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1. Introduction

Let F, be a finite field of ordelg, whereq is a prime power. We writd=, \ {0} as
F. A polynomial f(X) € F4[X] is called apermutation polynomia(PP) of F, if the
associated polynomial functiofi : ¢ — f(c) from F, to itself is a permutation oF,.
Permutation polynomials have been studied extensively in the literaturg6,56@,10]
for surveys of known results on PPs. A very important class of polynomials whose
permutation behavior is well understood is the class of Dickson polynomials, which
we will define below.
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Let a € F, and letn be a positive integer. We define tHeickson polynomial
D, (X, a) overF, by

[n/2] n n—j ‘ '
D,(X,a) = Z < . )(_a)]Xn_217

i\

where [n/2] is the largest integexin/2. Alternatively we may define the Dickson
polynomial D, (X, a) to be the unique polynomial of degreeover F, such that

a n a\”n
Dn(x+§,a)=x +(X) . 1)
We refer the reader tf8, p. 8-9]for explanations on whyl) can be used to define the
Dickson polynomials. The PPs among the Dickson polynomials have been completely
classified. We state the following theorem due to Nobduét.

Theorem 1.1. The Dickson polynomiab, (X, a), a € F¥, is a permutation polynomial
of F, if and only if gcd(n, g% — 1) = 1.

A proof of this theorem can be found in the original paper of N6bdL#} or in [9,
p. 356] Dickson in his 1896 Ph. D. thesis observed and partially proved the theorem.

In this note, we construct a family of permutation polynomialsFef. These poly-
nomials are closely related to Dickson polynomidlg(X, 1) over Fo», wheren is of
the form # — 1. (See Propositior2.3 for the relation.) We state our main results as
follows.

Let m>1 be an integer, lek be an integer inf1, ..., m — 1} with gcdk, m) = 1,
and letr € {1,...,m — 1} be such thattr = 1(modm). Define the integer’ by
kr =14+ mm’ and writeq = 2" and ¢ = 2*. Throughout the rest of the note, we will
keep the definitions ofn, k, r, m’, g, o fixed. We will use Tr to denote the trace from
F, to F> and fore € F, we set

Te={xek; | Trx) =e}.
Also we define T¢X) to be the following polynomial irF2[X].
TrX) := X 4+ X2 4 ...+ x2""

For o,y in {0, 1}, we define the polynomials

o+1

(oc Tr(X) + Y123 xa")
X2

Hyy(X) := 7 Tr(X) +
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(Note that H,,(X) is indeed a polynomial inX with coefficients in F, and
HW/(O)ZO.)
Our main theorem is

Theorem 1.2. Let m, k be positive integers witlgcdk, m) =1, letr e {1,...,m —1}
be such thatkr = 1(modm), and leta,y € {0, 1}. Then the mappingd,, : x —
H, ,(x), x € Fy, mapsTo bijectively to To, and mapsT; bijectively t0 T, (utyym-
In particular, the polynomialH, ,(X) is a PP ofFo« if and only if r 4 (o 4 y)m =
1(mod 2.

The polynomialsH, ,(X) arose in our recent work on the association scheme af-
forded by the action of PGI2, ¢) on the set of exterior lines to a non-degenerate conic
in PG(2,2™) [5]. In order to prove that the fusion by the Frobenius map of the afore-
mentioned association scheme is pseudocyclic, we need to investigate the permutation
behavior of the polynomialgi, ,(X). We believe that the polynomiald, . (X) are of
independent interest. In Section 2, we will explain the connection between Dickson
polynomials and the polynomiald, ,(X). In Section 3, we give a proof of our main
theorem.

2. Relating Hy ,(X) to Dickson polynomials

Let m,k,r,m’,q,c be defined as in Section 1, so that ¢cdn) = 1 andkr =
1+ m'm. Fora, § € {0, 1}, we define the polynomials

r—1

foX) = aTr(X) + > X7

i=0
and

k=1

gp(X) = BTrCX) + > X2,
=0

We will use f, and gz to denote the associated polynomial functions frépmto F,.
Also using f,(X), we can rewriteH, ,(X) as

Y X g+1
Hyy(X) = 3 Tr(X) + f(X—)Z

In the following lemma we collect the properties ¢f and g4 that will be used in the
sequel. Most of the properties are straightforward and appeaif@dl ifor completeness,
we provide a (different) proof here.
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Lemma 2.1. The mapsf, and gs are both linear onF,. They also have the following
additional properties

(i) For everyx e F,, we haveTr(f,(x)) = (r +am) Tr(x) and f,(1) = r + om.
(i) For everyx € F,, we haveTr(gg(x)) = (k + fm) Tr(x) and gg(1) = k + fm.
(iiiy For everyx € F,, we havef,(x)?+ f,(x) = x2+x and gl;(x)z—i—gﬁ(x) =x%+x.
(iv) We have thaif, mapsTg bijectively ontoTo and mapsT 1 bijectively ontoT 4.

In particular, f, is a permutation orF, if and only if r + am = 1(mod 2.
(v) We have thagz mapsTy bijectively ontoTo and mapsT; bijectively ontoT g,
In particular, gg is a permutation orfF, if and only if k + fm = 1(mod 2.
(vi) For everyx € F;, we havef,(gp(x)) = gg(fx(x)) = x + o Tr(x) with

6 =m' + ak + Br + apm.

We have thatl + om = (r + am)(k + fim).

(vii) For everyy € F, and for every/. € Fz, we havegg(y) = go(y) + 0Tr(y)
with y = y + ATr(y) and 0 = f§ + ik. Here the elementd of F, satisfies
m0 =k + fm + k(1 + om).

Proof. The claims (i) and (ii) are trivial. (Simply note that (I) = m.) The claims in
(i) are easily verified.

Since by (i) fy is linear, mapsTg to Tg, and mapsT1 to T,44,, Claim (iv) is
equivalent to the claim that iff,(x) = 0 and Tix) = 0, thenx = 0. To show this,
suppose thatf,(x) = 0. By (iii), we have that = £7(x) + fy(x) =x°+x, SOx =0
or x = 1. Now Tr(1) = m and by (i) we have thaif,(1) = r + wm. So TRl) =0
and f,(1) = 0 would imply thatr = m = 0(mod 2, contradicting the assumption that
rk = 1 (modm).

Similarly, claim (v) is equivalent to the claim that fs(x) = 0 and TKx) = O,
then x = 0, which can be shown in the same way as the claimffoabove. Indeed,
suppose thags(x) = 0. Then by (i) we have that G= gﬁ(x) +gp(x) = x% +x,
and sinces = 2¢ with gcdk, m) = 1, we conclude that = 0 or x = 1. Again the
assumptions that = Tr(1) = 0(mod 2 andk + fim = gp(1) = 0(mod 2 would imply
that m = k = 0(mod 2, which contradicts'k = 1 (modm).

To prove claim (vi), first note that
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, m'm—1
- m !
t=0
= x +m' Tr(x).

Then use (i), (i), and the definitions of, and gs to verify claim (vi) for arbitrary
o and . The last part of claim (vi) follows immediately from (i) and (ii) by taking
x =1

Finally, lety = y + ATr(y). Then

gp(y) = BTr(y) + go(y)
= BTr(y) + go(y + A Tr(y))
= BTr(y) + kATr(y) + go(y)
= go(y) +0Tr(y)

with 6 = + kA. To prove the last part of (vii), simply take = 1. This completes the
proof of the lemma. [J

In what follows, we will show that the polynomiall, o(X) is closely related to
Dickson polynomials. First we observe that in characteristic 2, the Dickson polynomials
Dyi_1(X, 1) over F, are closely related to the linearized polynomial

2k—2 2k—l

Ti(X) =X+ X+ 4+ X2 +X

To simplify notation, we will useD,(X) to denoteD,(X, 1) over F,.
Proposition 2.2. For any k>1, Dy_;(X) = X2+17(1/ X)2.
This proposition can be proved by induction, §ég
We are now ready to relatd, o(X) = F2(X)°t1/ X2 10 Dox_1(X). We state our result
in the following proposition.
Proposition 2.3. Let m, k,r,m’,q,c be given as in Sectiod with gcdk, m) = 1.

Let « € {0,1} be such thatr + om = 1(mod 2, and let f € {0, 1} be defined by
f =m'+ ok (mod 2. Then for everyx € F%, we have

1/Dy_1(1/x)  if B
l/Dszk_1(1/x)2k if B

07
Hao(gp(x) = x7/gp(x)? = { X

In particular, H,o(X) is a PP ofF, if and only ifr 4+ om = 1(mod 2.
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Proof. First note that ifm = 0(mod 2 thenk=1(mod2 andr = 1(mod2. So it is
always possible to choosesuch thatr + om = 1 (mod 2. Whenr + am = 1(mod 2,
then by Lemma2.1, part (iv), the linear mapf, is a permutation of,. Its inverse is

gp) =x + x4+ x2 T 4 BTr(x) = Te(x) + BTr(x),

where f is defined in the statement of the proposition. In particular, we kav@m =
1(mod 2, by Lemma2.1, part (v). Therefore for € Fj we have

Hy,0(85(0)) = fu(gp()) ™ /gp(x)% = x7/gp(x)2. @)

Casel: = 0. (Hencek is odd.) In this casegg(x) = Ti(x). Therefore, for every
x € F, by Proposition2.2 and @), we have

Hyo(gp(x) = x7/ Ti(x)? = 1/ Dy _1 (1/x). ®)

Since gcdk, m) = 1 andk is odd, we see that g¢af — 1, g2 — 1) = 29¢dk.2m) _ 1 — 7,
By Theoreml.1, Dy _,(X) is a PP off,. So @) implies thatH, o(X) is a PP off,.

Case2: f=1. (Hencek +m = 1(mod 2.) In this case, for € Fj (so gg(x) # 0),
we have

k
x2+1

Hy0(gp(x)) = o
#08p x24x? o a? b x2 a2

k
2+l

X242

k
2Rl 2
= 2 22 om—k
Xe4+xc +--+x

= (1/Dgni_1(1/))% .

Since gcdm — k,m) =1 andm — k is odd, we see that g¢@"* — 1,42 — 1) = 1.
Hence by Theoreni.1, H,o(X) is a PP ofF,.

Finally if H,o(X) is a PP ofF,, thenr + am = 1(mod 2 since H,0(0) = 0 and
Hyo(1) =r 4+ om.

This completes the proof.[]

3. Proof of the main theorem

We will need the following lemmas in the proof of our main theorem.
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Lemma 3.1. With the definitions ofd, ,(X) and f,(X) given in Sectiond and 2, for
x € Fj, we have

+ fa(x)

X X

2
Ha () = 3 Tr(x) + (fam) L )

and

Tr(Hy,y(x)) = (r + (o0 + p)m) Tr(x).

Proof. The first assertion follows from part (iii) of Lemm2.1 Indeed, forx € F},
since f(x)? = fy(x) +x2+x, we have thatf,(x)°T1 = f,(x)2+ f4(x)(x2+x). Now

g+1
Hyy(x) = 7Tr(x) + %
2

= pTr(x) + <f°‘ix)> + f“;x) + fulx).

The second assertion follows from the first one in combination with part (i) of
Lemma2.1 O
Letm, k, g, o be as before. DefinBg = (F; \ {1}) U{oo} andB1 = {z € F,2\{0,1} |

2% = z71}. Note thatBy = (0“7 | i =1,...,q}, for a primitive element) of F .
Also, define the map) from F 2 U {oo} to itself by

d()=1/z+z 7Y, 4

where the usual convention on the symbolis adopted (in particulag)(0) = ¢p(o0) =
0 and ¢(1) = o). Finally, define the maps) and w1 from F 2 U {oo} to itself by

wo(z) = 2774, wi(z) =77t (5)

for z € F,2 and, in addition,w,.(c0) = oo for e = 0, 1. Our interest in the set8, and
the mapsp, wo, andwy is explained by the following lemma (see alg Lemma 1).

Lemma 3.2. (i) For e € F2, the map¢ mapsB, two-to-one ontoT,.
(i) The mapwg is a permutation 0B, and it is a permutation oB; if and only
if k=1(mod 2.
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(i) The mapwi is a permutation ofBg if and only if m = 1(mod2, and a
permutation ofB; if and only if m + k = 1 (mod 2.

Proof. (i). Let u : F 2U{oo} — F 2U{oo} be defined by(z) = 1/(z+1). Then the map
u is one-to-one fronf 2 U{oo} to itself, and¢(z) = u(z)?+u(z) for all z € Fy2U{oo}.

If z € Bg, thenu(z) € F,;, hence¢(z) € To. Sinceu mapsBg bijectively to F,, and
the mapz — z2 + z is two-to-one fromF, to To, we see thatp is two-to-one from
Bo to To. Now if z € By, then ¢(2)? = ¢(z), henced(z) € F,. But u(z) ¢ F,, so
¢(z) € F; \ To = T1. One can further verify thati mapsB; bijectively to the set
{x € F2 | x4 =x+1}, which is mapped two-to-one ontb, by the mapz — 2 +z

This shows thatp is two-to-one fromB1 to T1.

(i) and (iii). For any integers, the mapz — z* is a permutation oBg if and only
if gcd(s, 2" — 1) = 1, and a permutation dB; if and only if gcds, 2" +1) = 1. Now
suppose that gad, m) = 1. If s = 2K —1, then gcds, 2 —1) = 1 (hencez — 2 1is
a permutation 0Bg), and gcds, 2" +1) = ged(2X — 1, 22" —1)/ged(2k —1,2" — 1) =
20cdk.2m) _ 1 S0 ged2k — 1,2" +1) = 1 if and only if k is odd. Hence the map
2+ 7221 is a permutation oB; if and only if k = 1(mod 2. Next, if s = 2€ + 1,
then geds, 2" —1) = ged(2¥ 41, 2" — 1) = ged(2% —1, 2" —1)/ ged(2k —1, 2" — 1) =
20cdm.2) _ 1. So ged2k 4+ 1,2" — 1) = 1 if and only if mis odd. Finally

ged2” +1,5) = ged2” + 1,28 + 1)
= gcd2?" — 1,2 + 1)/ ged(@" — 1, 2 + 1)
— (chd(Zm,Zk) _ 1)(2gcd(m,k) _ 1)/((chd(m2k) _ 1)(2ng(2m,k) _ 1))

’

so ged2™ 4+ 1,2 + 1) = 1 if and only if precisely one ok, mis odd. [

In the sequel we will use the map defined in 4) and the mapsvg and w, defined
in (5) to simplify an equation involvings(x), x € F 2, using the following lemma.
Lemma 3.3. Let m, k, g, o be defined as in Sectioh

(i) For z € Fj2\ {0, 1}, we have that

k .
Z(z +zH? ="+ )+ 7o
=1

(i) For z € F2\ {0,1}, we have thatgd(¢(2)) = ()" "/p(wo(z)) and 1+
25((2) = (P dp(wi(2)).

Proof. To prove (i), we use induction ok. For k = 1, we haves = 2 and the
assertion is trivial. Next, if the assertion holds fgrthen using induction hypothesis,
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we have forz € F,2\ {0, 1}

k+1 ,
Z(Z +Z—l)—2~’ — (ZO'—]. + Zl—O’)/(Z + Z—l)O’-‘rl + (Z +Z—1)—26
j=1

= ((z“—l +27NE+2H + @+ z—1)> [z +z7hH2oH
— (ZZ(T—l + Zl—ZU)/(Z +Z—l)20'+1

and the assertion holds also fbH 1. This proves (i).
The first assertion in (ii) is a direct consequence of (i); the second assertion is a
consequence of the fact thag + z 1)t = 70+ 4 01 4 ;=041 4 =01 ]

We are now ready to give the proof of our main theorem.

Proof of Theorem 1.2.By Lemma3.1, the mappingH, , : x — H,,(x), x € F,, maps
To to To, and mapsy to T, (x49)m- SO it suffices to show that, , is injective on both
To and T1. Forx € Tg, we haveH, ,(x) = Hoo(x) = Hyo(x). Since gcdm,r) =1,
it is always possible to choose € {0, 1} such thatr + am = 1(mod 2. It follows
from Proposition2.3 that H,, mapsTg to Tg bijectively.

Now we show that if

Hy ., (x) = Hyy(y), andx, y € Ty, (6)
then x = y. Simplifying (6), we get

o+1 o+1
foc(xé — fﬁ((y)z . (7)
X y

Since gcdm, k) = 1, it is possible to choosg € {0, 1} such thatk + fim = 1 (mod 2.
By Lemma2.1, part (v), gz mapsT bijectively to Ty 4, = T1. Leta, b be elements
of T1 such thatgg(a) = x and gg(b) = y. Substitutingx, y in (7) by gg(a) and gz(b)
respectively, and applying Lemnfal, part (vi), we have

(a+06)"™  (b+0)7t?
gp@?  gp(b)?

. (8)
whered = m’ + o+ pr (mod 2. Seta + 6 =a andb + & = b. Applying Lemma2.1,
part (vii), with A = 9, we have

&6+l EJ+1

20@2+0  gob)2+0

©)
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where 0 = ff + ok (mod 2. Note that sincek + ffim = 1(mod 2, we have

mO =1+ k(1+ om) (mod?2 (20)
If one of a, b is zero, then by9), the other one is also zero, hence- b, and therefore
x = y. So from now on we assume that£ 0 andb # 0. Then we obtain from9)

that

go@? 0 go)? 0
go+1 go+l — bo+l po+1l’

(11)

Note that T¢a) = Tr(b) = 1+ om, hence by Lemma.2, part (i), we haves,r €
Biism (5.1 # 0,1, 00) such that

a= ¢(s) and b = ¢(t) =

T 5ts L 1
where the mapp is defined before the statement of Lem®&. Plugging these into
(12) and applying Lemm&.3, part (ii), we have

Sa—l + Sl—a +6(s + S—1)6+1 — tcr—l + tl—o’ +6(t + t—l)O’-‘rl’

that is,

P(wy(s)) = Plwy(1)),

wherewy, 6 =0 or 1(mod 2, is defined before the statement of Lem@a

By Lemma3.2, part (i), since the map is two-to-one fromB, to T, (e = 0 or
1), we havewy(s) = wy(r) or wy(s) = wy(r)~t = wy(r~1). By (10), if 0 = 0 and
1+0m = 1(mod2, thenk = 1(mod2; also, if 0 = 1, then 1+ ém = 0(mod 2
implies thatm = 1(mod 2, and 1+ om = 1(mod 2 implies thatm = 1+ k (mod 2.
So by Lemma3.2, part (ii) and (iii), the mapz — wy(z) is a permutation 0By s,,.
Therefore we have eithar=r or s = r~1, both lead toz = b, hencea = b, therefore
x = y. This completes the proof. [

Remark 1. In the above proof that,, , is injective onT, for e = 0 ande = 1, different
proofs were given for the two cases. However, it is not difficult to adapt the above
proof given for the case = 1 so that it works for both cases= 0 ande = 1. To this

end, we first define the translation mapsfor v = 0, 1 by 7,(x) = x +v. Now choose

p such thatk + fim = 1(mod 2 (this is possible sinc& and m are relatively prime),
defineé as in Lemma2.1, part (vi), and letd € {0, 1} satisfy 0 = f + ok (mod 2, so

that (10) holds. Lete € {0, 1}. We will in fact show that for allz in B, 5m),

Hy,(85(T50(9(2)))) = Tye(P(wp, (2))). (12)
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To see this, let € B,(14+5m)- NOow observe thap := ¢(z) € T,(146m) by Lemma3.2,
part (). SOy := y + de = 15.,(y) € T., and by Lemma2.1, part (i), we have
x := gp(y) € T.. Furthermore, as a consequence of our choicesfas, and 0, we
have by Lemme3.2, part (vi), that f;(gs(y)) = y, and by Lemma3.2, part (vii) with

4 =0, thatgg(y) = Oe+go(y). Also, if z ¢ {0, oo}, we can conclude from Lemni&a3
that Oe + g§(¢(z)) = ¢(2)°t/p(wy,(z)), and it is easily verified that this equation
also holds whery € {0, co}. Using these observations, we conclude that

Hoc,y(x) = Hoc,y(gﬁ(}’))
= ye+ falgp) /g5

= ye + 771/ (0e + g2(5))
= ye + ¢<z>“+1/<¢<z>“+1/¢<wee <z>>>

= ye + (15(106(;(1)),

that is, 2) holds.

Now by Lemma3.2, part (i) and (iii) and by {0), the mapwy, is a permutation
on B,(1+6m)- Moreover, by Lemma3.2, part (i), ¢ mapsB,14sm) two-to-one onto
Teat+om) = Tetom) (S€€ Lemma2.1, part (vi)), and this set is in turn mapped one-
to-one ontoT ¢4 (x+y)m) DY the mapr,,.. So the composition map— 7,.(¢p(wy,(2)))
in the right-hand side of12) is two-to-one fromB,1s5,) ONO T4 (a4yp)m). ON the
other hand,¢ mapsB,sn) two-to-one ontoT,14sm,), the mapts, maps this set
one-to-one ontor,, and gz is a permutation onT,, so the composition map
Hy y(gp(t5.(¢(2)))) is two-to-one if and only ifH, , is one-to-one ofl,. Combining
these two observations, we conclude tigt, is one-to-one orT, for bothe = 0 and
e=1.

Remark 2. In the case whereg =1 andm is odd, if r + (o + y)m = 1 (mod 2, then
r+om = 0(mod 2, hence by Theoren.2, H,o(X) is not a PP ofF,. Yet, by adding
Tr(X) to Hyo(X), we see thaiH, 1(X) = Tr(X) + Hy 0(X) is a PP ofF,.

Remark 3. Whenk =1 (soc = 2 andr = 1), the mapHy1 : F; — F, fixes To

elementwise and mapse T1 to x + 1/x + 1/x2. Therefore, by Theorer.2 the map
h:T1— Ty defined byh(x) = x + 1/x + 1/x2 is a permutation off ;. This fact was
used in[4] to prove a Kloosterman sum identity.

Remark 4. We give one more example to illustrate Theor&md Let k, m be positive
integer such thatR= 1 (modm). Let ¢ = 2*. Theng? = 2(mod 2" — 1). In this case,
we haver = 2, and

HO,O(X) = Xo—il + XZ(Gfl) + ngfl + X02+o—72
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and
Ho1(X) = Tr(X) + X1 4 x20-D 4 x0*-1 4 xo*+o-2

By Theoreml1.2, Hoo mapsTo bijectively to Tg, and T1 bijectively to To; and Ho 1
mapsTg bijectively to Tp, and T bijectively to T;. In particular, Hy 1(X), and hence
also the polynomial

Tr(X) + X% 1+ x20 V4 x4 x°

are PPs ofF,
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