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A theorem of Kneser states that in an abelian group G; if A and B are finite

subsets in G and AB ¼ fab : a 2 A; b 2 Bg; then jABj5jAj þ jBj � jHðABÞj where
HðABÞ ¼ fg 2 G : gðABÞ ¼ ABg:Motivated by the study of a problem in finite fields,

we prove an analogous result for vector spaces over a field E in an extension field K

of E: Our proof is algebraic and it gives an immediate proof of Kneser’s

Theorem. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let G be an abelian group, written multiplicatively, and let A; B and S be
nonempty subsets of G: By AB we denote the set fab j a 2 A; b 2 Bg: The
stabilizer of S; denoted by HðSÞ; is defined as the set fg 2 G j gS ¼ Sg: It is
clear that HðSÞ is the largest subgroup of G such that HðSÞS ¼ S and that S

is a union of HðSÞ-cosets. In 1953, Kneser [3] proved the following beautiful
theorem about sums of finite subsets of an abelian group.
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Theorem 1.1 (Kneser). Let G be an abelian group and let A;B be

nonempty, finite subsets of G: Then

jABj5jAj þ jBj � jHðABÞj;

where AB ¼ fab j a 2 A; b 2 Bg; and HðABÞ is the stabilizer of AB.

In the special case where G is a finite cyclic group of prime order, Kneser’s
theorem implies the Cauchy–Davenport theorem which asserts that if p is
prime, and A;B are nonempty subsets of Z=pZ; then jA þ Bj5minfp; jAj þ
jBj � 1g; where A þ B ¼ fa þ b j a 2 A; b 2 Bg:

Theorem 1.1 has the following equivalent formulation.

Theorem 1.2 (Kneser). Let G be an abelian group, and let A; B be

finite nonempty subsets of G: Let H ¼ HðABÞ be the stabilizer of AB: If

jABjojAj þ jBj; then jABj ¼ jAHj þ jBHj � jHj:

For the proofs of Theorems 1.1 and 1.2, we refer the reader to [5, p. 115,
131] (see also [4]). For convenience, we will refer Theorem 1.1 as Kneser’s
theorem in this paper. Kneser’s theorem has many applications in additive
number theory (see [5, Sects. 4.3, 4.4]). While it is relatively easy to prove the
Cauchy–Davenport theorem, the proof of Kneser’s theorem is much more
involved (cf. [5]). Motivated by a problem about subspaces in finite fields
(for detailed statement of the problem, see Section 4), we prove a vector
space analogue of Kneser’s theorem (see Theorem 2.4). It turns out that the
vector space analogue we proved implies the original Kneser’s theorem,
hence we may view this vector space analogue as a generalization of
Kneser’s theorem. Furthermore, except for the Dyson e-transform that we
use, the original idea in the proof of Kneser’s theorem cannot be generalized
to give a proof for Theorem 2.4. Instead, we need to employ a technique to
get around the problem. Even though our technique does not work in the
most general situation, our result is good enough for many applications,
especially for those who work only on finite fields. As an illustration, we use
Theorem 2.4 to solve our problem about subspaces in finite fields. This gives
a simpler proof for the main result in [2].

2. A VECTOR SPACE ANALOGUE OF KNESER’S THEOREM

Let E 
 K be fields, and let A;B be two E-subspaces of K: By AB we
denote the E-subspace of K spanned by fab j a 2 A; b 2 Bg: In this section,
we consider the following problem. Given the dimensions of A and B over
E; what can we say about dimE AB? Our result is presented in Theorem 2.4
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which can be viewed as a vector space analogue of Kneser’s theorem. We
first prove the following lemma. The proof uses a tool analogous to the
Dyson e-transform for a pair of subsets of an abelian group.

Lemma 2.1. Let E 
 K be fields and let A;B be E-subspaces of K such

that 0odimE Ao1 and 0odimE Bo1: Then for each nonzero a 2 A; there

exist a subfield Ha of K containing E and an Ha-vector space Va 
 AB such

that aB 
 Va and

dimE Va þ dimE Ha5dimE A þ dimE B: ð2:1Þ

Proof. It suffices to prove the lemma in the case a ¼ 1: For general
0aa 2 A; we may replace A by a�1A; and apply the result obtained in the
case a ¼ 1 to the E-spaces a�1A;B: For the same reason, we may further
assume that 1 2 B:

We will use induction on dimE A: If dimE A ¼ 1; take V ¼ B and H ¼ E;
the conclusion follows. Now assume dimE A > 1: For each 0ae 2 B; let

AðeÞ ¼ A \ Be�1 and BðeÞ ¼ B þ Ae: ð2:2Þ

Note that AðeÞBðeÞ 
 AB and dimE AðeÞ þ dimE BðeÞ ¼ dimE A þ dimE B:
We consider the following two cases.

Case 1: AðeÞ ¼ A for all 0ae 2 B: Then A 
 Be�1 for all 0ae 2 B; i.e.,
AB 
 B: Let H be the subfield of K generated by A and let V ¼ B: Then V is
an H-vector space and B 
 V 
 AB; and

dimE V þ dimE H5dimE A þ dimE B: ð2:3Þ

Case 2: AðeÞaA for some 0ae 2 B: Then 0odimE AðeÞodimE A and
1 2 AðeÞ; 1 2 BðeÞ: By the induction hypothesis, there exist a subfield H of
K containing E and an H-vector space V 
 AðeÞBðeÞ 
 AB such that
B 
 BðeÞ 
 V and

dimE V þ dimE H5 dimE AðeÞ þ dimE BðeÞ

¼ dimE A þ dimE B: ð2:4Þ

This completes the proof. ]

Lemma 2.2. Let V be an n-dimensional vector space over an infinite field

E: Suppose that x1; x2; . . . ; xn form a basis of V over E: Then any n vectors

in the set

fx1 þ ax2 þ    þ an�1xn j a 2 Eg

form a basis of V over E:
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Proof. This follows from the Vandermonde determinant. ]

Lemma 2.3. Suppose E is a finite field and K is a field containing E: Let t

be an indeterminate over K : Then every finite extension of EððtÞÞ in KððtÞÞ is

of the form FððtÞÞ; where F is an intermediate field of E 
 K :

Proof. Let v : KððtÞÞ ! Z be the discrete valuation with vðtÞ ¼ 1 and
vðKnÞ ¼ 0: It is well known that KððtÞÞ is complete with respect to v:
Suppose M is a finite extension of EððtÞÞ in KððtÞÞ: Then the residue field of
M must be a finite extension of E; the residue field of EððtÞÞ: Therefore, the
residue field of M is finite. By an exercise in [1, p. 81], it is known that
M ¼ FððtÞÞ where F is a finite field in KððtÞÞ: Clearly, we have F 
 K : This
completes the proof. ]

We are now ready to prove our main result.

Theorem 2.4. Let E 
 K be fields and let A;B be finite-dimensional

E-subspaces of K such that Aaf0g; Baf0g: Suppose that every algebraic

element in K is separable over E: Then

dimE AB5dimE A þ dimE B � dimE HðABÞ; ð2:5Þ

where HðABÞ ¼ fx 2 K j xAB � ABg is the stabilizer of AB in K :

Proof. It suffices to prove the theorem when HðABÞ ¼ E: In the general
case, let F ¼ HðABÞ; A0 ¼ FA; B0 ¼ FB: Then A0B0 ¼ AB and (2.5) will
follow from dimF A0B05dimF A0 þ dimF B0 � 1: Thus we assume that
HðABÞ ¼ E:

First, we assume that jEj is infinite. Let fx1; x2; . . . ; xng be a basis of A

over E: For any a 2 E; we let xa ¼ x1 þ ax2 þ    þ an�1xn: By Lemma 2.1,
there exist a subfield Ha of K containing E and an Ha-vector space Va 
 AB

such that xaB 
 Va and dimE Va þ dimE Ha5dimE A þ dimE B: In parti-
cular, we are done if Ha ¼ E for some a:

Clearly, dimE AB is finite. Let EðABÞ be the subfield of K generated by E

and AB; and let F be the algebraic closure of E in EðABÞ: Observe that as
Vaaf0g; we have Hax 
 AB for some nonzero x 2 AB: Therefore
Ha 
 EðABÞ:

As dimE Va is finite, ½Ha : E� is also finite. Hence

Ha 
 F for every a 2 E:

Next we prove that ½F : E� is finite. As dimE AB is finite, EðABÞ is finitely
generated over E: If EðABÞ ¼ F ; then F is then a finite extension of E:
Otherwise, there exists a field K 0 ¼ Eðy1; . . . ; yrÞ such that K 0 is purely
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transcendental over E and EðABÞ is algebraic over K 0: As EðABÞ is finitely
generated over E; ½EðABÞ : K 0� is then finite.

Thus ½F : E� ¼ ½Fðy1; . . . ; yrÞ : K 0�4½EðABÞ : K 0�o1:
As F is separable over E; the set fHa j a 2 Eg is finite since ½F : E� is finite.

In particular, there exist n distinct elements a1; a2; . . . ; an in E such that

Ha1 ¼ Ha2 ¼    ¼ Han ¼ H:

By Lemma 2.2, xa1 ; xa2 ; . . . ; xan form a basis of A: Hence, AB ¼ Va1 þ
Va2 þ    þ Van is an H-space. If HaE; then it contradicts to our
assumption that HðABÞ ¼ E: Therefore, H ¼ E and (2.5) follows.

Now, suppose jEj is finite. Let t be an indeterminate. We define A0 ¼
A � EððtÞÞ and B0 ¼ B � EððtÞÞ: Note that EððtÞÞ;A0; and B0 are all
embedded in KððtÞÞ: It is clear that dimE A ¼ dimEððtÞÞ A0; dimE B ¼
dimEððtÞÞ B0 and A0B0 ¼ ðABÞ � EððtÞÞ: Also by Lemma 2.3, every algebraic
element in KððtÞÞ over EððtÞÞ is separable over EððtÞÞ: Now jEððtÞÞj is
infinite, we may apply the previous argument to deduce that

dimEððtÞÞ A0B05dimEððtÞÞ A0 þ dimEððtÞÞ B0 � dimEððtÞÞ HðA0B0Þ:

We are done if we can show that HðA0B0Þ ¼ HðABÞ � EððtÞÞ: The proof
of this equality goes as follows. First, it follows from the definitions of
HðABÞ and HðA0B0Þ that HðABÞ � EððtÞÞ 
 HðA0B0Þ: Next, by Lemma 2.3,
HðA0B0Þ ¼ FððtÞÞ where F is a subfield of K : Note that AB ¼ A0B0 \ K is an
F -space, we deduce that F 
 HðABÞ: Consequently, we obtain F ¼ HðABÞ
and HðA0B0Þ ¼ HðABÞ � EððtÞÞ: This completes the proof. ]

Remark. (1) Clearly, Theorem 2.4 holds when E is perfect, and in
particular, when char E ¼ 0 or jEj is finite.

(2) In the proof of Theorem 2.4, the separability assumption is to
ensure that fHa j a 2 Eg is a finite set. From the proof of Lemma 2.1, it is
clear that Ha 
 EðAÞ; where EðAÞ is the subfield of K generated by A over
E: Thus, the separability assumption in Theorem 2.4 can be replaced with a
weaker assumption that the algebraic closure of E in EðAÞ is a simple
extension over E:

(3) As we will see in Section 3, Theorem 2.4 implies Kneser’s theorem.
Therefore, we may view Theorem 2.4 as a generalization of Kneser’s
theorem.

For our later application, we record the following when jEj is finite.

Corollary 2.5. Let E 
 K be finite fields and let A;B be E-subspaces of

K such that Aaf0g; Baf0g:
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Then

dimE AB5dimE A þ dimE B � dimE HðABÞ;

where HðABÞ ¼ fx 2 K j xAB � ABg is the stabilizer of AB in K :

For completeness, we also prove the following analogue of Theorem 1.2.

Theorem 2.6. Let E 
 K be fields and let A;B be finite-dimensional

E-subspaces of K such that Aaf0g; Baf0g:
Suppose that every algebraic element in K is separable over E: Let H ¼

HðABÞ be the stabilizer of AB: If dimE ABodimE A þ dimE B; then

dimE AB ¼ dimE HA þ dimE HB � dimE H:

Proof. We apply Theorem 2.4 to the E-subspaces HA; HB in K : Then

dimE AB5dimE HA þ dimE HB � dimE H: ð2:6Þ

Since AB; HA; and HB are all H-spaces, we see that dimE AB; dimE HA

and dimE HB are multiples of dimE H: If inequality (2.6) is strict, then
dimE AB > dimE HA þ dimE HB5dimE A þ dimE B: This contradicts to
our assumption that dimE ABodimE A þ dimE B: This completes the
proof. ]

Remark. We mention that Theorem 2.6 also implies Theorem 2.4. Hence
the two theorems are equivalent. To show that Theorem 2.6 implies
Theorem 2.4, we observe that if dimE AB5dimE A þ dimE B; then (2.5) of
course follows. Otherwise, we apply Theorem 2.6 to the E-subspaces HA;
HB in K : Then dimE AB5dimE HA þ dimE HB � dimE H5dimE A þ
dimE B � dimE H:

3. A NEW PROOF OF KNESER’S THEOREM

Let G be as defined in Theorem 1.1. In proving Kneser’s theorem, we may
assume G is finitely generated. Thus, we may assume

G ¼ hy1i �    � hyri � hz1i �    � hzki

such that the order of yi is ti for each 14i4r and zj ð14j4kÞ are torsion
free. In other words, G ffi ðZ=t1ZÞ �    � ðZ=trZÞ � Z�    � Z: Let x1; . . .
; xr be algebraically independent over C and define

E ¼ Cðx1; . . . ; xrÞ; F ¼ E½ ffiffiffiffiffi
x1

t1
p

; . . . ;
ffiffiffiffiffi
xr

tr
p �:

Let c1; . . . ; ck be algebraically independent over F and put K ¼ Fðc1; . . . ;
ckÞ: Obviously, F is the algebraic closure of E in K : Define
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Z : G ! K

y
n1
1    ynr

r z
m1
1    z

mk
k / ð ffiffiffiffiffi

x1
t1
p Þn1    ð ffiffiffiffiffi

xr
tr
p Þnr c

m1
1    c

mk
k ;

04ni4ti; mj 2 Z:

Note that ZðGÞ is linearly independent over E: For any subset C in G; we
define FðCÞ ¼

P
g2C EZðgÞ; the E-subspace generated by ZðCÞ: Observe

that FðCC0Þ ¼ FðCÞFðC0Þ for any subsets C;C0 in G: In particular, when C

is a subgroup in G; FðCÞ is closed under multiplication; if furthermore C is
finite, then dimE FðCÞ is also finite, hence FðCÞ is a subfield in F :

Let G0 ¼ hy1i �    � hyri: It is now clear that F induces a mapping,

Fn : fH jH is a subgroup of G0g ! fL jL is a field and E 
 L 
 Fg
H / FðHÞ

Obviously, Fn is injective.
On the other hand, GalðF=EÞ ffi G0: Therefore, the number of subgroups

in G0 is the same as the number of intermediate subfields in E 
 F : This
proves that Fn is surjective and hence bijective.

Now we are ready to prove Kneser’s theorem.
By Theorem 2.4, we obtain

dimE FðAÞFðBÞ5dimE FðAÞ þ dimE FðBÞ � dimE HðFðAÞFðBÞÞ:

As dimE FðAÞ ¼ jAj; dimE FðBÞ ¼ jBj and dimEðFðAÞFðBÞÞ ¼ jABj; to
finish the proof of Kneser’s theorem, it suffice to show that HðFðAÞFðBÞÞ ¼
FðHðABÞÞ; i.e., HðFðABÞÞ ¼ FðHðABÞÞ:

First observe that HðFðABÞÞ*FðHðABÞÞ:
Since dimE HðFðABÞÞ4dimE FðABÞ ¼ jABjo1 and F is the

algebraic closure of E in K ; we have HðFðABÞÞ 
 F : Since Fn is surject-
ive, HðFðABÞÞ ¼ FðH 0Þ for some subgroup H 0 of G0: Therefore,
FðH 0ÞFðABÞ ¼ FðH 0ðABÞÞ ¼ FðABÞ: Hence, H 0ðABÞ ¼ AB: It follows that
H 0 
 HðABÞ: This proves that HðFðABÞÞ ¼ FðHðABÞÞ:

4. A PROBLEM ABOUT SUBSPACES IN FINITE FIELDS

In a previous paper [2], in the process of determining the range of the
parameters of a family of partial difference sets constructed by using Galois
rings, we are led to the following problem about subspaces in finite fields.
Let E 
 L be finite fields, and let r be a positive integer. What is the
maximum dimension of an E-subspace W in L such that W raL? Here W r

is the E-subspace of L spanned by fw1w2   wr j wi 2 W ; 14i4rg: This is
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actually the problem which motivated much of the research in this paper. In
[2], using somewhat lengthy arguments, we prove the following theorem.

Theorem 4.1. Let E 
 L be finite fields with ½L : E� ¼ t and let r be a

positive integer. Let

sðr; tÞ ¼ maxfdimE W : W is an E-subspace of L such that W raLg;

where W r is the E-subspace of L generated by fw1w2   wr j wi 2 W ;
14i4rg: Then

sðr; tÞ ¼ max
kjt

k
t
k
� 2

r

� �
þ 1

� �
:

Here we use Corollary 2.5 to give a much simpler proof.

Proof of Theorem 4.1. For convenience, we define Mðr; tÞ ¼

maxkjt kðb
t
k
�2

r
c þ 1Þ: For completeness, we first recall the proof that

sðr; tÞ5Mðr; tÞ:
Let F be the field such that E 
 F 
 L and ½F : E� ¼ k: Write L ¼ F ½x�;

where x 2 L: Let n ¼ bðt=kÞ�2
r

c; and let W be the F -subspace of L generated
by f1; x; . . . ;xng: Then W r is the F -subspace generated by f1; x; . . . ; xnrg;
and

dimE W r ¼ kðnr þ 1Þ ¼ k r
t
k
� 2

r

� �
þ 1

� �
ot: ð4:1Þ

Hence, W raL: Therefore dimE W ¼ kðn þ 1Þ4sðr; tÞ: Consequently,
Mðr; tÞ4sðr; tÞ:

To prove sðr; tÞ4Mðr; tÞ; we shall show that if dimE W5Mðr; tÞ þ 1; then
W r ¼ L: Let K ¼ HðW rÞ be the stabilizer of W r: Clearly, K is a subfield in
L and W r ¼ ðKWÞr: Note also that HðW iÞW r�i ¼ W r for all i4r: Hence,
HðW iÞ 
 K for all i4r: It follows that HððKW ÞiÞ ¼ K for all i4r: Thus by
Corollary 2.5, we obtain

dimKðKW Þiþ15dimK KW þ dimKðKWÞi � 1

for all i4r � 1: Therefore, dimKðKWÞr5r  dimK KW � ðr � 1Þ: Let k ¼
dimE K : As dimE W5Mðr; tÞ þ 1 and dimE KW is a multiple of k; dimK

KW5ðb
t
k
�2

r
c þ 2Þ:
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Hence

dimKðKW Þr5r
t
k
� 2

r

� �
þ ðr þ 1Þ5r

t
k
� 2

r
� r � 1

r

� �
þ ðr þ 1Þ ¼ t

k
:

Therefore, W r ¼ ðKW Þr ¼ L: ]
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