
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 8, AUGUST 2006 3735

[22] A. Shokrollahi, “Computing the performance of unitary space-time
group codes from their character table,” IEEE Trans. Inf. Theory, vol.
48, no. 6, pp. 1355–1371, Jun. 2002.

[23] A. Shokrollahi, B. Hassibi, B. M. Hochwald, and W. Sweldens, “Rep-
resentation theory for high-rate multiple-antenna code design,” IEEE
Trans. Inf. Theory, vol. 47, no. 6, pp. 2335–2367, Sep. 2001.

[24] V. Tarokh and H. Jafarkhani, “A differential detection scheme for
transmit diversity,” IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp.
1169–1174, Jul. 2000.

[25] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing:
Theory and Applications. Dordrecht, The Netherlands: Reidel, 1987,
vol. 37, Mathematics and its Applications.

[26] H. Zassenhaus, “Über endliche Fastkörper,” Abh. Math. Sem. Ham-
burg, vol. 11, pp. 187–220, 1936.

On the Dimensions of Certain LDPC Codes Based on
-Regular Bipartite Graphs

Peter Sin and Qing Xiang

Abstract—An explicit construction of a family of binary low-density
parity check (LDPC) codes called LU(3; q), where q is a power of a prime,
was recently given. A conjecture was made for the dimensions of these
codes when q is odd. The conjecture is proved in this note. The proof
involves the geometry of a four-dimensional (4-D) symplectic vector space
and the action of the symplectic group and its subgroups.

Index Terms—Generalized quadrangle, incidence matrix, low-density
parity check (LDPC) code, symplectic grou.

I. INTRODUCTION

Let V be a four-dimensional (4-D) vector space over the fieldFq of q
elements. We assume that V has a nonsingular alternating bilinear form
(v; v0) and denote by Sp(V ) the group of linear automorphisms of V
which preserve this form. We choose a symplectic basis e0; e1; e2; e3
of V , with (ei; e3�i) = 1, for i = 0; 1.

Let P = P(V ) be the set of points of the projective space of V .
A subspace of V is said to be totally isotropic if (v; v0) = 0 when-
ever v and v0 are both in the subspace. Let L denote the set of totally
isotropic two-dimensional (2-D) subspaces of V , considered as lines in
P . The pair (P;L), together with the natural relation of incidence be-
tween points and lines, is called the symplectic generalized quadrangle.
Except for in the appendix, the term “line” will always mean an element
of L. It is easy to verify that (P;L) satisfies the following quadrangle
property. Given any line and any point not on the line, there is a unique
line which passes through the given point and meets the given line.

Now fix a point p0 2 P and a line `0 2 L through p0. We can
assume that we chose our basis so that p0 = he0i and `0 = he0; e1i.
For p 2 P , denote by p? the set of points on lines through p; p0 2
p? if and only if the subspace of V spanned by p and p0 is isotropic.
Consider the set P1 = P n p?0 of points not collinear with p0, and the
set L1 of lines which do not meet `0. Then we can also consider the
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incidence systems (P1; L1); (P; L1), and (P1; L). Let M(P; L) and
M(P1; L1) be the binary incidence matrices of the respective incidence
systems, with rows indexed by points and columns by lines. The rows
and columns of M(P; L) have weight q + 1 and, as a consequence of
the quadrangle property, those of M(P1; L1) have weight q.

If q is odd we know by Theorem 9.4 of [1] that the 2-rank ofM(P; L)
is (q3 + 2q2 + q + 2)=2. Here we prove the following theorem.

Theorem 1.1: Assume q is a power of an odd prime. The 2-rank of
M(P1; L1) equals (q3 + 2q2 � 3q + 2)=2.

In [2], a family of codes designated LU(3; q) was defined in the fol-
lowing way. Let P � and L� be sets in bijection with Fq

3, where q is
any prime power. An element (a; b; c) 2 P � is incident with an ele-
ment [x; y; z] 2 L� if and only if

y = ax+ b and z = ay + c: (1)

The binary incidence matrix with rows indexed by L� and columns in-
dexed by P � is denoted by H(3; q) and the two binary codes having
H(3; q) and its transpose as parity check matrices are called LU(3; q)
codes. The name comes from [3], where the bipartite graph with parts
P � and L� and adjacency defined by the (1) had been studied previ-
ously.

It is not difficult to show that the incidence systems (P1; L1) and
(P �; L�) are equivalent. A detailed proof is given in the Appendix.
Thus, M(P1; L1) is a parity check matrix of the LU(3; q) code given
by the transpose of H(3; q) and Theorem 1.1 has the following imme-
diate corollary.

Corollary 1.2: If q is a power of an odd prime, the dimension of
LU(3; q) is (q3 � 2q2 + 3q � 2)=2.

The corollary was conjectured in [2]. There it was established that
this number is a lower bound when q is an odd prime.

II. RELATIVE DIMENSIONS AND A LOWER BOUND FOR LU(3; q)

In this section q is an arbitrary prime power.
Let F2[P ] be the vector space of all F2-valued functions on P . We

can think of such a function as a vector in which the positions are in-
dexed by the points of P , and the entries are the values of the function
at the points. For p 2 P , the characteristic function �p is the vector
with 1 in the position with index p and zero in the other positions. The
set of all characteristic functions of points forms a basis of F2[P ]. Let
` 2 L. Its characteristic function �` 2 F2[P ] is the function which
takes the value 1 at the q + 1 points of ` and zero at all other points.
The subspace ofF2[P ] spanned by all the �` is theF2-code of (P;L),
denoted by C(P;L). One can think of C(P;L) as the column space of
M(P; L). For brevity, we will sometimes blur the distinction between
lines and their characteristic functions and speak, for instance, of the
subspace of F2[P ] spanned by a set of lines. Let C(P;L1) be the sub-
space ofF2[P ] spanned by lines in L1. Let C(P1; L1) denote the code
of (P1; L1), viewed as a subspace of F2[P1], and let C(P1; L) be the
larger subspace ofF2[P1] spanned by the restrictions to P1 of the char-
acteristic functions of all lines of L.

Consider the natural projection map

�P : F2[P ] ! F2[P1] (2)

given by restriction of functions. Its kernel will be denoted by ker �P .
Let Z � C(P;L1) be a set of characteristic functions of lines in

L1 which maps bijectively under �P to a basis of C(P1; L1). Let X
be the set of characteristic functions of the q + 1 lines of L through
p0 and let X0 = X n f�` g. Finally, choose any q lines of L which
meet `0 in the q distinct points other than p0 and let Y be the set of
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their characteristic functions. It is clear that the sets X; Y , and Z are
disjoint and that X is contained in ker �P .

Lemma 2.1: Z [X0 [ Y is linearly independent over F2.
Proof: Each element of Y contains in its support a point of `0

which is not in the support of any other element of Z [ X0 [ Y . So
it is enough to show that X0 [ Z is linearly independent. This is true
because X0 is a linearly independent subset of ker �P and Z maps
bijectively under �P to a linearly independent set.

We note that jZj = dimF C(P1; L1) and jX0 [ Y j = 2q.
1) Corollary 2.2: Let q be an arbitrary prime power. Then

dimF LU(3; q) � q3 � dimF C(P;L) + 2q: (3)

Proof: From the definition of LU(3; q) and the equivalence of
(P �; L�) with (P1; L1), we have

dimF LU(3; q) = q3 � dimF C(P1; L1): (4)

The corollary now follows from Lemma 2.1.

III. PROOF OF THEOREM 1.1

In this section we assume that q is odd. In view of Corollary 2.2
and the known 2-rank of M(P;L) the proof of Theorem 1.1 will be
completed if we can show that Z [X0 [ Y spans C(P;L) as a vector
space over F2.

Lemma 3.1: Let ` 2 L. Then the sum of the characteristic functions
of all lines which meet ` (excluding ` itself) is the constant function 1.

Proof: The function given by the sum takes the value q � 1
(mod 2) at any point of ` and value 1 at any point off `, by the quad-
rangle property.

Lemma 3.2: Let ` 2 L be a line, other than `0, which meets `0 at a
point p. Let �` be the sum of all the characteristic functions of lines in
L1 which meet `. Then

�`(p
0) =

0; if p0 = p

q; if p0 2 ` n fpg

0; if p0 2 p? n `

1; if p0 2 P n p?:

(5)

Proof: This is an immediate consequence of the quadrangle prop-
erty.

Corollary 3.3: Let p 2 `0 and let `; `0 be two lines through p, neither
equal to `0. Then �` � �` 2 C(P;L1).

Proof: Since q = 1 inF2, one easily check using Lemma 3.2 that

�` � �` = �` � �` 2 C(P;L1): (6)

We now come to our main technical lemma.
Lemma 3.4: ker �P \C(P;L) has dimension q+1, with basis the

set X of characteristic functions of the q + 1 lines through p0.
Proof: Let Gp be the stabilizer in Sp(V ) of p0.

From the definition,

ker �P = F2[p
?

0 ] = F2[fp0g]� F2[p0
? n fp0g] (7)

as an F2Gp -module. Clearly F2[fp0g] is a one-dimensional trivial
F2Gp -module. To find the structure of F2[p0

? n fp0g], we consider
the following subgroups of Gp , which we will describe as matrix
groups with respect to our chosen basis.

Let

Q =

1 a b c

0 1 0 b

0 0 1 �a

0 0 0 1

a; b; c 2 Fq (8)

and

C =

1 0 0 c

0 1 0 0

0 0 1 0

0 0 0 1

c 2 Fq : (9)

The group Q is a normal subgroup of Gp and C is the center of Q,
with Q=C elementary abelian of order q2. It is easy to see by matrix
computations thatC acts trivially on p?0 and thatQ stabilizes each line
` through p0, acting transitively on the q points of ` n fp0g. These q
points have homogeneous coordinates of the form [d : x : y : 0], where
[x : y] are homogeneous coordinates of a fixed point on a projective
line, and d varies over Fq . It is clear that the subgroup Q[x : y] of
index q in Q consisting of matrices (8) in which ax + by = 0 is the
kernel of the action on `nfp0g and soF2[` nfp0g] affords the regular
representation of Q=Q[x : y].

As [x : y] varies over the projective line, we deduce that, F2[p
?

0 n
fp0g] contains the trivial module ofQ=C with multiplicity q+1. Thus
since Q has odd order, we have a F2Gp -module decomposition

F2[p
?

0 n fp0g] = T �W (10)

where T is the (q+1)-dimensional space ofQ-fixed points andW has
dimension q2 � 1 and no Q-fixed points. Let E be a splitting field for
Q over F2, and consider the action of Gp on the characters of Q=C
which occur in E 
F W . Each of the q2 � 1 nontrivial characters
occurs once. The group of matrices of the form diag(�; �; ��1; ��1),
with �; � 2 Fq n f0g, lies in Gp and acts transitively on the q � 1
nontrivial elements, hence also on the q � 1 nontrivial characters, of
each Q=Q[x : y]. Then, since Gp is transitive on the q + 1 lines
through p0, it follows that the q2 � 1 nontrivial characters of Q=C
form a single Gp -orbit. By Clifford’s Theorem ((11.1) in [4]) it fol-
lows that E 
F W is a simple EGp -module. Hence W is a simple
F2Gp -module.

We are now ready to consider the intersection

ker �P \ C(P;L) = F2[p
?

0 ] \C(P;L) (11)

which is an F2Gp -submodule of F2[p
?

0 ]. Clearly, X is a linearly in-
dependent subset of this intersection. Moreover, each element ofX is a
fixed point of Q. We must prove that the intersection is no bigger than
the span ofX . If it were, then by what we know of theF2Gp -submod-
ules ofF2[p

?

0 ], we see that eitherF2[p
?

0 ]\C(P;L)must contain all the
Q-fixed points ofF2[p

?

0 ] or else it must containW . The first possibilty
is ruled out because it implies that C(P;L) contains the characteristic
function of the point p0, which is absurd since the number of points on
a line is even. In the second case, we would have thatF2[p

?

0 ]\C(P; L)
is of codimension one in F2[p

?

0 ]. Then, for any point p 2 p?0 , since
neither�p nor�p is inC(P;L), we would have�p��p 2 C(P;L).
Then, by transitivity of Sp(V ) on P and the connectedness of the ad-
jacency graph of P , we would have that �p � �p 2 C(P;L) for all
points p 2 P , leading to the conclusion that C(P;L) has codimen-
sion one in F2[P ], contrary to known fact. Thus, the intersection is as
claimed.

Lemma 3.5: ker �P \ C(P;L1) has dimension q � 1, and basis
the set of functions �` � �` , where ` 6= `0 is an arbitrary but fixed
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line through p0 and `0 varies over the q � 1 lines through p0 different
from `0 and `.

Proof: By Corollary 3.5 applied to p0, we see that if ` and `0 are
any two of the q lines through p0 other than `0, the function �` � �`
lies in C(P; L1). It is obviously in ker �P . Clearly, we can find q� 1
linearly independent functions of this kind as described in the state-
ment. Thus ker �P \C(P;L1) has dimension � q� 1. On the other
hand C(P;L1) is in the kernel of the restriction map to `0, while the
image of the restriction of ker �P to `0 has dimension 2, spanned by
the images of �` and �p . Thus ker �P \C(P;L1) has codimension
at least 2 in ker �P , which has dimension q + 1, by Lemma 3.4.

Our final lemma completes the proof of Theorem 1.1.
Lemma 3.6: Z [X0 [Y spans C(P;L) as a vector space over F2.

Proof: By Lemma 3.5, the span of X0 [ Z is equal to the sub-
space spanned by X0 and L1, since ker �P \ C(P;L1) is contained
in the span of X0. We must show that the subspace spanned by X0[Y
and L1 contains the characteristic functions of all lines intersecting `0,
including `0. First, consider a line ` 6= `0 meeting `0. We can assume
that ` meets `0 at a point other than p0, since otherwise ` 2 X0. There-
fore ` meets `0 in the same point p as some element `0 2 Y . Then
Corollary 3.3 shows that �` lies in the subspace spanned by Y and L1.
The only line still missing is `0, so our last task is to show that �` lies
in the span of the characteristic functions of all other lines. First, by
Lemma 3.1 applied to `0, we see that the constant function 1 is in the
span. Finally, we see from Lemma 3.2 that

`2X

�` = 1� �` (12)

so we are done.
Remark 3.7: One can also consider the binary code LU(3; q) when

q = 2t; t � 1. The exact dimension is not known yet, but Corollary
2.2 provides a lower bound, since by [5] we have

dimF C(P;L) = 1 +
1 +

p
17

2

2t

+
1�p17

2

2t

:

(13)

This formula is quite different from the one for odd q. Nevertheless, it
may well be that the inequality (3) is an equality for even q, just as it is
for odd q, despite the difference in the dimF C(P;L) term. Computer
calculations of Kim verify this up to q = 16.

APPENDIX

In this Appendix, q is an arbitrary prime power. Here we explain why
our incidence system (P1; L1) is equivalent to the incidence system
(P �; L�) defined by the (1). The explanation is given by the classical
Klein correspondence.

We first look at (P1; L1) in coordinates. Let x0; x1; x2; x3 be ho-
mogeneous coordinates of P corresponding to our symplectic basis.
Recalling that p0 = he0i, we see that P1 is the set of points such that
x3 6= 0. If we represent such a point as (a : b : c : 1) we have a
bijection of P1 with F3q .

Our choice of basis of V yields the basis ei^ej , for 0 � i < j � 3,
of the exterior square ^2(V ). Denote the corresponding ho-
mogeneous coordinates of the projective space P(^2(V )) by
p01; p02; p03; p12; p13, and p23. A 2-dimensional subspace of V

spanned by vectors 3

i=0
aiei and 3

i=0
biei defines, by taking its ex-

terior square, a point ofP(^2(V ))with coordinates pij = aibj�ajbi,
known as the Plücker or Grassmann coordinates of the subspace. The
totality of points ofP(^2(V )) obtained in this way from lines ofP(V )

forms the set with equation p01p23 � p02p13 + p03p12 = 0, called
the Klein Quadric. The totally isotropic 2-dimensional subspaces of
V , namely the lines of L, correspond to those points of the Klein
quadric which satisfy the additional linear equation p03 = �p12.
Recalling that `0 = he0; e1i, the set L1 is the subset of L given
by p23 6= 0, so taking into consideration the quadratic relation, we
see that L1 consists of the points of P(^2(V )) which have Plücker
coordinates (z2 + xy : x : z : �z : y : 1), hence is in bijection with
Fq

3. Next we consider when (a : b : c : 1) 2 P1 is contained in
(z2 + xy : x : z : �z : y : 1) 2 L1. Suppose the latter is spanned
by points with homogeneous coordinates (a0 : a1 : a2 : a3) and
(b0 : b1 : b2 : b3). The given point and line are incident if and only
if all 3 � 3 minors of the matrix

a b c 1

a0 a1 a2 a3

b0 b1 b2 b3

(14)

are zero. The four equations which result reduce to the two equations

z = �cy + b; x = cz � a: (15)

By a simple change of coordinates, these equations transform to (1).
This shows that (P1; L1) and (P �; L�) are equivalent.
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