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a b s t r a c t

Using results on Hadamard difference sets, we construct regular
graphical Hadamard matrices of negative type of order 4m4 for ev-
ery positive integerm. Ifm > 1, such a Hadamard matrix is equiv-
alent to a strongly regular graph with parameters (4m4, 2m4 +
m2,m4 + m2,m4 + m2). Strongly regular graphs with these pa-
rameters have been called max energy graphs, because they have
maximal energy (as defined by Gutman) among all graphs on 4m4
vertices. For oddm ≥ 3 the strongly regular graphs seem to be new.

© 2009 Elsevier Ltd. All rights reserved.

1. Max energy graphs

A strongly regular graph (srg) with parameters (n, k, λ, µ) is a graph with n vertices that is regular
of valency k (1 ≤ k ≤ n− 2) and that has the following properties:

• For any two adjacent vertices x, y, there are exactly λ vertices adjacent to both x and y.
• For any two nonadjacent vertices x, y, there are exactly µ vertices adjacent to both x and y.

A disconnected srg is the disjoint union of cliques of the same size. The adjacency matrix of a
connected srg with parameters (n, k, λ, µ) has three distinct eigenvalues k, r and s (k > r ≥ 0 > s),
of multiplicity 1, f and g , respectively, where

r + s = λ− µ, rs = µ− k, f + g = n− 1, k+ fr + gs = 0. (1)

The energy E(Γ ) of a graph Γ is the sum of the absolute values of the eigenvalues of its adjacency
matrix. The concept of energy of a graphwas introduced by Gutman in 1978 (see [5]), and it originated
from theoretical chemistry. The recent talk by Stevanović [10] provides a good survey of research
results on energy of graphs.
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If Γ is an srg, E(Γ ) = k + fr − gs = −2gs. By the use of (1) it is an easy exercise to see that the
srg’s of the title have energy 2m4(1+ 2m2). This equals an upper bound on the energy by Koolen and
Moulton [8], who proved the following result.

Theorem 1. Let Γ be a graph on n vertices. Then

E(Γ ) ≤
n(1+

√
n)

2
,

with equality holding if and only if Γ is an srg with parameters(
n,
n+
√
n

2
,
n+ 2

√
n

4
,
n+ 2

√
n

4

)
. (2)

(It is not standard to call the complete graph strongly regular, but here it is convenient to do so, in
order tomake the statement correct for n = 4.) An srg with parameters (2) will be called a max energy
graph of order n. The complement of a max energy graph is an srg with parameters(

n,
n−
√
n

2
− 1,

n− 2
√
n

4
− 2,

n− 2
√
n

4

)
.

However, this srg does not havemaximal energy. Thereforewe choose the complementary parameters
for the title of this note. In [8], a family of max energy graphs of order 4k was given. In [6], it is
conjectured that amax energy graph of order n exists for all even squares n. To support this conjecture,
several max energy graphs were constructed, including the case n = 4m4, with m even. In this note,
we will show that a max energy graph of order 4m4 also exists for all odd integersm. Thus we have:

Theorem 2. A max energy graph of order 4m4 exists for every positive integer m.

2. Regular graphical Hadamard matrices

A Hadamard matrix of order n is an n× nmatrix H with entries±1, such that
HH> = nIn,

where In is the identity matrix of order n. We will see below that max energy graphs are essentially
the same objects as certain special Hadamard matrices.

Definition 3. AHadamardmatrix is said to be graphical if it is symmetric and it has constant diagonal.
Note that if H is a graphical Hadamard matrix of order n with δ on the diagonal, and J is the n × n
all-ones matrix, then A = 1

2 (J − δH) is the adjacency matrix of a graph on n vertices.

Definition 4. A Hadamard matrix is said to be regular if all its row and column sums are constant.
Let H be a Hadamard matrix of order n. If H is regular, then there exists an integer ` such that
H1 = H>1 = `1. Since HH> = nI , we have `21 = n1. Hence ` = ±

√
n.

Definition 5. Let H be a regular graphical Hadamard matrix with row sum ` and δ on the diagonal.
We say that H is of positive type, or type +1 (respectively, negative type, or type −1) if δ` > 0
(respectively, δ` < 0).

It has been observed (see [4], or [6]) that if H is a regular graphical Hadamard matrix with δ on its
diagonal, of type ε, then A = 1

2 (J − δH) is the adjacency matrix of an srg with parameters(
n,
n− ε

√
n

2
,
n− 2ε

√
n

4
,
n− 2ε

√
n

4

)
, (3)

Conversely, if A is the adjacencymatrix of an srg with parameters (3) then J−2A is a regular graphical
Hadamard matrix of type ε. Thus a max energy graph is essentially the same as a regular graphical
Hadamard matrix of negative type.
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In [9] symmetric Bush type Hadamard matrices of order 4m4 have been constructed for every
odd integer m. These matrices are regular graphical of positive type. The next section shows that a
modification of the construction in [9] gives regular graphical Hadamard matrices of negative type,
and therefore max energy graphs of order 4m4, for all odd m. Since it is easy to construct (see [6])
a regular graphical Hadamard matrix of order 4n of positive as well as of negative type from one of
order nwe have the following result.

Theorem 6. For every positive integer m there exists a regular graphical Hadamard matrix of order 4m4
of positive, as well as of negative type.

In the Section 4, we show how in this case the negative type can be obtained from the positive type
(and vice versa) by Seidel switching.

3. Hadamard difference sets

Let G be a finite group of order v. A k-element subset D of G is called a (v, k, λ) difference set in G if
the list of ‘‘differences’’ d1d−12 , d1, d2 ∈ D, d1 6= d2, represents each non-identity element in G exactly
λ times. Usingmultiplicative notation for the group operation, D is a (v, k, λ) difference set in G if and
only if it satisfies the following equation in Z[G]:

DD(−1) = (k− λ)1G + λG, (4)
where D =

∑
d∈D d, D

(−1)
=
∑
d∈D d

−1, and 1G is the identity element of G. A subset D of G is called
reversible if D(−1) = D. The difference sets considered in this note have parameters

(v, k, λ) = (4n2, 2n2 ± n, n2 ± n).
These difference sets are calledHadamard difference sets (HDS), since their (1,−1)-incidencematrices
are Hadamard matrices. Alternative names used by other authors are Menon difference sets and H-
sets.

Lemma 7. Let t be a positive integer, and let D be a reversible (4t2, 2t2+ t, t2+ t) Hadamard difference
set in a group G of order 4t2 such that 1G 6∈ D. Then there exists a 4t2 × 4t2 regular graphical Hadamard
matrix of negative type.
Proof. Let Cay(G,D) be the Cayley graph with vertex set G and ‘‘connection’’ set D. That is, the vertex
set of Cay(G,D) is G, two vertices x, y ∈ G are connected by an edge if and only if xy−1 ∈ D. Let A
be the adjacency matrix of Cay(G,D). Since 1G 6∈ D, the diagonal entries of A are all zeros. Also A is
symmetric because D is reversible. Since D is a Hadamard difference set, we have

A2 = t2I + (t2 + t)J. (5)

Now let H = J− 2A. Then H is symmetric since A is. The diagonal entries of H are all ones (i.e., δ = 1).
The row sums of H are constant, and they are equal to ` := 4t2 − 2(2t2 + t) = −2t . Hence
δ` = −2t < 0. Furthermore, from (5), we have

H2 = 4t2I.

Therefore, H is a regular graphical Hadamard matrix of negative type. �
We now aim at constructing a reversible (4t2, 2t2 + t, t2 + t) Hadamard difference set in a group

G of order 4t2 with 1G 6∈ D and t = m2, m is an odd integer. We start by reviewing a construction
in [12] of Hadamard difference sets in a group of order 4p4, where p is an odd prime.
Let p be an odd prime and PG(3, p) be a three-dimensional projective space over GF(p). We will

say that a set C of points in PG(3, p) is of type Q if

|C | =
(p4 − 1)
4(p− 1)

,

and each plane of PG(3, p)meets C in either (p−1)
2

4 points or (p+1)
2

4 points. For each set X of points in
PG(3, p) we denote by X̃ the set of all non-zero vectors v ∈ GF(p)4 with the property that 〈v〉 ∈ X ,
where 〈v〉 is the one-dimensional subspace of GF(p)4 generated by v.
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Let S = {L1, L2, . . . , Lp2+1} be a spread of PG(3, p), and let C0, C1 be the two sets of type Q in
PG(3, p) such that

∀1≤i≤s|C0 ∩ Li| =
p+ 1
2

and ∀s+1≤i≤2s|C1 ∩ Li| =
p+ 1
2

, (6)

where s = p2+1
2 . (We note that if we take S to be the regular spread in PG(3, p), then examples of type

Q sets C0, C1 in PG(3, p) satisfying (6) were first constructed in [13] when p ≡ 3 (mod 4), in [3,12]
when p = 5, 13, 17, and in [1] for all odd primes p.) As in [12] we set

C2 := (L1 ∪ · · · ∪ Ls) \ C0,
C3 := (Ls+1 ∪ · · · ∪ L2s) \ C1.

Note that C0 ∪ C2 = L1 ∪ · · · ∪ Ls and C1 ∪ C3 = Ls+1 ∪ · · · ∪ L2s.
Let A (resp. B) be a union of (s − 1)/2 lines from {Ls+1, . . . , L2s} (resp. {L1, . . . , Ls}). Let K =

{1, a, b, ab} andW = (GF(p)4,+). Define

D0 := C̃0 ∪ Ã,
D2 := C̃2 ∪ Ã,
D1 := C̃1 ∪ B̃,
D3 := W \ (C̃3 ∪ B̃).

Then

|D0| = |D1| = |D2| =
p4 − p2

2
, |D3| =

p4 + p2

2
.

By Theorem 2.2 [12] the set

D := (1,D0) ∪ (a,D1) ∪ (b,D2) ∪ (ab,D3),

is a reversible (4p4, 2p4 − p2, p4 − p2) difference set in the group K × W . We note that 0 6∈ Di, for
i = 0, 1, 2, but 0 ∈ D3 since 0 6∈ C̃3 ∪ B̃.
Next we recall Turyn’s composition theorem. We will use the version as stated in Theorem 6.5 [2,

p. 45]. For convenience we introduce the following notation. LetW1,W2 be two groups. For A, B ⊆ W1
and C,D ⊆ W2, we define the following subset ofW1 ×W2.

∇(A, B; C,D) :=
(
(A ∩ B)× C ′

)
∪
(
(A′ ∩ B′)× C

)
∪
(
(A ∩ B′)× D′

)
∪
(
(A′ ∩ B)× D

)
,

where A′ = W1 \ A, B′ = W1 \ B, C ′ = W2 \ C , and D′ = W2 \ D.

Theorem 8 (Turyn [11]). Let K = {1, a, b, ab} be a Klein four group. Let

E1 = (1, A0) ∪ (a, A1) ∪ (b, A2) ∪ (ab, A3)

and

E2 = (1, B0) ∪ (a, B1) ∪ (b, B2) ∪ (ab, B3)

be reversible Hadamard difference sets in groups K ×W1 and K ×W2, respectively, where |W1| = w21 and
|W2| = w22 ,w1 andw2 are odd, Ai ⊆ W1 and Bi ⊆ W2, and

|A0| = |A1| = |A2| =
w21 − w1

2
, |A3| =

w21 + w1

2
,

|B0| = |B1| = |B2| =
w22 − w2

2
, |B3| =

w22 + w2

2
.

Let

E = (1,∇(A0, A1; B0, B1)) ∪ (a,∇(A0, A1; B2, B3))
∪ (b,∇(A2, A3; B0, B1)) ∪ (ab,∇(A2, A3; B2, B3)).
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Then

|∇(A0, A1; B0, B1)| = |∇(A0, A1; B2, B3)| = |∇(A2, A3; B0, B1)| =
w21w

2
2 − w1w2

2
,

|∇(A2, A3; B2, B3)| =
w21w

2
2 + w1w2

2
,

and E is a reversible (4w21w
2
2, 2w

2
1w
2
2 − w1w2, w

2
1w
2
2 − w1w2) Hadamard difference set in the group

K ×W1 ×W2.

Proposition 9. Let m > 1 be an integer, and let m = p1p2 · · · pt , where pi, i = 1, 2, . . . , t, are (not
necessarily distinct) odd primes. Let K = {1, a, b, ab} be a Klein four group and W = Z4p1 × · · · × Z4pt .
Then there exists a reversible Hadamard difference set E in G = K ×W such that

E = (1, E0) ∪ (a, E1) ∪ (b, E2) ∪ (ab, E3),

where Ei ⊂ W, |E0| = |E1| = |E2| = m4−m2
2 , |E3| = m4+m2

2 , and 1W 6∈ Ei for i = 0, 1, 2, but 1W ∈ E3.
Proof. We use induction on t . If t = 1, then the construction following the proof of Lemma 7
and preceding Turyn’s composition theorem guarantees the existence of the required difference set.
Assume that the proposition is true when m is a product of (t − 1) primes. We will prove that the
proposition is true whenm = p1p2 · · · pt , where pi, i = 1, 2, . . . , t , are odd primes.
Letw1 = p21p

2
2 · · · p

2
t−1. Then by induction hypothesis, there exists a reversible difference set

E1 = (1, A0) ∪ (a, A1) ∪ (b, A2) ∪ (ab, A3)

in K ×W1, whereW1 = Z4p1 × · · · × Z4pt−1 , Ai ⊂ W1, for all i = 0, 1, 2, 3,

|A0| = |A1| = |A2| =
w21 − w1

2
, |A3| =

w21 + w1

2
,

and 1W1 6∈ Ai for i = 0, 1, 2, but 1W1 ∈ A3.
Let w2 = p2t . Again by the construction following the proof of Lemma 7, there exists a reversible

difference set

E2 = (1, B0) ∪ (a, B1) ∪ (b, B2) ∪ (ab, B3)

in K ×W2, whereW2 = Z4pt , Bi ⊂ W2, for all i = 0, 1, 2, 3,

|B0| = |B1| = |B2| =
w22 − w2

2
, |B3| =

w22 + w2

2
,

and 1W2 6∈ Bi for i = 0, 1, 2, but 1W2 ∈ B3. By Theorem 8, we know that

E = (1,∇(A0, A1; B0, B1)) ∪ (a,∇(A0, A1; B2, B3))
∪ (b,∇(A2, A3; B0, B1)) ∪ (ab,∇(A2, A3; B2, B3))

is a reversible Hadamard difference set in K ×W1 ×W2 = K ×W , and

|∇(A0, A1; B0, B1)| = |∇(A0, A1; B2, B3)| = |∇(A2, A3; B0, B1)| =
m4 −m2

2
,

|∇(A2, A3; B2, B3)| =
m4 +m2

2
.

Next it is straightforward to check that 1W 6∈ ∇(A0, A1; B0, B1), 1W 6∈ ∇(A0, A1; B2, B3), 1W 6∈
∇(A2, A3; B0, B1), but 1W ∈ ∇(A2, A3; B2, B3). The proof of the proposition is complete. �

Theorem 10. Let m be a positive odd integer. Then there exists a 4m4×4m4 regular graphical Hadamard
matrix of negative type.
Proof. When m = 1, one can easily demonstrate a 4 × 4 regular graphical Hadamard matrix of
negative type. Therefore we will assume thatm is an odd integer greater than 1.
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By Proposition 9, there exists a reversible Hadamard difference set E = (1, E0)∪ (a, E1)∪ (b, E2)∪
(ab, E3) in a group G = K ×H , where K = {1, a, b, ab} is a Klein four group and H is an abelian group
of order m4, such that |E0| = |E1| = |E2| = m4−m2

2 , |E3| = m4+m2
2 , and 1H 6∈ Ei for i = 0, 1, 2, but

1H ∈ E3.
Let E ′ = (K×H)\E. That is, E ′ is the complement of E. And letD = (ab, 1H)E ′. ThenD is a reversible

(4m4, 2m4 +m2,m4 +m2) Hadamard difference set in K × H . Since

D = (ab, E ′0) ∪ (b, E
′

1) ∪ (a, E
′

2) ∪ (1, E
′

3),

and 1H 6∈ E ′3, we see that 1G 6∈ D. Applying Lemma 7 (with t = m
2), we conclude that there exists a

4m4 × 4m4 regular graphical Hadamard matrix of negative type. �

4. Seidel switching

Consider a graphical Hadamard matrix H of order n. Let X be a subset of {1, . . . , n}. If we multiply
rows and columns indexed by X by−1, we again obtain a graphical Hadamard matrix. The operation
on the corresponding graph is called Seidel switching. In some cases it is possible to switch a graphical
Hadamard matrix of positive type into one of negative type (and vice versa). Here we will show that
this is indeed the case for the graphical Hadamardmatrices constructed in [9],which leads to graphical
Hadamard matrices of negative type constructed in the previous section.

Lemma 11. Suppose

H =
[
H1 H12
H>12 H2

]
is a regular graphical Hadamard matrix of order n. Furthermore assume that H1 and H2 have row sum 0.
Then there exist regular graphical Hadamard matrix of order n of positive type, as well as one of negative
type.
Proof. Consider

H ′ =
[
H1 −H12
−H>12 H2

]
.

Then H ′ clearly is again a graphical Hadamard matrix with the same diagonal as H . Let ` be the row
sum of H . Then, since H1 and H2 have row sum 0, H12 has row and column sum `. This implies that H ′
is regular with row and column sum−`. So the type of H ′ is opposite to the type of H . �
Note that H1, H2 and H12 all have size n/2× n/2. Next we need to see that the construction in [9],

admits the required partition. The construction uses a reversible Hadamard difference set of the form
D = (1, E0) ∪ (a, E1) ∪ (b, E2) ∪ (ab, E3),

in the group {1, a, b, ab} × W , with |E0| = m4+m2
2 and |E1| = |E2| = |E3| = m4−m2

2 . The Hadamard
matrix H is symmetric of Bush type, and therefore regular graphical of positive type. Consider the
partition of H corresponding to the partition of {1, a, b, ab} × W into the cosets of the index two
subgroup {1, a} × W . This partitions D into D1 = (1, E0) ∪ (a, E1) and D2 = (b, E2) ∪ (ab, E3). We
have that |E0|+ |E1| = m4, thereforeH satisfies the condition of Lemma 11, and Seidel switching with
respect to this partition gives a regular graphical Hadamard matrix H ′ of negative type.
And, of course, also the construction presented in Proposition 9 admits the structure of Lemma 11.

Indeed, take the partition of the group {1, a, b, ab} ×W into the cosets of {1, ab} ×W .

5. Smallest open cases

The last section of [6] contains a discussion on the status of the conjecture that there exist a max
energy graph and a regular graphical Hadamard matrix of negative type of order n = 4t2 for all t . It
was stated that the first open case is t = 7, n = 196. A careful search of the literature reveals that a
regular graphical Hadamard matrix of order 196 of positive type as well as one of negative type does
exist, see [7, p. 258].
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The case t = 9, n = 324 is constructed in this paper. Also existence has been established of regular
graphical Hadamard matrices of positive and negative type for t = 8 and t = 10 (see [6]). Therefore
now the first open case is t = 11, n = 484. We know of no graphical Hadamard matrix of this order.
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