[22] A. Shokrollahi, "Computing the performance of unitary space-time group codes from their character table," IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1355-1371, Jun. 2002.
[23] A. Shokrollahi, B. Hassibi, B. M. Hochwald, and W. Sweldens, "Representation theory for high-rate multiple-antenna code design," IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2335-2367, Sep. 2001.
[24] V. Tarokh and H. Jafarkhani, "A differential detection scheme for transmit diversity," IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp. 1169-1174, Jul. 2000.
[25] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications. Dordrecht, The Netherlands: Reidel, 1987, vol. 37, Mathematics and its Applications.
[26] H. Zassenhaus, "Über endliche Fastkörper," Abh. Math. Sem. Hamburg, vol. 11, pp. 187-220, 1936.

On the Dimensions of Certain LDPC Codes Based on \boldsymbol{q}-Regular Bipartite Graphs

Peter Sin and Qing Xiang

Abstract

An explicit construction of a family of binary low-density parity check (LDPC) codes called $L U(3, q)$, where q is a power of a prime, was recently given. A conjecture was made for the dimensions of these codes when q is odd. The conjecture is proved in this note. The proof involves the geometry of a four-dimensional (4-D) symplectic vector space and the action of the symplectic group and its subgroups.

Index Terms-Generalized quadrangle, incidence matrix, low-density parity check (LDPC) code, symplectic grou.

I. Introduction

Let V be a four-dimensional (4-D) vector space over the field \mathbf{F}_{q} of q elements. We assume that V has a nonsingular alternating bilinear form $\left(v, v^{\prime}\right)$ and denote by $\mathrm{Sp}(V)$ the group of linear automorphisms of V which preserve this form. We choose a symplectic basis $e_{0}, e_{1}, e_{2}, e_{3}$ of V, with $\left(e_{i}, e_{3-i}\right)=1$, for $i=0,1$.

Let $P=\mathbf{P}(V)$ be the set of points of the projective space of V. A subspace of V is said to be totally isotropic if $\left(v, v^{\prime}\right)=0$ whenever v and v^{\prime} are both in the subspace. Let L denote the set of totally isotropic two-dimensional (2-D) subspaces of V, considered as lines in P. The pair (P, L), together with the natural relation of incidence between points and lines, is called the symplectic generalized quadrangle. Except for in the appendix, the term "line" will always mean an element of L. It is easy to verify that (P, L) satisfies the following quadrangle property. Given any line and any point not on the line, there is a unique line which passes through the given point and meets the given line.

Now fix a point $p_{0} \in P$ and a line $\ell_{0} \in L$ through p_{0}. We can assume that we chose our basis so that $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$. For $p \in P$, denote by p^{\perp} the set of points on lines through $p ; p^{\prime} \in$ p^{\perp} if and only if the subspace of V spanned by p and p^{\prime} is isotropic. Consider the set $P_{1}=P \backslash p_{0}^{\perp}$ of points not collinear with p_{0}, and the set L_{1} of lines which do not meet ℓ_{0}. Then we can also consider the

[^0]incidence systems (P_{1}, L_{1}), (P, L_{1}), and ($\left.P_{1}, L\right)$. Let $M(P, L)$ and $M\left(P_{1}, L_{1}\right)$ be the binary incidence matrices of the respective incidence systems, with rows indexed by points and columns by lines. The rows and columns of $M(P, L)$ have weight $q+1$ and, as a consequence of the quadrangle property, those of $M\left(P_{1}, L_{1}\right)$ have weight q.

If q is odd we know by Theorem 9.4 of [1] that the 2 -rank of $M(P, L)$ is $\left(q^{3}+2 q^{2}+q+2\right) / 2$. Here we prove the following theorem.

Theorem 1.1: Assume q is a power of an odd prime. The 2-rank of $M\left(P_{1}, L_{1}\right)$ equals $\left(q^{3}+2 q^{2}-3 q+2\right) / 2$.

In [2], a family of codes designated $\mathrm{LU}(3, q)$ was defined in the following way. Let P^{*} and L^{*} be sets in bijection with $\mathbf{F}_{q}{ }^{3}$, where q is any prime power. An element $(a, b, c) \in P^{*}$ is incident with an element $[x, y, z] \in L^{*}$ if and only if

$$
\begin{equation*}
y=a x+b \quad \text { and } \quad z=a y+c . \tag{1}
\end{equation*}
$$

The binary incidence matrix with rows indexed by L^{*} and columns indexed by P^{*} is denoted by $H(3, q)$ and the two binary codes having $H(3, q)$ and its transpose as parity check matrices are called $\mathrm{LU}(3, q)$ codes. The name comes from [3], where the bipartite graph with parts P^{*} and L^{*} and adjacency defined by the (1) had been studied previously.

It is not difficult to show that the incidence systems $\left(P_{1}, L_{1}\right)$ and $\left(P^{*}, L^{*}\right)$ are equivalent. A detailed proof is given in the Appendix. Thus, $M\left(P_{1}, L_{1}\right)$ is a parity check matrix of the $\mathrm{LU}(3, q)$ code given by the transpose of $H(3, q)$ and Theorem 1.1 has the following immediate corollary.

Corollary 1.2: If q is a power of an odd prime, the dimension of $\mathrm{LU}(3, q)$ is $\left(q^{3}-2 q^{2}+3 q-2\right) / 2$.

The corollary was conjectured in [2]. There it was established that this number is a lower bound when q is an odd prime.

II. Relative Dimensions and a Lower Bound for LU($3, q$)

In this section q is an arbitrary prime power.
Let $\mathbf{F}_{2}[P]$ be the vector space of all \mathbf{F}_{2}-valued functions on P. We can think of such a function as a vector in which the positions are indexed by the points of P, and the entries are the values of the function at the points. For $p \in P$, the characteristic function χ_{p} is the vector with 1 in the position with index p and zero in the other positions. The set of all characteristic functions of points forms a basis of $\mathbf{F}_{2}[P]$. Let $\ell \in L$. Its characteristic function $\chi_{\ell} \in \mathbf{F}_{2}[P]$ is the function which takes the value 1 at the $q+1$ points of ℓ and zero at all other points. The subspace of $\mathbf{F}_{2}[P]$ spanned by all the χ_{ℓ} is the \mathbf{F}_{2}-code of (P, L), denoted by $C(P, L)$. One can think of $C(P, L)$ as the column space of $M(P, L)$. For brevity, we will sometimes blur the distinction between lines and their characteristic functions and speak, for instance, of the subspace of $\mathbf{F}_{2}[P]$ spanned by a set of lines. Let $C\left(P, L_{1}\right)$ be the subspace of $\mathbf{F}_{2}[P]$ spanned by lines in L_{1}. Let $C\left(P_{1}, L_{1}\right)$ denote the code of $\left(P_{1}, L_{1}\right)$, viewed as a subspace of $\mathbf{F}_{2}\left[P_{1}\right]$, and let $C\left(P_{1}, L\right)$ be the larger subspace of $\mathbf{F}_{2}\left[P_{1}\right]$ spanned by the restrictions to P_{1} of the characteristic functions of all lines of L.

Consider the natural projection map

$$
\begin{equation*}
\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right] \tag{2}
\end{equation*}
$$

given by restriction of functions. Its kernel will be denoted by ker $\pi_{P_{1}}$.
Let $Z \subset C\left(P, L_{1}\right)$ be a set of characteristic functions of lines in L_{1} which maps bijectively under $\pi_{P_{1}}$ to a basis of $C\left(P_{1}, L_{1}\right)$. Let X be the set of characteristic functions of the $q+1$ lines of L through p_{0} and let $X_{0}=X \backslash\left\{\chi_{\ell_{0}}\right\}$. Finally, choose any q lines of L which meet ℓ_{0} in the q distinct points other than p_{0} and let Y be the set of
their characteristic functions. It is clear that the sets X, Y, and Z are disjoint and that X is contained in $\operatorname{ker} \pi_{P_{1}}$.

Lemma 2.1: $Z \cup X_{0} \cup Y$ is linearly independent over \mathbf{F}_{2}.
Proof: Each element of Y contains in its support a point of ℓ_{0} which is not in the support of any other element of $Z \cup X_{0} \cup Y$. So it is enough to show that $X_{0} \cup Z$ is linearly independent. This is true because X_{0} is a linearly independent subset of ker $\pi_{P_{1}}$ and Z maps bijectively under $\pi_{P_{1}}$ to a linearly independent set.

We note that $|Z|=\operatorname{dim}_{\mathrm{F}_{2}} C\left(P_{1}, L_{1}\right)$ and $\left|X_{0} \cup Y\right|=2 q$.

1) Corollary 2.2: Let q be an arbitrary prime power. Then

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{F}_{2}} \mathrm{LU}(3, q) \geq q^{3}-\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)+2 q . \tag{3}
\end{equation*}
$$

Proof: From the definition of $\operatorname{LU}(3, q)$ and the equivalence of (P^{*}, L^{*}) with (P_{1}, L_{1}), we have

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{F}_{2}} \mathrm{LU}(3, q)=q^{3}-\operatorname{dim}_{\mathbf{F}_{2}} C\left(P_{1}, L_{1}\right) \tag{4}
\end{equation*}
$$

The corollary now follows from Lemma 2.1.

III. Proof of Theorem 1.1

In this section we assume that q is odd. In view of Corollary 2.2 and the known 2-rank of $M(P, L)$ the proof of Theorem 1.1 will be completed if we can show that $Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over \mathbf{F}_{2}.

Lemma 3.1: Let $\ell \in L$. Then the sum of the characteristic functions of all lines which meet ℓ (excluding ℓ itself) is the constant function 1 .

Proof: The function given by the sum takes the value $q \equiv 1$ $(\bmod 2)$ at any point of ℓ and value 1 at any point off ℓ, by the quadrangle property.

Lemma 3.2: Let $\ell \in L$ be a line, other than ℓ_{0}, which meets ℓ_{0} at a point p. Let Φ_{ℓ} be the sum of all the characteristic functions of lines in L_{1} which meet ℓ. Then

$$
\Phi_{\ell}\left(p^{\prime}\right)= \begin{cases}0, & \text { if } p^{\prime}=p \tag{5}\\ q, & \text { if } p^{\prime} \in \ell \backslash\{p\} \\ 0, & \text { if } p^{\prime} \in p^{\perp} \backslash \ell \\ 1, & \text { if } p^{\prime} \in P \backslash p^{\perp}\end{cases}
$$

Proof: This is an immediate consequence of the quadrangle property.

Corollary 3.3: Let $p \in \ell_{0}$ and let ℓ, ℓ^{\prime} be two lines through p, neither equal to ℓ_{0}. Then $\chi_{\ell}-\chi_{\ell^{\prime}} \in C\left(P, L_{1}\right)$.

Proof: Since $q=1$ in \mathbf{F}_{2}, one easily check using Lemma 3.2 that

$$
\begin{equation*}
\chi_{\ell}-\chi_{\ell^{\prime}}=\Phi_{\ell}-\Phi_{\ell^{\prime}} \in C\left(P, L_{1}\right) . \tag{6}
\end{equation*}
$$

We now come to our main technical lemma.
Lemma 3.4: $\operatorname{ker} \pi_{P_{1}} \cap C(P, L)$ has dimension $q+1$, with basis the set X of characteristic functions of the $q+1$ lines through p_{0}.

Proof: Let $G_{p_{0}}$ be the stabilizer in $\operatorname{Sp}(V)$ of p_{0}.
From the definition,

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}}=\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=\mathbf{F}_{2}\left[\left\{p_{0}\right\}\right] \oplus \mathbf{F}_{2}\left[p_{0}^{\perp} \backslash\left\{p_{0}\right\}\right] \tag{7}
\end{equation*}
$$

as an $\mathbf{F}_{2} G_{p_{0}}$-module. Clearly $\mathbf{F}_{2}\left[\left\{p_{0}\right\}\right]$ is a one-dimensional trivial $\mathbf{F}_{2} G_{p_{0}}$-module. To find the structure of $\mathbf{F}_{2}\left[p_{0}{ }^{\perp} \backslash\left\{p_{0}\right\}\right]$, we consider the following subgroups of $G_{p_{0}}$, which we will describe as matrix groups with respect to our chosen basis.

Let

$$
Q=\left\{\left.\left(\begin{array}{cccc}
1 & a & b & c \tag{8}\\
0 & 1 & 0 & b \\
0 & 0 & 1 & -a \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbf{F}_{q}\right\}
$$

and

$$
C=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & 0 & c \tag{9}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, c \in \mathbf{F}_{q}\right\}
$$

The group Q is a normal subgroup of $G_{p_{0}}$ and C is the center of Q, with Q / C elementary abelian of order q^{2}. It is easy to see by matrix computations that C acts trivially on p_{0}^{\perp} and that Q stabilizes each line ℓ through p_{0}, acting transitively on the q points of $\ell \backslash\left\{p_{0}\right\}$. These q points have homogeneous coordinates of the form $[d: x: y: 0]$, where $[x: y]$ are homogeneous coordinates of a fixed point on a projective line, and d varies over \mathbf{F}_{q}. It is clear that the subgroup $Q[x: y]$ of index q in Q consisting of matrices (8) in which $a x+b y=0$ is the kernel of the action on $\ell \backslash\left\{p_{0}\right\}$ and so $\mathbf{F}_{2}\left[\ell \backslash\left\{p_{0}\right\}\right]$ affords the regular representation of $Q / Q[x: y]$.

As $[x: y]$ varies over the projective line, we deduce that, $\mathbf{F}_{2}\left[p_{0}^{\perp} \backslash\right.$ $\left.\left\{p_{0}\right\}\right]$ contains the trivial module of Q / C with multiplicity $q+1$. Thus since Q has odd order, we have a $\mathbf{F}_{2} G_{p_{0}}$-module decomposition

$$
\begin{equation*}
\mathbf{F}_{2}\left[p_{0}^{\perp} \backslash\left\{p_{0}\right\}\right]=T \oplus W \tag{10}
\end{equation*}
$$

where T is the $(q+1)$-dimensional space of Q-fixed points and W has dimension $q^{2}-1$ and no Q-fixed points. Let E be a splitting field for Q over \mathbf{F}_{2}, and consider the action of $G_{p_{0}}$ on the characters of Q / C which occur in $E \otimes_{\mathbf{F}_{2}} W$. Each of the $q^{2}-1$ nontrivial characters occurs once. The group of matrices of the form $\operatorname{diag}\left(\lambda, \mu, \mu^{-1}, \lambda^{-1}\right)$, with $\lambda, \mu \in \mathbf{F}_{q} \backslash\{0\}$, lies in $G_{p_{0}}$ and acts transitively on the $q-1$ nontrivial elements, hence also on the $q-1$ nontrivial characters, of each $Q / Q[x: y]$. Then, since $G_{p_{0}}$ is transitive on the $q+1$ lines through p_{0}, it follows that the $q^{2}-1$ nontrivial characters of Q / C form a single $G_{p_{0}}$-orbit. By Clifford's Theorem ((11.1) in [4]) it follows that $E \otimes \mathbf{F}_{2} W$ is a simple $E G_{p_{0}}$-module. Hence W is a simple $\mathbf{F}_{2} G_{p_{0}}$-module.

We are now ready to consider the intersection

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}} \cap C(P, L)=\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L) \tag{11}
\end{equation*}
$$

which is an $\mathbf{F}_{2} G_{p_{0}}$-submodule of $\mathbf{F}_{2}\left[p_{0}^{\perp}\right]$. Clearly, X is a linearly independent subset of this intersection. Moreover, each element of X is a fixed point of Q. We must prove that the intersection is no bigger than the span of X. If it were, then by what we know of the $\mathbf{F}_{2} G_{p_{0}}$-submodules of $\mathbf{F}_{2}\left[p_{0}^{\perp}\right]$, we see that either $\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ must contain all the Q-fixed points of $\mathbf{F}_{2}\left[p_{0}^{\perp}\right]$ or else it must contain W. The first possibilty is ruled out because it implies that $C(P, L)$ contains the characteristic function of the point p_{0}, which is absurd since the number of points on a line is even. In the second case, we would have that $\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ is of codimension one in $\mathbf{F}_{2}\left[p_{0}^{\perp}\right]$. Then, for any point $p \in p_{0}^{\perp}$, since neither χ_{p} nor $\chi_{p_{0}}$ is in $C(P, L)$, we would have $\chi_{p}-\chi_{p_{0}} \in C(P, L)$. Then, by transitivity of $\operatorname{Sp}(V)$ on P and the connectedness of the adjacency graph of P, we would have that $\chi_{p}-\chi_{p_{0}} \in C(P, L)$ for all points $p \in P$, leading to the conclusion that $C(P, L)$ has codimension one in $\mathbf{F}_{2}[P]$, contrary to known fact. Thus, the intersection is as claimed.

Lemma 3.5: ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has dimension $q-1$, and basis the set of functions $\chi_{\ell}-\chi_{\ell^{\prime}}$, where $\ell \neq \ell_{0}$ is an arbitrary but fixed
line through p_{0} and ℓ^{\prime} varies over the $q-1$ lines through p_{0} different from ℓ_{0} and ℓ.

Proof: By Corollary 3.5 applied to p_{0}, we see that if ℓ and ℓ^{\prime} are any two of the q lines through p_{0} other than ℓ_{0}, the function $\chi_{\ell}-\chi_{\ell^{\prime}}$ lies in $C\left(P, L_{1}\right)$. It is obviously in ker $\pi_{P_{1}}$. Clearly, we can find $q-1$ linearly independent functions of this kind as described in the statement. Thus ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has dimension $\geq q-1$. On the other hand $C\left(P, L_{1}\right)$ is in the kernel of the restriction map to ℓ_{0}, while the image of the restriction of ker $\pi_{P_{1}}$ to ℓ_{0} has dimension 2 , spanned by the images of $\chi_{\ell_{0}}$ and $\chi_{p_{0}}$. Thus ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has codimension at least 2 in ker $\pi_{P_{1}}$, which has dimension $q+1$, by Lemma 3.4.

Our final lemma completes the proof of Theorem 1.1.
Lemma 3.6: $Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over \mathbf{F}_{2}.
Proof: By Lemma 3.5, the span of $X_{0} \cup Z$ is equal to the subspace spanned by X_{0} and L_{1}, since ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ is contained in the span of X_{0}. We must show that the subspace spanned by $X_{0} \cup Y$ and L_{1} contains the characteristic functions of all lines intersecting ℓ_{0}, including ℓ_{0}. First, consider a line $\ell \neq \ell_{0}$ meeting ℓ_{0}. We can assume that ℓ meets ℓ_{0} at a point other than p_{0}, since otherwise $\ell \in X_{0}$. Therefore ℓ meets ℓ_{0} in the same point p as some element $\ell^{\prime} \in Y$. Then Corollary 3.3 shows that χ_{ℓ} lies in the subspace spanned by Y and L_{1}. The only line still missing is ℓ_{0}, so our last task is to show that $\chi \ell_{0}$ lies in the span of the characteristic functions of all other lines. First, by Lemma 3.1 applied to ℓ_{0}, we see that the constant function 1 is in the span. Finally, we see from Lemma 3.2 that

$$
\begin{equation*}
\sum_{\ell \in X_{0}} \Phi_{\ell}=1-\chi \ell_{0} \tag{12}
\end{equation*}
$$

so we are done.
Remark 3.7: One can also consider the binary code $\mathrm{LU}(3, q)$ when $q=2^{t}, t \geq 1$. The exact dimension is not known yet, but Corollary 2.2 provides a lower bound, since by [5] we have

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t} \tag{13}
\end{equation*}
$$

This formula is quite different from the one for odd q. Nevertheless, it may well be that the inequality (3) is an equality for even q, just as it is for odd q, despite the difference in the $\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)$ term. Computer calculations of Kim verify this up to $q=16$.

APPENDIX

In this Appendix, q is an arbitrary prime power. Here we explain why our incidence system $\left(P_{1}, L_{1}\right)$ is equivalent to the incidence system (P^{*}, L^{*}) defined by the (1). The explanation is given by the classical Klein correspondence.

We first look at $\left(P_{1}, L_{1}\right)$ in coordinates. Let $x_{0}, x_{1}, x_{2}, x_{3}$ be homogeneous coordinates of P corresponding to our symplectic basis. Recalling that $p_{0}=\left\langle e_{0}\right\rangle$, we see that P_{1} is the set of points such that $x_{3} \neq 0$. If we represent such a point as $(a: b: c: 1)$ we have a bijection of P_{1} with \mathbf{F}_{q}^{3}.

Our choice of basis of V yields the basis $e_{i} \wedge e_{j}$, for $0 \leq i<j \leq 3$, of the exterior square $\wedge^{2}(V)$. Denote the corresponding homogeneous coordinates of the projective space $\mathbf{P}\left(\wedge^{2}(V)\right)$ by $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}$, and p_{23}. A 2-dimensional subspace of V spanned by vectors $\sum_{i=0}^{3} a_{i} e_{i}$ and $\sum_{i=0}^{3} b_{i} e_{i}$ defines, by taking its exterior square, a point of $\mathbf{P}\left(\wedge^{2}(V)\right)$ with coordinates $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$, known as the Plücker or Grassmann coordinates of the subspace. The totality of points of $\mathbf{P}\left(\wedge^{2}(V)\right)$ obtained in this way from lines of $\mathbf{P}(V)$
forms the set with equation $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$, called the Klein Quadric. The totally isotropic 2-dimensional subspaces of V, namely the lines of L, correspond to those points of the Klein quadric which satisfy the additional linear equation $p_{03}=-p_{12}$. Recalling that $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$, the set L_{1} is the subset of L given by $p_{23} \neq 0$, so taking into consideration the quadratic relation, we see that L_{1} consists of the points of $\mathbf{P}\left(\wedge^{2}(V)\right)$ which have Plücker coordinates $\left(z^{2}+x y: x: z:-z: y: 1\right)$, hence is in bijection with $\mathbf{F}_{q}{ }^{3}$. Next we consider when $(a: b: c: 1) \in P_{1}$ is contained in $\left(z^{2}+x y: x: z:-z: y: 1\right) \in L_{1}$. Suppose the latter is spanned by points with homogeneous coordinates ($a_{0}: a_{1}: a_{2}: a_{3}$) and $\left(b_{0}: b_{1}: b_{2}: b_{3}\right)$. The given point and line are incident if and only if all 3×3 minors of the matrix

$$
\left(\begin{array}{cccc}
a & b & c & 1 \tag{14}\\
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

are zero. The four equations which result reduce to the two equations

$$
\begin{equation*}
z=-c y+b, \quad x=c z-a \tag{15}
\end{equation*}
$$

By a simple change of coordinates, these equations transform to (1). This shows that $\left(P_{1}, L_{1}\right)$ and $\left(P^{*}, L^{*}\right)$ are equivalent.

REFERENCES

[1] B. Bagchi, A. E. Brouwer, and H. A. Wilbrink, "Notes on binary codes related to the $\mathrm{O}(5, q)$ generalized quadrangle for odd q," Geometriae Dedicata, vol. 39, pp. 339-355, 1991.
[2] J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland, "Explicit construction of families of LDPC codes with no 4-cycles," IEEE Trans. Inf. Theory, vol. 50, pp. 2378-2388, 2004.
[3] F. Lazebnik and V. A. Ustimenko, "Explicit construction of graphs with arbitrarily large girth and of large size," Discr. Appl. Math., vol. 60, pp. 275-284, 1997.
[4] C. W. Curtis and I. Reiner, Methods of Representation Theory, with Applications to Finite Groups and Orders. New York: Wiley-Interscience, 1981, vol. I.
[5] N. S. N. Sastry and P. Sin, "The code of a regular generalized quadrangle of even order," in Proc. Symp. Pure Math., 1998, vol. 63, pp. 485-496.

[^0]: Manuscript received May 25, 2005; revised January 1, 2006. The work of Q. Xiang was supported by the NSF under Grant DMS0400411.
 P. Sin is with the Department of Mathematics, University of Florida, Gainesville, FL 32611 USA (e-mail: sin@math.ufl.edu).
 Q. Xiang is with the Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 USA (e-mail: xiang@math.udel.edu). Communicated by R. J. McEliece, Associate Editor for Coding Theory.
 Digital Object Identifier 10.1109/TIT.2006.878231

