$.

Pick an arbitrary line, say L_{a}, from the set $\left\{L_{s+1}, \ldots, L_{2 s}\right\}$ such that $L_{a} \cap A=\emptyset$. Then $P:=\widetilde{L_{a}} \cup\{0\}$ is a subgroup of W of order p^{2} such that $P \cap D_{0}=P \cap D_{2}=\emptyset$. Now Proposition 2.2 implies that there exists a symmetric Bush-type Hadamard matrix of order $4 p^{4}$. Therefore we have proved

Theorem 3.1. There exists a symmetric Bush-type Hadamard matrix of order $4 p^{4}$ for every odd prime p.

In order to build a symmetric Bush-type Hadamard matrix of order $4 m^{4}$ for arbitrary odd $m>1$ we need to use Turyn's composition theorem [17]. We also need the following simple

Proposition 3.2. There exists a subgroup $Q \leq W$ of order p^{2} such that $Q \subseteq D_{3}$ and $Q \cap D_{1}=\emptyset$.

Proof. Pick an arbitrary line L_{b} from $\left\{L_{1}, \ldots, L_{s}\right\}$ such that $L_{b} \cap B=\emptyset$ and set $Q:=\{0\} \cup \widetilde{L_{b}}$. The conclusion of the proposition follows.

Next we recall Turyn's composition theorem. We will use the version as stated in Theorem 6.5 [5, p. 45]. For convenience we introduce the following notation. Let W_{1}, W_{2} be two groups. For $A, B \subseteq W_{1}$ and $C, D \subseteq W_{2}$, we define the following subset of $W_{1} \times W_{2}$:
$\nabla(A, B ; C, D):=\left((A \cap B) \times C^{\prime}\right) \cup\left(\left(A^{\prime} \cap B^{\prime}\right) \times C\right) \cup\left(\left(A \cap B^{\prime}\right) \times D^{\prime}\right) \cup\left(\left(A^{\prime} \cap B\right) \times D\right)$,
where $A^{\prime}=W_{1} \backslash A, B^{\prime}=W_{1} \backslash B, C^{\prime}=W_{2} \backslash C$, and $D^{\prime}=W_{2} \backslash D$.
Theorem 3.3 (Turyn [17]). Let $K=\left\{g_{0}, g_{1}, g_{2}, g_{3}\right\}$ be a Klein four group. Let $E_{1}=\bigcup_{i=0}^{3}\left(g_{i}, A_{i}\right)$ and $E_{2}=\bigcup_{i=0}^{3}\left(g_{i}, B_{i}\right)$ be reversible Hadamard difference sets in groups $K \times W_{1}$ and $K \times W_{2}$, respectively, where $\left|W_{1}\right|=w_{1}^{2}$ and $\left|W_{2}\right|=w_{2}^{2}$, w_{1} and w_{2} are odd, $A_{i} \subseteq W_{1}$ and $B_{i} \subseteq W_{2}$, and

$$
\begin{aligned}
& \left|A_{0}\right|=\left|A_{1}\right|=\left|A_{2}\right|=\frac{w_{1}^{2}-w_{1}}{2},\left|A_{3}\right|=\frac{w_{1}^{2}+w_{1}}{2} \\
& \left|B_{0}\right|=\frac{w_{2}^{2}+w_{2}}{2},\left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\frac{w_{2}^{2}-w_{2}}{2} .
\end{aligned}
$$

Define

$$
\begin{aligned}
E & :=\left(g_{0}, \nabla\left(A_{0}, A_{1} ; B_{0}, B_{1}\right)\right) \cup\left(g_{1}, \nabla\left(A_{0}, A_{1} ; B_{2}, B_{3}\right)\right) \\
& \cup\left(g_{2}, \nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right)\right) \cup\left(g_{3}, \nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right)\right) .
\end{aligned}
$$

Then

$$
\begin{gathered}
\left|\nabla\left(A_{0}, A_{1} ; B_{0}, B_{1}\right)\right|=\frac{w_{1}^{2} w_{2}^{2}+w_{1} w_{2}}{2} \\
\left|\nabla\left(A_{0}, A_{1} ; B_{2}, B_{3}\right)\right|=\left|\nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right)\right|=\left|\nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right)\right|=\frac{w_{1}^{2} w_{2}^{2}-w_{1} w_{2}}{2}
\end{gathered}
$$

and E is a reversible $\left(4 w_{1}^{2} w_{2}^{2}, 2 w_{1}^{2} w_{2}^{2}-w_{1} w_{2}, w_{1}^{2} w_{2}^{2}-w_{1} w_{2}\right)$ Hadamard difference set in the group $K \times W_{1} \times W_{2}$.

Proposition 3.4. With the assumptions as in Theorem 3.3, let $Q \leq W_{1}$ and $P \leq W_{2}$ be such that $Q \cap A_{2}=\emptyset, Q \subseteq A_{3}$ and $P \cap B_{1}=\emptyset, P \cap B_{3}=\emptyset$. Then $(Q \times P) \cap \nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right)=\emptyset$ and $(Q \times P) \cap \nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right)=\emptyset$.

Proof. It follows from the intersections

$$
\begin{aligned}
Q \cap\left(A_{2} \cap A_{3}\right) & =\emptyset, \\
Q \cap\left(A_{2}^{\prime} \cap A_{3}^{\prime}\right) & =\emptyset, \\
Q \cap\left(A_{2} \cap A_{3}^{\prime}\right) & =\emptyset, \\
Q \cap\left(A_{2}^{\prime} \cap A_{3}\right) & =Q
\end{aligned}
$$

that $\nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right) \cap(Q \times P)=Q \times\left(B_{1} \cap P\right)=\emptyset$ and $\nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right) \cap$ $(Q \times P)=Q \times\left(B_{3} \cap P\right)=\emptyset$.

Theorem 3.5. There exists a symmetric Bush-type Hadamard matrix of order $4 m^{4}$ for all odd m.

Proof. We only need to prove the theorem for odd $m>1$. Let $K=\left\{g_{0}, g_{1}, g_{2}, g_{3}\right\}$ be a Klein four group. Let p and q be two odd primes, not necessarily distinct, and let $W_{1}=\left(\mathrm{GF}(p)^{4},+\right)$ and $W_{2}=\left(\mathrm{GF}(q)^{4},+\right)$. By the construction before the statement of Theorem 3.1, we can construct a reversible HDS

$$
E_{1}=\left(g_{0}, A_{0}\right) \cup\left(g_{1}, A_{1}\right) \cup\left(g_{2}, A_{2}\right) \cup\left(g_{3}, A_{3}\right)
$$

in $K \times W_{1}$ such that

$$
\left|A_{0}\right|=\left|A_{1}\right|=\left|A_{2}\right|=\frac{p^{4}-p^{2}}{2},\left|A_{3}\right|=\frac{p^{4}+p^{2}}{2}
$$

and there exists a subgroup $Q \leq W_{1}$ of order p^{2} with the property that $Q \cap A_{2}=$ $\emptyset, Q \subset A_{3}$. (See Proposition 3.2. Note that here the A_{i} are a renumbering of the D_{i}; any renumbering of the D_{i} still yields a reversible difference set.) Also we can construct a reversible HDS

$$
E_{2}=\left(g_{0}, B_{0}\right) \cup\left(g_{1}, B_{1}\right) \cup\left(g_{2}, B_{2}\right) \cup\left(g_{3}, B_{3}\right)
$$

in $K \times W_{2}$ such that

$$
\left|B_{0}\right|=\frac{q^{4}+q^{2}}{2},\left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\frac{q^{4}-q^{2}}{2}
$$

and there exists a subgroup $P \leq W_{2}$ of order q^{2} with the property that $P \cap B_{1}=$ $\emptyset, P \cap B_{3}=\emptyset$ (see the paragraph before the statement of Theorem 3.1). Now we apply Theorem 3.3 to E_{1} and E_{2} to obtain a reversible HDS

$$
\begin{aligned}
E & =\left(g_{0}, \nabla\left(A_{0}, A_{1} ; B_{0}, B_{1}\right)\right) \cup\left(g_{1}, \nabla\left(A_{0}, A_{1} ; B_{2}, B_{3}\right)\right) \\
& \cup\left(g_{2}, \nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right)\right) \cup\left(g_{3}, \nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right)\right)
\end{aligned}
$$

of size $2 p^{4} q^{4}-p^{2} q^{2}$ in $K \times W_{1} \times W_{2}$. By Proposition 3.4, we have

$$
\begin{equation*}
(Q \times P) \cap \nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right)=\emptyset,(Q \times P) \cap \nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right)=\emptyset \tag{3.2}
\end{equation*}
$$

By Proposition 2.2, there exists a symmetric Bush-type Hadamard matrix of order $4(p q)^{4}$. Now note that $|Q \times P|=p^{2} q^{2},\left|\nabla\left(A_{2}, A_{3} ; B_{0}, B_{1}\right)\right|=\left|\nabla\left(A_{2}, A_{3} ; B_{2}, B_{3}\right)\right|=$ $\frac{p^{4} q^{4}-p^{2} q^{2}}{2}$, and E satisfies property (3.2). We can repeatedly use the above process to produce a reversible HDS satisfying the condition of Proposition 2.2, hence there exists a symmetric Bush-type Hadamard matrix of order $4 m^{4}$ for all odd $m>1$. The proof is complete.

Kharaghani [15, 16] showed how to use Bush-type Hadamard matrices to simplify Ionin's method [8] for constructing symmetric designs. Based on his constructions in [15, 16], we draw the following consequences of Theorem 3.5.

Theorem 3.6. Let m be an odd integer. If $q=\left(2 m^{2}-1\right)^{2}$ is a prime power, then there exist twin symmetric designs with parameters

$$
v=4 m^{4} \frac{\left(q^{\ell+1}-1\right)}{q-1}, k=q^{\ell}\left(2 m^{4}-m^{2}\right), \lambda=q^{\ell}\left(m^{4}-m^{2}\right)
$$

for every positive integer ℓ.
Theorem 3.7. Let m be an odd integer. If $q=\left(2 m^{2}+1\right)^{2}$ is a prime power, then there exist Siamese twin symmetric designs with parameters

$$
v=4 m^{4} \frac{\left(q^{\ell+1}-1\right)}{q-1}, k=q^{\ell}\left(2 m^{4}+m^{2}\right), \lambda=q^{\ell}\left(m^{4}+m^{2}\right)
$$

for every positive integer ℓ.

References

[1] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Vol. I. Second edition. Encyclopedia of Mathematics and its Applications, 69. Cambridge University Press, Cambridge, 1999. MR1729456 (2000h:05019)
[2] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18. Springer-Verlag, Berlin, 1989. MR1002568(90e:05001)
[3] K. A. Bush, Unbalanced Hadamard matrices and finite projective planes of even order, J. Combinatorial Theory Ser. A 11 (1971), 38-44. MR0274310 (43:75)
[4] Y. Q. Chen, On the existence of abelian Hadamard difference sets and a new family of difference sets, Finite Fields Appl. 3 (1997), 234-256. MR1459826 (98h:05036)
[5] J. A. Davis, J. Jedwab, A unifying construction for difference sets, J. Combin. Theory Ser. A 80 (1997), 13-78. MR1472105 (98g:05021)
[6] M. van Eupen, V. D. Tonchev, Linear codes and the existence of a reversible Hadamard difference set in $Z_{2} \times Z_{2} \times Z_{5}^{4}$. J. Combin. Theory Ser. A 79 (1997), 161-167. MR 1449754 (98a:05026)
[7] R. W. Goldbach, H. L. Claasen, 3-class association schemes and Hadamard matrices of a certain block form, European J. Combin. 19 (1998), 943-951. MR1657935 (99j:05196)
[8] Y. Ionin, New symmetric designs from regular Hadamard matrices, Electronic J. Combin. 5 (1998), R1. MR 1486394 (98j:05020)
[9] Z. Janko, The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs, J. Combin. Theory, Ser. A 95 (2001), 360-364. MR 1845147 (2002e:05032)
[10] Z. Janko, H. Kharaghani, and V. D. Tonchev, A Bush-type Hadamard matrix of order 100 and two new infinite classes of symmetric designs, J. Combin. Des. 9 (2001), 72-78. MR 1803628 (2001j:05032)
[11] Z. Janko, H. Kharaghani, and V. D. Tonchev, The existence of a Bush-type Hadamard matrix of order 324 and two new infinite classes of symmetric designs, Designs, Codes and Cryptography 24 (2001), 225-232. MR1850384 (2002g:05040)
[12] D. Jungnickel, H. Kharaghani, Balanced generalized weighing matrices and their applications, Combinatorics '04, Capomulini, Catania, Italy, 2004.
[13] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Designs 13 (2005), 435-440.
[14] H. Kharaghani, New classes of weighing matrices, Ars Combinatoria 19 (1985), 69-72. MR0810264 (87a:05042)
[15] H. Kharaghani, On the twin designs with the Ionin-type parameters, Electronic J. Combin. 7 (2000), R1. MR1736717 (2000m:05027)
[16] H. Kharaghani, On the Siamese twin designs, In: Finite Fields and Applications (Eds. D. Jungnickel and H. Niederreiter), 303-312. Springer-Verlag, Berlin (2001). MR1849096 (2002g:05041)
[17] R. J. Turyn, A special class of Williamson matrices and difference sets, J. Combin. Theory Ser. A 36 (1984), 111-115. MR0728508 (85h:05032)
[18] W. D. Wallis, On a problem of K. A. Bush concerning Hadamard matrices, Bull. Austral. Math. Soc. 6 (1972), 321-326. MR0311490 (47:52)
[19] R. M. Wilson and Q. Xiang, Constructions of Hadamard difference sets, J. Combin. Theory Ser. A 77 (1997), 148-160. MR1426743 (97m:05039)
[20] M. Y. Xia, Some infinite classes of special Williamson matrices and difference sets, J. Combin. Theory Ser. A 61 (1992), 230-242. MR1184992 (93k:05029)

Department of Computer Sciences and Mathematics, Netanya Academic College, University St. 1, 42365, Netanya, Israel

E-mail address: mikhail@netvision.net.il
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716

E-mail address: xiang@math.udel.edu

[^0]: Received by the editors December 20, 2004 and, in revised form, March 4, 2005.
 2000 Mathematics Subject Classification. Primary 05B20.
 Key words and phrases. Bush-type Hadamard matrix, Hadamard difference set, Hadamard matrix, reversible Hadamard difference set, strongly regular graph.

 The second author's research was supported in part by NSF Grant DMS 0400411.

