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Abstract

We introduce Kloosterman polynomials over F2m , and use these polynomials to prove three
identities involving Kloosterman sums over F2m .
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1. Introduction

For m¿ 1 an integer, we will write F2m to denote the ;nite (Galois) ;eld with 2m

elements, and F∗
2m to denote F2m \ {0}. The (absolute) trace function Tr : F2m → F2 is

de;ned by Tr(x)=
∑m−1

i=0 x2
i
. For a; b∈F2m , the Kloosterman sum K(a; b) is de;ned as

K(a; b) =
∑
x∈F∗

2m

(−1)Tr(ax+b=x): (1)

When a = 1, we simply denote the sum K(1; b) by K(b). Note that K(a; b) = K(ab)
if a �= 0. (Substitute y = ax into (1).)
Our main aim in this note is to prove the following Kloosterman sum identities.

Theorem 1.1. For all b∈F2m , we have that

(i) K(b3(b+ 1)) = K(b(b+ 1)3);
(ii) K(b5(b+ 1)) = K(b(b+ 1)5);
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(iii) K(b8(b4 + b)) = K((b+ 1)8(b4 + b)).

The substitution b=a=(a+1) shows that the ;rst identity in Theorem 1.1 is equivalent
to the following.

Corollary 1.2. For all a∈F2m \ {1}, we have that K(a=(a+ 1)4) = K(a3=(a+ 1)4).

The identity in Corollary 1.2 is not new; it has been proved for odd m in [7,8].
Moreover, while preparing this note we learned that both the ;rst and the second
identity in Theorem 1.1 have been proved for all m in [3], and that all three identities
together with three others seem to have been proved by using the theory of modular
curves [4], following up work by Lahtonen and Ojala, see also [6].
It is interesting to note that the authors of [7] were led to the discovery of the

identity in the above corollary in the process of constructing certain 3-designs from the
Z4-Goethals code, while we were led to this identity in the study of certain pseudocyclic
association schemes.

2. Preliminaries

For e∈F2, we de;ne

Te = {x∈F2m |Tr(x) = e}:

In what follows, we will use some simple and well-known properties of the trace
function. For convenience, we recapitulate these properties here. Complete proofs can
be found in any book on ;nite ;elds, for example in [5].

Lemma 2.1. (i) The map Tr is F2-linear and surjective; hence |T0|= |T1|= 2m−1.
(ii) The map x 	→ x2 + x maps F2m two-to-one onto T0.

Note that since the trace map is linear, the set T0 is a hyperplane in F2m (when con-
sidered as an m-dimensional vector space over F2). As a consequence,

∑
x∈Te

(−1)Tr(bx)
= 0 for b �= 0; 1, where e∈F2.

3. Kloosterman polynomials and Kloosterman sum identities

All three identities in Theorem 1.1 can be written in the form K(ab) =K((a+ 1)b)
for suitable a and b in F2m . We will ;rst derive an equivalent formulation of this type
of identities. To this end, for e∈F2 we de;ne

Ke(a; b) =
∑

x∈Te ;x �=0
(−1)Tr(ax+b=x):



H.D.L. Hollmann, Q. Xiang /Discrete Mathematics 279 (2004) 277–286 279

Lemma 3.1. Let a; b∈F∗
2m with a �= 1. We have that K(ab)=K((a+1)b) if and only

if K1(a; b) = 0.

Proof. Observe that for a �= 0; 1, the identity K(ab) = K((a + 1)b) is equivalent to
K(a; b) = K(a+ 1; b). Since K(a; b) = K0(a; b) + K1(a; b), K0(a+ 1; b) = K0(a; b) and
K1(a+ 1; b) =−K1(a; b), the lemma follows.

Remark. We note that this lemma can be used to simplify the proof of the main
theorems Theorem 1 in [8] and Theorem 1 in [3], while strengthening the results by
removing a superMuous condition. Indeed, both Lemma 2 in [8] and Lemma 2 in [3]
in fact state that K1(u; v)=0 for u=f(a)=(f(a)+ g(a)) and v=f(a)+ g(a), where f
and g are functions satisfying certain conditions (diNerent in the two papers) and a is
assumed to be contained in some domain D. The conclusion that K(f(a))=K(g(a)) for
a∈D now follows immediately from Lemma 3.1, so the condition that f(D) = g(D),
which is present in Theorem 1 of both papers, is not required, and both proofs can be
simpli;ed.

Our proof of Theorem 1.1 crucially depends on permutation properties of certain
polynomial functions. In order to introduce these functions, we need some de;nitions.
Let m be a positive integer. For c=cm−1 · · · c0 in {0; 1; : : : ; 2m−1} with digits ci ∈ {0; 1},
de;ne its reverse c̃=c1 · · · cm−1c0 (so that c̃i=c−i, with indices considered modulo m),
and its weight w(c) =

∑m−1
i=0 ci. Given such numbers c; d, we de;ne the polynomial

functions on F2m

Lc(x) =
m−1∑
i=0

cix2
i

and

Lc;d(x) = Lc(x) + Ld(x2
m−2):

In the rest of the note, to simplify notation, we will usually write

Lc;d(x) = Lc(x) + Ld(1=x)

with the understanding that Lc;d(0) = 0. The function Lc;d : F2m → F2m is called
a Kloosterman polynomial function (in short, Kloosterman polynomial) on F2m if
w(d) is even and Lc;d is injective on T1 (that is, if Lc;d(x) = Lc;d(y), and x; y∈T1,
then x = y). Note that if w(d) is even and w(c) ≡ emod 2, then for any x∈F2m ,
Tr(Lc;d(x)) =w(c)Tr(x) +w(d)Tr(1=x) = eTr(x), so Lc;d is a Kloosterman polynomial
if and only if w(d) is even and Lc;d maps T1 bijectively onto Te. The relationship
between Kloosterman polynomials and Kloosterman sum identities is explained by the
following theorem.

Theorem 3.2. Let c; d∈ {1; : : : ; 2m−1} with w(d) even. If Lc;d is a Kloosterman poly-
nomial on F2m , then we have the Kloosterman sum identity

K(Lc̃(z)Ld̃(z)) = K((Lc̃(z) + 1)Ld̃(z))

for all z ∈F2m such that Lc̃(z) �= 0; 1.
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Proof. Since Lc̃(0) = 0 and Lc̃(1) = w(c) = 0 or 1 in F2m , we only need to prove the
theorem for z ∈F2m \ {0; 1} such that Lc̃(z) �= 0; 1. According to Lemma 3.1, we have
to prove that K1(Lc̃(z); Ld̃(z)) = 0. To this end, we note that for any x∈F∗

2m ,

Tr(Lc̃(z)x + Ld̃(z)=x) = Tr

(
m−1∑
i=0

ciz2
m−i

x +
m−1∑
i=0

diz2
m−i

=x

)

=
m−1∑
i=0

ciTr(z2
m−i

x) +
m−1∑
i=0

diTr(z2
m−i

=x)

=
m−1∑
i=0

ci Tr(zx2
i
) +

m−1∑
i=0

di Tr(z=x2
i
)

= Tr

(
m−1∑
i=0

cizx2
i
+

m−1∑
i=0

diz=x2
i

)
=Tr(zLc;d(x)):

Hence, if w(c) = e, we have that

K1(Lc̃(z); Ld̃(z)) =
∑
x∈T1

(−1)Tr(Lc̃(z)x+Ld̃(z)=x)

=
∑
x∈T1

(−1)Tr(zLc; d(x))

=
∑
y∈Te

(−1)Tr(zy)

= 0

and the theorem follows.

In the next section, we will investigate Kloosterman polynomials in more detail.

4. A general approach to Kloosterman polynomials

We now discuss a general and systematic approach for proving that a given function
F(x) on F2m is injective on T1, the set of elements of trace one in F2m . Let

DF(x; y) =
F(x)− F(y)

x − y

and suppose that DF(x; y) = F(x; y)=�(x; y) for some polynomials F; �∈F2m [x; y]. We
want to prove that the equation DF(x; y) = 0, or the equation F(x; y)=0 derived from
it, has only zeroes (x; y)∈F22m with x=y or with one of x; y in T0. A way that suggests
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itself is to try to write F(x; y) in the form

F(x; y) = yQ2(x; y) + P(x; y)Q(x; y) + P(x; y)2: (2)

Indeed, in that case, the equation F(x; y)=0 would imply that Q(x; y)=P(x; y)=0 or,
writing R(x; y)=P(x; y)=Q(x; y), that y=R(x; y)2 +R(x; y)∈T0. As a consequence, it
would be suPcient to show that the equations P(x; y) = 0 =Q(x; y) have no solutions
in T21 with x �= y, which is usually a much easier task.
The following observation is of help in actually ;nding an expression (2), if it exists.

First, if F(x; y) can indeed be written in the form (2), then by writing y= z2 + z, we
would have that

F(x; y) = (P(x; y) + zQ(x; y))(P(x; y) + (z + 1)Q(x; y));

that is, there would be a factorisation

F(x; z2 + z) = G(x; z)G(x; z + 1): (3)

Conversely, if F has such a factorisation, then by writing z2 = z + y, we derive z3 =
z(1+y)+y, z4=z+y2+y; : : :, and in general zi=Ai(y)+zBi(y) for certain polynomials
Ai and Bi, which allows us to write

G(x; z) =
∑
i

Gi(x)zi =
∑
i

Gi(x)(Ai(y) + zBi(y)) = P(x; y) + zQ(x; y);

where

P(x; y) =
∑
i

Gi(x)Ai(y); Q(x; y) =
∑
i

Gi(x)Bi(y);

therefore, such a factorisation would in turn produce an expression for F(x; y) as
in (2).
In the sequel, we will use these ideas to prove that certain functions from F2m to

itself are Kloosterman polynomials. In each of these cases, we will simply produce
polynomials P(x; y) and Q(x; y) such that (2) holds, followed by an analysis of the
equations Q(x; y) = P(x; y) = 0 showing that they do not have a solution in T21 with
x �= y.

Theorem 4.1. The functions

(i) L1;3(x) = x + 1=x + 1=x2,
(ii) L1;6(x) = x + 1=x2 + 1=x4, and
(iii) L1;10(x) = x + 1=x2 + 1=x8

are Kloosterman polynomials on F2m for all m, that is, they all map T1 bijectively
to T1.

Proof. Evidently, all three functions map Te to Te for e = 0; 1. So we only have to
show that these functions are injective on T1. To do so, we will use the ideas explained
above.
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(i) In the ;rst case, F(x) = L1;3(x). We have that DF(x; y) = (xy)−2F(x; y) with

F(x; y) = (xy)2 + xy + x + y:

As is easily checked, we have an expression (2) for F(x; y), with

P(x; y) = xy + 1; Q(x; y) = x + 1;

moreover, since P(x; y) + (y + 1)Q(x; y) = x + y, we have Q(x; y) = P(x; y) = 0 only
if x = y (in fact, if and only if x = y = 1).
(ii) In the second case, F(x) = L1;6(x). We have that DF(x; y) = (xy)−4F(x; y) with

F(x; y) = (xy)4 + (xy)2(x + y) + (x + y)3:

We again have an expression (2) for F(x; y), now with

P(x; y) = (y2 + y)x2 + (y + 1)x + y; Q(x; y) = x2 + x + y

as is easily checked. Moreover, if Q(x; y) = 0 then obviously y∈T0.
(iii) Finally, in the third case, F(x)=L1;10(x). We have that DF(x; y)=(xy)−8F(x; y)

with

F(x; y) = (xy)8 + (xy)6(x + y) + (x + y)7:

It is not diPcult to check that, this time, we have an expression (2) for F(x; y),
with

P(x; y) = (y4 + y2 + y)x4 + (y3 + y2 + y + 1)x3 + yx2 + (y3 + y2)x + y3

and

Q(x; y) = (x + y)(x3 + (y2 + y + 1)x2 + y2):

To ;nish the proof in this case, we will show that P(x; y) = 0 and Q(x; y) = 0 imply
that x= y. First, if Q(x; y) = 0, then x= y or Q1(x; y) = x3 + (y2 + y+1)x2 + y2 = 0.
Now

P(x; y) + S(x; y)Q1(x; y) = x2(x + y)4;

where

S(x; y) = x3 + (y2 + y + 1)x2 + (y + 1)x + y;

so if Q1(x; y) = 0 and P(x; y) = 0, then x= y or x= 0; since x= 0 implies y = 0, we
have x = y in both cases.

Proof of Theorem 1.1. All three identities are clearly true if b= 0 or 1. So from now
on, we assume that b �= 0; 1.
(i) According to Theorem 4.1, Lc;d for c = 1, d = 3 is a Kloosterman polynomial.

We have c̃=1 and d̃=2m−1 +1, so Lc̃(z)= z and Ld̃(z)= z2
m−1
+ z. Hence by Theorem

3.2 and taking z = b2, we obtain that K(b2(b2 + b)) = K((b2 + 1)(b2 + b)).



H.D.L. Hollmann, Q. Xiang /Discrete Mathematics 279 (2004) 277–286 283

(ii) Similarly, Lc;d for c = 1, d = 6 is a Kloosterman polynomial. Here c̃ = 1 and
d̃ = 2m−2 + 2m−1, so Lc̃(z) = z and Ld̃(z) = z2

m−1
+ z2

m−2
. Again by Theorem 3.2 and

taking z = b4, we now obtain that K(b4(b2 + b)) = K((b4 + 1)(b2 + b)).
(iii) Finally, Lc;d for c = 1, d = 10 is a Kloosterman polynomial. Now c̃ = 1 and

d̃=2m−3 +2m−1, so Lc̃(z)= z and Ld̃(z)= z2
m−1
+ z2

m−3
. In this case Theorem 3.2, with

z = b8, implies that K(b8(b4 + b)) = K((b8 + 1)(b4 + b)).

The following result is just a reformulation of Theorem 1.1.

Theorem 4.2. Let x; y∈F2m . We have K(x) = K(y) in the following cases.

(i) (x + y)4 = xy,
(ii) (x + y)6 = xy,
(iii) (x + y)13 = xy(x3 + y3).

Proof. (i) We claim that x = b2(b2 + b) and y = (b2 + 1)(b2 + b) for some b∈F2m if
and only if (x+ y)4 = xy. Indeed, if x and y are of this form, then x+ y= b2 + b and
xy = (b2 + b)4, so the relation (i) follows. Conversely, suppose that (x + y)4 = xy. If
also x �= y, then taking b2 = x=(x + y) indeed leads to x = b2(b2 + b), while if x = y,
then x = y = 0 so that taking b= 0 works.
(ii) Similarly, we have that x = b4(b2 + b) and y = (b4 + 1)(b2 + b) if and only if

(x + y)6 = xy. Here we should take b such that b4 = x=(x + y) if x �= y and b = 0
otherwise.
(iii) Finally, we have that x = b8(b4 + b) and y = (b8 + 1)(b4 + b) if and only if

(x+ y)13 = xy(x3 + y3). Now we should take b such that b8 = x=(x+ y) if x �= y and
b= 0 otherwise.

For ;xed m, there are many Kloosterman polynomials. For example, if m = 4, we
have the Kloosterman polynomials Lc;d for the (c; d) pairs (1; 0), (1; 3), (1; 6), (1; 10),
(7; 0), (7; 3), (7; 5), and (7; 9); for m= 5, the pairs (1; 0), (1; 3), (1; 6), (1; 10), (3; 0),
(3; 5), (3; 10), (3; 30), (5; 0), (5; 3), (5; 15), (5; 30), (7; 0), (7; 9), (7; 18), (7; 23), (11; 0),
(11; 12), (11; 27), (11; 29), (15; 0), (15; 3), (15; 5), and (15; 17) all give rise to Kloost-
erman polynomials. Also note that if Lc;d is a Kloosterman polynomial, then the same
holds for L2c;d, L

4
c;d, etc. We have listed only one member from each such cycle.

However, we conjecture that all Kloosterman polynomials can be obtained from
L1;3; L1;6, and L1;10 in a way that will be explained below, and therefore do not produce
other Kloosterman sum identities beyond the ones in Theorem 1.1. Let m¿ 1 be a
positive integer. In what follows, we will use f ◦ g to denote the composition of the
functions f and g from F2m to F2m , that is, the function de;ned by (f◦g)(x)=f(g(x)),
for all x∈F2m . For a = am−1 · · · a0 and b = bm−1 · · · b0, de;ne the binary convolution
c = a ∗ b of a and b by letting

ck =
m−1∑
i=0

aibk−imod 2;
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where indices are considered modulo m. It is easily checked that, as a consequence of
this de;nition, the linearized polynomials La and Lb satisfy La ◦ Lb = La∗b. Hence, we
also have that

La ◦ Lc;d = La∗c;a∗d:

Our next result clari;es when this operation produces a Kloosterman polynomial.

Lemma 4.3. For a = am−1am−2 · · · a1a0 ∈ {0; 1; : : : ; 2m − 1} with digits ai ∈ {0; 1}, let
La(x) =

∑m−1
i=0 aix2

i
be a linearized polynomial in F2[x].

(i) The function La : F2m → F2m is injective on T0 if and only if La is injective on
T1. This is the case if and only if one of the following hold:
(a) w(a) is odd and La has only one zero in F2m (so La is a permutation poly-

nomial), or
(b) w(a) is even, m is odd, and La has only zeroes 0; 1 in F2m (so La is two-to-one

on F2m).
(ii) Let w(d) be even. We have that La∗c;a∗d is a Kloosterman polynomial on F2m if

and only if both La and Lc;d are Kloosterman polynomials on F2m .

Proof. (i) Let La be the linearized polynomial on F2m as in the statement of the
lemma. Then the kernel K = {x∈F2m |La(x)= 0} is an F2-linear subspace of F2m , say,
of dimension k (so |K |=2k). Since T0 is an (m− 1)-dimensional F2-subspace of F2m ,
we have that either K ⊆ T0 or |K ∩ T0| = 2k−1. Next, we note that La is injective
on T0 if and only if La is injective on T1 if and only if K ∩ T0 = {0}. Combining
these two observations, we see that the condition K ∩ T0 = {0} holds if and only
if either (a) k = 0 (then necessarily also La(1) = w(a) = 1 and La is a permutation
polynomial on F2m), or (b) k = 1 and K = {0; b} for some b∈T1. In the latter case,
since Tr(La(x)) =w(a)Tr(x), we must have that w(a) is even, hence La(1) = 0 and so
b= 1∈T1, and therefore m is odd.
(ii) Obviously, La◦Lc;d=La∗c;a∗d can only be injective on T1 if Lc;d itself is injective

on T1, and in that case La ◦Lc;d is injective on T1 if and only if La is injective on the
image Tw(c) = Lc;d(T1) of T1 under Lc;d. Now the claim follows from part (i).

Remark 1. It is well known and not diPcult to prove that for q = pr with p prime,
a linearized polynomial La(x) =

∑m−1
i=0 aixq

i
in Fq[x] induces a permutation on Fqm if

and only if gcd(a(x); xm −1)=1 in Fq[x], where a(x)=
∑m−1

i=0 aixi. (Indeed, by writing
x∈Fqm with respect to a normal basis of Fqm we see that La(x) = 0 if and only if the
circulant matrix A associated with a = (am−1; : : : ; a0) has an eigenvector in Fmq with
eigenvalue 0, and this leads to the stated condition.) Similarly, La(x) has only zeroes
0 and 1 in Fqm if and only if gcd(a(x); xm − 1) divides x − 1.

Remark 2. We claim that the Kloosterman polynomials La∗c;a∗d obtained in part (ii)
of Lemma 4.3 do not produce new Kloosterman sum identities. To see this, consider a
linearized polynomial La. Note that for all b we have that La∗b= Lb∗a and Lã∗b= Lã∗b̃.
So we have that Lã∗c(z) = Lc̃(Lã(z)) and L]a∗d(z)) = Ld̃(Lã(z)) for all z ∈F2m and,
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as a consequence, the Kloosterman sum identity obtained by Theorem 1.1 from the
Kloosterman polynomial La∗c;a∗d is a special case of the identity obtained from Lc;d.
In particular, since L2 is a linearized Kloosterman polynomial, the squaring operation
Lc;d 	→ L2c;d = L2 ◦ Lc;d does not produce any new identities.

Example. For an application of the lemma, take for example L3(x) = x2 + x. Obvi-
ously, L3 has only zeroes 0; 1 in F2m , so by Lemma 4.3, part (i), L3 is a Kloosterman
polynomial for odd m. Now apply Lemma 4.3, part (ii): we have that L3 ◦ L1;3(x) =
L3(x) + L3(1=x+ 1=x2) = x2 + x+ 1=x+ 1=x4 = L3;5, and similarly, L3 ◦ L1;6 = L3;10 and
L3 ◦ L1;10 = L3;30, so we get the following. The functions

(i) L3;5(x) = x2 + x + 1=x + 1=x4,
(ii) L3;10(x) = x2 + x + 1=x2 + 1=x8,
(iii) L3;30(x) = x2 + x + 1=x2 + 1=x4 + 1=x8 + 1=x16

are Kloosterman polynomials on F2m for odd m.

Let Lm denote the collection of linearized polynomials on F2m with coePcients in
F2 that are injective both on T0 and on T1 (that is, linearized Kloosterman polynomi-
als). Either directly or as a consequence of part (ii) of Lemma 4.3, Lm is a group
under composition. In particular, suppose that Lc is a Kloosterman polynomial. Then
there is a b such that Lb is also a Kloosterman polynomial and Lb ◦ Lc = L1 (the iden-
tity map), that is, Lb(Lc(x)) = x for all x∈F2m . Hence by Lemma 4.3, we have that
Lc;d is a Kloosterman polynomial if and only if Lb ◦ Lc;d = L1; b∗d is a Kloosterman
polynomial.
We can now make precise what we meant by our earlier remark that all Klooster-

man polynomials can be obtained by the ones from Theorem 4.1. Based on extended
computer experiments, we oNer the following conjectures.

Conjecture 4.4. For all m¿ 1, we have that L1;d is a Kloosterman polynomial on F2m
if and only if d∈ {0; 3; 6; 10}.

Note that the “if”-part of this conjecture has been proved in Theorem 4.1. The “only
if”-part of this conjecture should not be too diPcult to prove since to do so it is only
required to produce for each d �∈ {0; 3; 6; 10} two elements in T1 with the same image
under L1;d.

Conjecture 4.5. Let m¿ 3. If Lc;d is a Kloosterman polynomial on F2m , then Lc is
in Lm.

If Conjecture 4.5 is true, then each Kloosterman polynomial is of the form La ◦ L1;d
for some La in Lm and some Kloosterman polynomial L1;d on F2m ; if both Conjectures
4.5 and 4.4 are true, then each Kloosterman polynomial in fact arises from the three
basic ones in Theorem 4.1. We remark that perhaps these conjectures can be proved
(in a very indirect way, though) using the results from [3].
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5. Discussion

Let p be a prime, and let $p = e2%i=p be a primitive complex pth root of unity. For
integer r¿ 1 and a∈Fpr , we de;ne the Kloosterman sum

K(pr; a) =
∑

x;y∈Fpr
xy=a

$Tr(x+y)p :

Note that K(2r ; a) equals the Kloosterman sum K(a) on F2r as de;ned at the beginning
of this paper. In general, these Kloosterman sums K(pr; a) tend to be distinct up to
the action of Gal(Fpr ;Fp), see for example [1,2,9]. Indeed, the pr − 1 Kloosterman
sums K(pr; a), where a∈Fpr \ {0}, are conjectured to be all distinct up to the action
of Gal(Fpr ;Fp) if and only if p¿ 2r (with the exception of p = 2 and r = 2 or
3). Kloosterman sum identities for ;elds of characteristic p other than 2 would thus
provide help in the lower bound part of this conjecture. The results here can indeed
be generalised to ;elds of other characteristics. For example, if p = 3, then x 	→
x − 1=x + 1=x3 is injective outside T0 and, hence, we obtain the identity K(3r ; b3(b −
b3)) = K(3r ; (b3 + 1)(b − b3)) = K(3r ; (b3 + 2)(b − b3)) for all r. We will report on
this and on further results elsewhere.
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