
Finite Fields and Their Applications 11 (2005) 111–122
http://www.elsevier.com/locate/ffa

A class of permutation polynomials ofF2m related to
Dickson polynomials

Henk D.L. Hollmanna, Qing Xiangb,∗
aPhilips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
bDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 1 December 2003

Abstract

We construct a class of permutation polynomials ofF2m that are closely related to Dickson
polynomials.
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1. Introduction

Let Fq be a finite field of orderq, whereq is a prime power. We writeFq \ {0} as
F∗

q . A polynomial f (X) ∈ Fq [X] is called apermutation polynomial(PP) ofFq if the
associated polynomial functionf : c 	→ f (c) from Fq to itself is a permutation ofFq .
Permutation polynomials have been studied extensively in the literature, see[6,7,9,10]
for surveys of known results on PPs. A very important class of polynomials whose
permutation behavior is well understood is the class of Dickson polynomials, which
we will define below.
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Let a ∈ Fq and let n be a positive integer. We define theDickson polynomial
Dn(X, a) over Fq by

Dn(X, a) =
�n/2∑
j=0

n

n − j

(
n − j

j

)
(−a)jXn−2j ,

where �n/2 is the largest integer�n/2. Alternatively we may define the Dickson
polynomialDn(X, a) to be the unique polynomial of degreen over Fq such that

Dn

(
X + a

X
, a
)

= Xn +
( a

X

)n

. (1)

We refer the reader to[8, p. 8–9] for explanations on why (1) can be used to define the
Dickson polynomials. The PPs among the Dickson polynomials have been completely
classified. We state the following theorem due to Nöbauer[11].

Theorem 1.1. The Dickson polynomialDn(X, a), a ∈ F∗
q , is a permutation polynomial

of Fq if and only if gcd(n, q2 − 1) = 1.

A proof of this theorem can be found in the original paper of Nöbauer[11] or in [9,
p. 356]. Dickson in his 1896 Ph. D. thesis observed and partially proved the theorem.
In this note, we construct a family of permutation polynomials ofF2m . These poly-

nomials are closely related to Dickson polynomialsDn(X,1) over F2m , wheren is of
the form 2k − 1. (See Proposition2.3 for the relation.) We state our main results as
follows.
Let m�1 be an integer, letk be an integer in{1, . . . , m − 1} with gcd(k, m) = 1,

and let r ∈ {1, . . . , m − 1} be such thatkr ≡ 1(modm). Define the integerm′ by
kr = 1+ mm′ and writeq = 2m and� = 2k. Throughout the rest of the note, we will
keep the definitions ofm, k, r, m′, q,� fixed. We will use Tr to denote the trace from
Fq to F2 and for e ∈ F2 we set

Te = {x ∈ Fq | Tr(x) = e}.

Also we define Tr(X) to be the following polynomial inF2[X].

Tr(X) := X + X2 + · · · + X2m−1
.

For �, � in {0,1}, we define the polynomials

H�,�(X) := �Tr(X) +
(
�Tr(X) +∑r−1

i=0 X�i
)�+1

X2 .
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(Note that H�,�(X) is indeed a polynomial inX with coefficients in F2 and
H�,�(0) = 0.)
Our main theorem is

Theorem 1.2. Let m, k be positive integers withgcd(k, m) = 1, let r ∈ {1, . . . , m − 1}
be such thatkr ≡ 1(modm), and let �, � ∈ {0,1}. Then the mappingH�,� : x 	→
H�,�(x), x ∈ Fq , mapsT0 bijectively to T0, and mapsT1 bijectively to Tr+(�+�)m.
In particular, the polynomialH�,�(X) is a PP ofF2m if and only if r + (� + �)m ≡
1(mod 2).

The polynomialsH�,�(X) arose in our recent work on the association scheme af-
forded by the action of PGL(2, q) on the set of exterior lines to a non-degenerate conic
in PG(2,2m) [5]. In order to prove that the fusion by the Frobenius map of the afore-
mentioned association scheme is pseudocyclic, we need to investigate the permutation
behavior of the polynomialsH�,�(X). We believe that the polynomialsH�,�(X) are of
independent interest. In Section 2, we will explain the connection between Dickson
polynomials and the polynomialsH�,�(X). In Section 3, we give a proof of our main
theorem.

2. Relating H�,�(X) to Dickson polynomials

Let m, k, r, m′, q,� be defined as in Section 1, so that gcd(k, m) = 1 and kr =
1+ m′m. For �,� ∈ {0,1}, we define the polynomials

f�(X) := �Tr(X) +
r−1∑
i=0

X�i

and

g�(X) := �Tr(X) +
k−1∑
j=0

X2j

.

We will use f� and g� to denote the associated polynomial functions fromFq to Fq .
Also usingf�(X), we can rewriteH�,�(X) as

H�,�(X) = �Tr(X) + f�(X)�+1

X2 .

In the following lemma we collect the properties off� andg� that will be used in the
sequel. Most of the properties are straightforward and appeared in[2]. For completeness,
we provide a (different) proof here.
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Lemma 2.1. The mapsf� and g� are both linear onFq . They also have the following
additional properties.

(i) For everyx ∈ Fq , we haveTr(f�(x)) = (r + �m)Tr(x) and f�(1) = r + �m.
(ii) For everyx ∈ Fq , we haveTr(g�(x)) = (k + �m)Tr(x) and g�(1) = k + �m.
(iii) For everyx ∈ Fq , we havef�(x)�+f�(x) = x2+x and g�(x)2+g�(x) = x�+x.
(iv) We have thatf� mapsT0 bijectively ontoT0 and mapsT1 bijectively ontoTr+�m.

In particular, f� is a permutation onFq if and only if r + �m ≡ 1(mod 2).
(v) We have thatg� mapsT0 bijectively ontoT0 and mapsT1 bijectively ontoTk+�m.
In particular, g� is a permutation onFq if and only if k + �m ≡ 1(mod 2).

(vi) For everyx ∈ Fq , we havef�(g�(x)) = g�(f�(x)) = x + �Tr(x) with

� = m′ + �k + �r + ��m.

We have that1+ �m = (r + �m)(k + �m).
(vii) For every y ∈ Fq and for every� ∈ F2, we haveg�(y) = g0(ȳ) + �Tr(y)

with ȳ = y + �Tr(y) and � = � + �k. Here, the element� of F2 satisfies
m� = k + �m + k(1+ �m).

Proof. The claims (i) and (ii) are trivial. (Simply note that Tr(1) = m.) The claims in
(iii) are easily verified.
Since by (i) f� is linear, mapsT0 to T0, and mapsT1 to Tr+�m, claim (iv) is

equivalent to the claim that iff�(x) = 0 and Tr(x) = 0, thenx = 0. To show this,
suppose thatf�(x) = 0. By (iii), we have that 0= f �

� (x) + f�(x) = x2 + x, so x = 0
or x = 1. Now Tr(1) = m and by (i) we have thatf�(1) = r + �m. So Tr(1) = 0
and f�(1) = 0 would imply thatr ≡ m ≡ 0 (mod 2), contradicting the assumption that
rk ≡ 1(modm).

Similarly, claim (v) is equivalent to the claim that ifg�(x) = 0 and Tr(x) = 0,
then x = 0, which can be shown in the same way as the claim forf� above. Indeed,
suppose thatg�(x) = 0. Then by (iii) we have that 0= g2

�(x) + g�(x) = x� + x,

and since� = 2k with gcd(k, m) = 1, we conclude thatx = 0 or x = 1. Again the
assumptions thatm = Tr(1) ≡ 0 (mod 2) andk+�m = g�(1) ≡ 0 (mod 2) would imply
that m ≡ k ≡ 0 (mod 2), which contradictsrk ≡ 1(modm).
To prove claim (vi), first note that

f0(g0(x)) = g0(f0(x)) =
r−1∑
i=0

k−1∑
j=0

x2ki+j

=
kr−1∑
t=0

x2t
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= x2m′m +
m′m−1∑

t=0

x2t

= x + m′ Tr(x).

Then use (i), (ii), and the definitions off� and g� to verify claim (vi) for arbitrary
� and �. The last part of claim (vi) follows immediately from (i) and (ii) by taking
x = 1.
Finally, let ȳ = y + �Tr(y). Then

g�(y) = �Tr(y) + g0(y)

= �Tr(y) + g0(ȳ + �Tr(y))

= �Tr(y) + k�Tr(y) + g0(ȳ)

= g0(ȳ) + �Tr(y)

with � = �+ k�. To prove the last part of (vii), simply takey = 1. This completes the
proof of the lemma. �
In what follows, we will show that the polynomialH�,0(X) is closely related to

Dickson polynomials. First we observe that in characteristic 2, the Dickson polynomials
D2k−1(X,1) over Fq are closely related to the linearized polynomial

Tk(X) = X + X2 + · · · + X2k−2 + X2k−1
.

To simplify notation, we will useDn(X) to denoteDn(X,1) over Fq .

Proposition 2.2. For any k�1, D2k−1(X) = X2k+1Tk(1/X)2.

This proposition can be proved by induction, see[1].
We are now ready to relateH�,0(X) = f�(X)�+1/X2 to D2k−1(X). We state our result
in the following proposition.

Proposition 2.3. Let m, k, r, m′, q,� be given as in Section1 with gcd(k, m) = 1.
Let � ∈ {0,1} be such thatr + �m ≡ 1(mod 2), and let � ∈ {0,1} be defined by
� ≡ m′ + �k (mod 2). Then for everyx ∈ F∗

q , we have

H�,0(g�(x)) = x�+1/g�(x)2 =
{
1/D2k−1(1/x) if � = 0,

1/D2m−k−1(1/x)2
k

if � = 1.

In particular, H�,0(X) is a PP ofFq if and only if r + �m ≡ 1(mod 2).
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Proof. First note that ifm ≡ 0 (mod 2) then k ≡ 1(mod 2) and r ≡ 1(mod 2). So it is
always possible to choose� such thatr + �m ≡ 1(mod 2). When r + �m ≡ 1(mod 2),
then by Lemma2.1, part (iv), the linear mapf� is a permutation ofFq . Its inverse is

g�(x) = x + x2 + · · · + x2k−1 + �Tr(x) = Tk(x) + �Tr(x),

where� is defined in the statement of the proposition. In particular, we havek+�m ≡
1(mod 2), by Lemma2.1, part (v). Therefore forx ∈ F∗

q we have

H�,0(g�(x)) = f�(g�(x))�+1/g�(x)2 = x�+1/g�(x)2. (2)

Case1: � = 0. (Hencek is odd.) In this case,g�(x) = Tk(x). Therefore, for every
x ∈ F∗

q , by Proposition2.2 and (2), we have

H�,0(g�(x)) = x�+1/Tk(x)2 = 1/D2k−1(1/x). (3)

Since gcd(k, m) = 1 andk is odd, we see that gcd(2k −1, q2−1) = 2gcd(k,2m) −1 = 1.
By Theorem1.1, D2k−1(X) is a PP ofFq . So (3) implies thatH�,0(X) is a PP ofFq .
Case2: � = 1. (Hencek + m ≡ 1(mod 2).) In this case, forx ∈ F∗

q (so g�(x) �= 0),
we have

H�,0(g�(x)) = x2k+1

x2 + x22 + · · · + x2k + (x + x2 + · · · + x2m−1
)

= x2k+1

x2k+1 + · · · + x2m

=
(

x2m−k+1

x2 + x22 + · · · + x2m−k

)2k

= (
1/D2m−k−1(1/x)

)2k

.

Since gcd(m − k, m) = 1 andm − k is odd, we see that gcd(2m−k − 1, q2 − 1) = 1.
Hence by Theorem1.1, H�,0(X) is a PP ofFq .
Finally if H�,0(X) is a PP ofFq , then r + �m ≡ 1(mod 2) sinceH�,0(0) = 0 and

H�,0(1) = r + �m.
This completes the proof.�

3. Proof of the main theorem

We will need the following lemmas in the proof of our main theorem.
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Lemma 3.1.With the definitions ofH�,�(X) and f�(X) given in Sections1 and 2, for
x ∈ F∗

q , we have

H�,�(x) = �Tr(x) +
(

f�(x)

x

)2

+ f�(x)

x
+ f�(x)

and

Tr(H�,�(x)) = (r + (� + �)m)Tr(x).

Proof. The first assertion follows from part (iii) of Lemma2.1. Indeed, forx ∈ F∗
q ,

sincef�(x)� = f�(x)+ x2+ x, we have thatf�(x)�+1 = f�(x)2+ f�(x)(x2+ x). Now

H�,�(x) = �Tr(x) + f�(x)�+1

x2

= �Tr(x) +
(

f�(x)

x

)2

+ f�(x)

x
+ f�(x).

The second assertion follows from the first one in combination with part (i) of
Lemma2.1. �
Let m, k, q,� be as before. DefineB0 = (Fq \{1})∪{∞} andB1 = {z ∈ Fq2 \{0,1} |

zq = z−1}. Note thatB1 = {�(q−1)i | i = 1, . . . , q}, for a primitive element� of Fq2.
Also, define the map� from Fq2 ∪ {∞} to itself by

�(z) = 1/(z + z−1), (4)

where the usual convention on the symbol∞ is adopted (in particular,�(0) = �(∞) =
0 and�(1) = ∞). Finally, define the mapsw0 andw1 from Fq2 ∪ {∞} to itself by

w0(z) = z�−1, w1(z) = z�+1 (5)

for z ∈ Fq2 and, in addition,we(∞) = ∞ for e = 0,1. Our interest in the setsBe and
the maps�, w0, andw1 is explained by the following lemma (see also[3, Lemma 1]).

Lemma 3.2. (i) For e ∈ F2, the map� mapsBe two-to-one ontoTe.
(ii) The mapw0 is a permutation ofB0, and it is a permutation ofB1 if and only

if k ≡ 1(mod 2).
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(iii) The mapw1 is a permutation ofB0 if and only if m ≡ 1(mod 2), and a
permutation ofB1 if and only ifm + k ≡ 1(mod 2).

Proof. (i). Let u : Fq2∪{∞} → Fq2∪{∞} be defined byu(z) = 1/(z+1). Then the map
u is one-to-one fromFq2 ∪{∞} to itself, and�(z) = u(z)2+u(z) for all z ∈ Fq2 ∪{∞}.
If z ∈ B0, then u(z) ∈ Fq , hence�(z) ∈ T0. Sinceu mapsB0 bijectively to Fq , and
the mapz 	→ z2 + z is two-to-one fromFq to T0, we see that� is two-to-one from
B0 to T0. Now if z ∈ B1, then �(z)q = �(z), hence�(z) ∈ Fq . But u(z) /∈ Fq , so
�(z) ∈ Fq \ T0 = T1. One can further verify thatu mapsB1 bijectively to the set
{x ∈ Fq2 | xq = x + 1}, which is mapped two-to-one ontoT1 by the mapz 	→ z2 + z.
This shows that� is two-to-one fromB1 to T1.

(ii) and (iii). For any integers, the mapz 	→ zs is a permutation ofB0 if and only
if gcd(s,2m −1) = 1, and a permutation ofB1 if and only if gcd(s,2m +1) = 1. Now
suppose that gcd(k, m) = 1. If s = 2k −1, then gcd(s,2m −1) = 1 (hencez 	→ z2

k−1 is
a permutation ofB0), and gcd(s,2m +1) = gcd(2k −1,22m −1)/gcd(2k −1,2m −1) =
2gcd(k,2m) − 1. So gcd(2k − 1,2m + 1) = 1 if and only if k is odd. Hence the map
z 	→ z2

k−1 is a permutation ofB1 if and only if k ≡ 1(mod 2). Next, if s = 2k + 1,
then gcd(s,2m −1) = gcd(2k +1,2m −1) = gcd(22k −1,2m −1)/gcd(2k −1,2m −1) =
2gcd(m,2k) − 1. So gcd(2k + 1,2m − 1) = 1 if and only if m is odd. Finally

gcd(2m + 1, s) = gcd(2m + 1,2k + 1)

= gcd(22m − 1,2k + 1)/gcd(2m − 1,2k + 1)

= (2gcd(2m,2k) − 1)(2gcd(m,k) − 1)/((2gcd(m,2k) − 1)(2gcd(2m,k) − 1)),

so gcd(2m + 1,2k + 1) = 1 if and only if precisely one ofk, m is odd. �
In the sequel we will use the map� defined in (4) and the mapsw0 andw1 defined

in (5) to simplify an equation involvingg�(x), x ∈ Fq2, using the following lemma.

Lemma 3.3. Let m, k, q,� be defined as in Section1.

(i) For z ∈ Fq2 \ {0,1}, we have that

k∑
j=1

(z + z−1)−2j = (z�−1 + z1−�)/(z + z−1)�+1.

(ii) For z ∈ Fq2 \ {0,1}, we have thatg2
0(�(z)) = (�(z))�+1/�(w0(z)) and 1 +

g2
0(�(z)) = (�(z))�+1/�(w1(z)).

Proof. To prove (i), we use induction onk. For k = 1, we have� = 2 and the
assertion is trivial. Next, if the assertion holds fork, then using induction hypothesis,



H.D.L. Hollmann, Q. Xiang /Finite Fields and Their Applications 11 (2005) 111–122 119

we have forz ∈ Fq2 \ {0,1}
k+1∑
j=1

(z + z−1)−2j = (z�−1 + z1−�)/(z + z−1)�+1 + (z + z−1)−2�

=
(

(z�−1 + z1−�)(z + z−1)� + (z + z−1)

)
/(z + z−1)2�+1

= (z2�−1 + z1−2�)/(z + z−1)2�+1

and the assertion holds also fork + 1. This proves (i).
The first assertion in (ii) is a direct consequence of (i); the second assertion is a

consequence of the fact that(z + z−1)�+1 = z�+1 + z�−1 + z−�+1 + z−�−1. �
We are now ready to give the proof of our main theorem.

Proof of Theorem 1.2.By Lemma3.1, the mappingH�,� : x 	→ H�,�(x), x ∈ Fq , maps
T0 to T0, and mapsT1 to Tr+(�+�)m. So it suffices to show thatH�,� is injective on both
T0 and T1. For x ∈ T0, we haveH�,�(x) = H0,0(x) = H1,0(x). Since gcd(m, r) = 1,
it is always possible to choose� ∈ {0,1} such thatr + �m ≡ 1(mod 2). It follows
from Proposition2.3 that H�,� mapsT0 to T0 bijectively.
Now we show that if

H�,�(x) = H�,�(y), andx, y ∈ T1, (6)

then x = y. Simplifying (6), we get

f�(x)�+1

x2 = f�(y)�+1

y2 . (7)

Since gcd(m, k) = 1, it is possible to choose� ∈ {0,1} such thatk + �m ≡ 1(mod 2).
By Lemma2.1, part (v), g� mapsT1 bijectively to Tk+�m = T1. Let a, b be elements
of T1 such thatg�(a) = x andg�(b) = y. Substitutingx, y in (7) by g�(a) andg�(b)

respectively, and applying Lemma2.1, part (vi), we have

(a + �)�+1

g�(a)2
= (b + �)�+1

g�(b)2
, (8)

where� ≡ m′ + � + �r (mod 2). Set a + � = ā and b + � = b̄. Applying Lemma2.1,
part (vii), with � = �, we have

ā�+1

g0(ā)2 + �
= b̄�+1

g0(b̄)2 + �
, (9)
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where� ≡ � + �k (mod 2). Note that sincek + �m ≡ 1(mod 2), we have

m� ≡ 1+ k(1+ �m) (mod 2) (10)

If one of ā, b̄ is zero, then by (9), the other one is also zero, hencea = b, and therefore
x = y. So from now on we assume thatā �= 0 and b̄ �= 0. Then we obtain from (9)
that

g0(ā)2

ā�+1 + �
ā�+1 = g0(b̄)2

b̄�+1
+ �

b̄�+1
. (11)

Note that Tr(ā) = Tr(b̄) = 1+ �m, hence by Lemma3.2, part (i), we haves, t ∈
B1+�m (s, t �= 0,1, ∞) such that

ā = �(s) = 1

s + s−1 and b̄ = �(t) = 1

t + t−1 ,

where the map� is defined before the statement of Lemma3.2. Plugging these into
(11) and applying Lemma3.3, part (ii), we have

s�−1 + s1−� + �(s + s−1)�+1 = t�−1 + t1−� + �(t + t−1)�+1,

that is,

�(w�(s)) = �(w�(t)),

wherew�, � ≡ 0 or 1(mod 2), is defined before the statement of Lemma3.2.
By Lemma3.2, part (i), since the map� is two-to-one fromBe to Te (e = 0 or

1), we havew�(s) = w�(t) or w�(s) = w�(t)
−1 = w�(t

−1). By (10), if � = 0 and
1 + �m ≡ 1(mod 2), then k ≡ 1(mod 2); also, if � = 1, then 1+ �m ≡ 0 (mod 2)
implies thatm ≡ 1(mod 2), and 1+ �m ≡ 1(mod 2) implies thatm ≡ 1+ k (mod 2).
So by Lemma3.2, part (ii) and (iii), the mapz 	→ w�(z) is a permutation ofB1+�m.
Therefore we have eithers = t or s = t−1, both lead toā = b̄, hencea = b, therefore
x = y. This completes the proof. �

Remark 1. In the above proof thatH�,� is injective onTe for e = 0 ande = 1, different
proofs were given for the two cases. However, it is not difficult to adapt the above
proof given for the casee = 1 so that it works for both casese = 0 ande = 1. To this
end, we first define the translation maps	v for v = 0,1 by 	v(x) = x +v. Now choose
� such thatk + �m ≡ 1(mod 2) (this is possible sincek andm are relatively prime),
define� as in Lemma2.1, part (vi), and let� ∈ {0,1} satisfy � ≡ � + �k (mod 2), so
that (10) holds. Lete ∈ {0,1}. We will in fact show that for allz in Be(1+�m),

H�,�(g�(	�e(�(z)))) = 	�e(�(w�e(z))). (12)
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To see this, letz ∈ Be(1+�m). Now observe that̄y := �(z) ∈ Te(1+�m) by Lemma3.2,
part (i). So y := ȳ + �e = 	�e(ȳ) ∈ Te, and by Lemma2.1, part (ii), we have
x := g�(y) ∈ Te. Furthermore, as a consequence of our choices for�, �, and �, we
have by Lemma3.2, part (vi), thatf�(g�(y)) = ȳ, and by Lemma3.2, part (vii) with
� = �, that g�(y) = �e+g0(ȳ). Also, if z /∈ {0, ∞}, we can conclude from Lemma3.3
that �e + g2

0(�(z)) = �(z)�+1/�(w�e(z)), and it is easily verified that this equation
also holds whenz ∈ {0, ∞}. Using these observations, we conclude that

H�,�(x) = H�,�(g�(y))

= �e + f�(g�(y))�+1/g2
�(y)

= �e + ȳ�+1/(�e + g2
0(ȳ))

= �e + �(z)�+1/

(
�(z)�+1/�(w�e(z))

)

= �e + �(w�e(z)),

that is, (12) holds.
Now by Lemma3.2, part (ii) and (iii) and by (10), the mapw�e is a permutation

on Be(1+�m). Moreover, by Lemma3.2, part (i), � mapsBe(1+�m) two-to-one onto
Te(1+�m) = Te(r+�m) (see Lemma2.1, part (vi)), and this set is in turn mapped one-
to-one ontoTe(r+(�+�)m) by the map	�e. So the composition mapz 	→ 	�e(�(w�e(z)))

in the right-hand side of (12) is two-to-one fromBe(1+�m) onto Te(r+(�+�)m). On the
other hand,� mapsBe(1+�m) two-to-one ontoTe(1+�m), the map	�e maps this set
one-to-one ontoTe, and g� is a permutation onTe, so the composition mapz 	→
H�,�(g�(	�e(�(z)))) is two-to-one if and only ifH�,� is one-to-one onTe. Combining
these two observations, we conclude thatH�,� is one-to-one onTe for both e = 0 and
e = 1.

Remark 2. In the case where� = 1 andm is odd, if r + (� + �)m ≡ 1(mod 2), then
r +�m ≡ 0 (mod 2), hence by Theorem1.2, H�,0(X) is not a PP ofFq . Yet, by adding
Tr(X) to H�,0(X), we see thatH�,1(X) = Tr(X) + H�,0(X) is a PP ofFq .

Remark 3. When k = 1 (so � = 2 and r = 1), the mapH1,1 : Fq → Fq fixes T0
elementwise and mapsx ∈ T1 to x + 1/x + 1/x2. Therefore, by Theorem1.2 the map
h : T1 → T1 defined byh(x) = x + 1/x + 1/x2 is a permutation ofT1. This fact was
used in[4] to prove a Kloosterman sum identity.

Remark 4. We give one more example to illustrate Theorem1.2. Let k, m be positive
integer such that 2k ≡ 1(modm). Let � = 2k. Then�2 ≡ 2 (mod 2m − 1). In this case,
we haver = 2, and

H0,0(X) = X�−1 + X2(�−1) + X�2−1 + X�2+�−2
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and

H0,1(X) = Tr(X) + X�−1 + X2(�−1) + X�2−1 + X�2+�−2.

By Theorem1.2, H0,0 mapsT0 bijectively to T0, andT1 bijectively to T0; andH0,1
mapsT0 bijectively to T0, andT1 bijectively to T1. In particular,H0,1(X), and hence
also the polynomial

Tr(X) + X�−1 + X2(�−1) + X + X�

are PPs ofFq
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