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We generalize a construction of partial di!erence sets (PDS) by Chen, Ray-Chaud-
huri, and Xiang through a study of the TeichmuK ller sets of the Galois rings. Let
R"GR (p2, t) be the Galois ring of characteristic p2 and rank t with TeichmuK ller set
¹ and let n : RPR/pR be the natural homomorphism. We give a construction of PDS
in R with the parameters v"p2t, k"r (pt!1), j"pt#r2!3r, k"r2!r, where
r"lpt~s(p, t), 14l4ps(p, t), and s (p, t) is the largest dimension of a GF(p)-subspace
=LR/pR such that n~1(=)W¹ generates a subgroup of R of rank(t. We prove
that s (p, t) is the largest dimension of a GF(p)-subspace = of GF(pt) such that
dim=p(t, where=p is the GF(p)-space generated by M<p

i/1
w
i
Dw

i
3=, 14i4pN.

We determine the values of s (p, t) completely and solve a general problem about
dim

E
=r for an E-vector space = in a "nite extension of a "nite "eld E. The PDS

constructed here contain the family constructed by Chen, Ray-Chaudhuri, and Xiang
and have a wider range of parameters. ( 2000 Academic Press

Key =ords: "nite "eld; Galois ring; partial di!erence set; TeichmuK ller set; the
Cauchy}Davenport theorem; the Dyson e-transform.
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1. INTRODUCTION

Let G be a "nite abelian group of order v. A subset DLG is called
a (v, k, j, k)-partial di+erence set (PDS) in G if the di!erences d

1
d~1
2

(d
1
, d

2
3D, d

1
Od

2
) represent each nonidentity element in D exactly j times

and represent each nonidentity element in GCD exactly k times. A PDS is
called regular if eND and D is closed under inversion. (The requirement that
eND is not essential since D is a PDS if and only if GCD is.) As usual, we
identify a subset DLG with the element +

g|D
g in the group algebra Z[G].

Then a subset DLGCMeN is a regular PDS in G if and only if, for every
character s of G,

s (D)"G
k,

a or b,

if s is principal,

if s is nonprincipal,
(1.1)

where a and b are real numbers. In this case, the parameters of D are
(v, k, j, k), where

G
j"k#ab#a#b,

k"k#ab.
(1.2)

The reader is referred to Ma [7] for a thorough survey on the subject of
partial di!erence sets. As described in [7], partial di!erence sets are closely
related to partial geometries, Schur rings, strongly regular graphs, and
two-weight codes. Here we point out a new connection between partial
di!erence sets and bent functions on abelian groups. Let G be a "nite abelian
group and let G* be the character group of G. A function
f :GP¹"Mz3C : Dz D"1N is called a bent function if its Fourier transform

fK :G*PC

s> +
g|G

f (g)s(g) (1.3)

has the property that D fK (s) D"JDG D for all s3G* ([2]). This is a natural
generalization of the binary bent functions de"ned by Rothaus [11] and the
q-ary bent functions de"ned by Kumar et al. [3]. Let DLGCMeN be a partial
di!erence set whose character values are given by (1.1). De"ne

f :GP¹

g>G
1, if g"e,

eia, if g3D,

eib, if g3GC (DXMeN),

(1.4)
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where a, b are real numbers to be chosen. For each nonprincipal s3G*,

fK (s)"+
g|G

f (g)s (g)

"1#s (D)eia#s (GC(DXMeN))eib (1.5)

"G
1#aeia#(!a!1)eib,
1#beia#(!b!1)eib,

if s (D)"a,

if s (D)"b.

Thus f is a bent function on G if we can choose a and b such that

G
D1#aeia#(!a!1)eib D2"DGD,
D1#beia#(!b!1)eib D2"DG D.

(1.6)

The general condition for (1.6) to have a solution is rather complicated to
describe. However, if D is a Paley PDS in G, i.e., if D is a regular PDS with
parameters (v, (v!1)/2, (v!5)/4, (v!1)/4), then system (1.6) always has
a solution. Note that in this case the two nonprincipal values a, b of D satisfy
a#b"!1 and (a!b)2"v. Let g (a)"D1#aeia#be~ia D2!v. We have
g(0)"!v(0, g(n/2)"1'0 and g (n)"4!v. Thus g has at least one zero
in (0, n/2). When v54, g also has at least one zero in (n/2, n]. For each zero
a
0

of g, (a, b)"(a
0
,!a

0
) is a solution of (1.6).

Most of the known families of PDSs in an abelian group G are obtained
using a ring structure on G. When G is an elementary abelian p-group, it has a
"nite "eld structure. When G is a non-elementary abelian p-group, what one
needs is usually a local ring structure on G. Leung and Ma [4, 5] gave two
constructions of partial di!erence sets in the additive group of R]R where
R is a chain ring; their "rst construction has been generalized by Hou [2] to
the case where R is a quasi-Frobenius local ring. Chen et al. [1] constructed
a family of PDS in Zt

p2 by using the Galois ring structure GR(p2, t) on Zt
p2 .

(Also see Ray-Chaudhuri and Xiang [10] and Leung and Ma [6].) It is the
construction of [1] that this paper seeks to generalize.

The PDS's constructed in [1] have the following parameters:

v"p2t,

k"r (pt!1),

j"pt#r2!3r,

k"r2!r. (1.7)
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In (1.7), p is a prime, t'1, and

r"lpt~s#e, (1.8)

where s is the largest proper divisor of t and 14l4ps, e"0 or 1. One notes
that a larger value of s in (1.8) implies a larger range of the parameters of the
PDS. However, when t is a prime, its largest proper divisor is 1. The "rst goal
of this paper is to give a family of partial di!erence sets in Zt

p2 which contains
the family in [1]. The parameters of our PDSs are also given by (1.7) and (1.8).
However, in (1.8), s will be replaced by some function s (p, t). The function
s(p, t) is the largest integer s such that there is an s-dimensional subspace
=LGF(pt) such that the preimage of= in the TeichmuK ller set of GR(p2, t)
is contained in a subgroup of GR(p2, t) of rank(t. The second goal of this
paper is to determine the function s (p, t). To achieve this, we "rst establish an
equivalent de"nition for s (p, t), which rather surprisingly, is independent of
the Galois ring. It turns out that s (p, t) is the largest dimension of a GF(p)-
subspace= of GF (pt) such that dim=p(t, where=p is the GF (p)-vector
space generated by M<p

i/1
w
i
Dw

i
3=, 14i4pN. At this point, a more general

question arises naturally: Let ELK be "nite "elds with [K :E]"t and let
r be a positive integer. What is the largest dimension of an E-subspace= of
K such that=rOK? We answer this question completely by showing that
the largest dimension of such a = is

max
k D t

k A
t/k!2

r
#1B . (1.9)

In particular, s(p, t)"max
k D t

k(x(t@k)~2
p

y#1). It is worth noting that in an-
swering the above question, we proved a vector space analog of the Cau-
chy}Davenport Theorem ([8, p. 44]) in additive number theory. Returning to
PDS, we see that the PDS in this paper have a larger range of parameters
than those in [1] since

s (p, t)5the largest proper divisor of t (1.10)

in general and inequality (1.10) is strict in many cases, especially when t is
prime.

The paper is organized as follows. Section 2 provides some algebraic
background. It includes a brief review of the Galois rings and a description of
the "nite abelian p-groups in which every subgroup can be extended to
a direct component of the same rank. In Section 3, we give the construction of
the partial di!erence sets. The function s(p, t) arises naturally in the construc-
tion. Section 4 establishes the equivalent de"nition of the function s (p, t). In
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Section 5, the above question about dim=r is answered and s(p, t) is thus
determined.

2. ALGEBRAIC BACKGROUND

We begin with a brief review of the Galois rings. The reader is referred to
McDonald [9] for a detailed account of such rings. Let p be a prime and
n a positive integer. Let f3Z

pn
[x] be a monic polynomial of degree t whose

image in Z
p
[x] is irreducible. Then the ring structure of Z

p
[x]/( f ) depends

only on p, n and t but not on the choice of f. The ring Z
p
[x]/( f ) is called the

Galois ring of characteristic pn and rank t and is denoted by GR(pn, t). It is
known that GR(pn, t) is a local ring with maximal ideal pGR(pn, t) and
GR(pn, t)/pGR(pn, t):GF (pt). As an Z

pn-module, GR(pn, t) is free of rank t.
The group of units GR(pn, t)* of GR(pn, t) contains an unique cyclic subgroup
¹* of order pt!1. The set ¹"¹*XM0N is called the ¹eichmuK ller set of
GR(pn, t) and it forms a complete system of coset representatives of
GR(pn, t)/pGR(pn, t). Each element a3GR(pn, t) has an unique p-adic expan-
sion

a"m
0
#pm

1
#2#pn~1m

n~1
, m

i
3¹. (2.1)

The Frobenius map

p : GR(pn, t)
m
0
#pm

1
#2#pn~1m

n~1

P

>

GR(pn, t)
mp
0
#pmp

1
#2#pn~1mp

n~1

(2.2)

is an automorphism of GR(pn, t) of order t and Aut(GR (pn, t))"SpT. The
trace map Tr: GR(pn, t)PZ

pn is de"ned by

Tr(a)"
t~1
+
i/0

pi(a) for all a3GR(pn, t). (2.3)

The remainder of this section is devoted to a di!erent question: What kind
of "nite abelian p-groups G has the property that every subgroup H(G can
be extended to a direct component K of G such that rank K"rank H? The
fact that Zt

p2 has this property, which can be proved directly, will be used in
the next section. Here we give a complete answer to the question because of
its general interest.

PROPOSITION 2.1. ¸et G be a ,nite abelian p-group. ¹hen the following are
equivalent.

(i) G"Za
pn]Zb

pn~1 .
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(ii) For each H(G, there exist K, ¸(G such that HLK,
rank H"rank K and G"K]¸.

Proof. (i)N(ii). Let rank H"r and let H be generated by the rows of
an r](a#b) matrix A. Factor all the powers of p out of the "rst row of A
and let the resulting matrix be

C
x
1
2x

a
y
1
2y

b
* D . (2.4)

Then the rows of (2.4) generate a subgroup H
1

of G such that H
1
MH and

rank H
1
"r.

Case 1. Some x
i
isI0 (mod p). Without loss of generality, assume x

1
"1.

Let

t : GPG

a>a

1

!x
2

1

F }

!x
a

1

!y
1

1

F }

!y
b

1

. (2.5)

Then t3Aut(G) and t (H
1
) is generated by the rows of

1 0 2 0

0

F *

0

. (2.6)

Case 2. All x
i
,0 (mod p). Then at least one of y

j
is I0 (mod p). We may

assume y
b
"1. Let

t : GPG
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a>a

1 !x
1

} F

1 !x
a

1 !y
1

} F

1 !y
b~1

1

. (2.7)

Then again, t3Aut(G) and t (H
1
) is generated by the rows of

0 2 0 1

0

* F

0

. (2.8)

Using induction, we see that there are a t3Aut(G) and a subgroup K(G
such that t (H)LK and K is generated by the rows of an r](a#b) matrix
which has exactly one 1 in each row and at most one 1 in each column and
0 elsewhere. Thus rank K"r and G"K]¸ for some ¸(G. We have
HLt~1(K), rank t~1(K)"r and G"t~1 (K)]t~1(¸).

(ii)N(i). Assume G"Z
pn
]Z

pm]2, where m5n#2, and consider
H"S(1, p, 0 ,2, 0)T(G. Every cyclic subgroup of G containing H has to
be H itself. However, H is not a direct component of G. Suppose G"H]¸

for some ¸(G. Then

Z
pn]Z

pm]M0N"GWM(*, *, 0 ,2 , 0)N

"S(1, p, 0,2, 0)T](¸WM(*, *, 0,2 , 0)N)

KZ
pm~1]2 , (2.9)

which is a contradiction. j

3. NEW PARTIAL DIFFERENCE SETS IN Zt
p2

Let R"GR(p2, t). Let l :RPZ
p2 be a nondegenerate linear map; i.e., ker l

does not contain any nonzero ideal of R. (For example, the trace map Tr:
RPZ

p2 is nondegenerate.) De"ne s :RPC, via s(x)"fl(x), for all x3R,
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where f"e2nJ~1@p2. Then s
a
( )"s (a ) ) gives all the additive characters of

R as a runs over R. As abelian groups, R/pRKpR:Zt
p
. De"ne

S ), )T : R/pR]pRPpZ
p2KZ

p

SaN , pbT>l (apb), for all a, b3R. (3.1)

Then S ), )T is a well-de"ned nondegenerate Z
p
-bilinear form. Thus for any

Z
p
-subspaces ALR/pR, BLpR, AMLpR, BMLR/pR are de"ned, and

(( )M)M"( ), dim( )#dim( )M"t.

LEMMA 3.1. ¸et R denote the Galois ring GR (p2, t) with ¹eichmuK ller set
¹ and the group of principal units ¹*"¹CM0N.=ith the above notation, let
=LR/pR be a Z

p
-subspace such that n~1(=)W¹Lker l, where

n : RPR/pR is the projection. ¸et a3pR and

D"¹* (1#a#=M)LR. (3.2)

¹hen for each a3R,

s
a
(D)"G

D¹*E=M D, if a"0,

!D=M D , if a3pRCM0N,

!D=M D, if a"m (1#pg), m3¹*, g3¹,pg#aN=M,

DpR D!D=M D, if a"m (1#pg), m3¹*, g3¹, pg#a3=M.

(3.3)

Proof. Case 1. a"0. Obvious.

Case 2. a3pRCM0N. Let a"pm for some m3¹*. Then

s (aD)"s (p¹* (1#a#=M))"D=M D s (p¹*)"D=M D (s(p¹)!1)"!D=MD,

(3.4)

since p¹ is a subgroup of R and s is nonprincipal on p¹.

Case 3. a"m (1#pg), m3¹*, g3¹. Then

s (aD)"s (¹*(1#a#=M) (1#pg))

"s (¹*(1#pg#a#=M))

" +
3 *

s (e(1#pg#a))s (e=M). (3.5)

e T
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Note that s is principal on e=M8e=MLker l8eN3=. Thus (3.5) con-
tinues as

s(aD)"D=M D +
e|T*

e6 |W

s (e(1#pg#a))

"D=M DA +
e|n~1(W)WT

s (e)s(e (pg#a))!1B
"D=M DA +

e|n~1(W)WT

s (e(pg#a))!1B, since n~1(=)W¹Lker s. (3.6)

Since pg#a3pR, Me(pg#a) : e3n~1(=)W¹N is a subgroup of R. Note
that s is principal on this subgroup i! pg#a3=M since l(e (pg#a))"
Sn(e), pg#aT and n (n~1(=)W¹)"=. Hence

s (aD)"G
!D=M D,
D=M D( D= D!1)"DpR D!D=M D,

if pg#aN=M,

if pg#a3=M.
(3.7)

j

THEOREM 3.2. In the notation of ¸emma 3.1, let a
1
,2 , a

l
3pR represent

distinct cosets in pR/=M, and let

D"

l
Z
i/1

¹*(1#a
i
#=M ). (3.8)

¹hen for each a3R,

s
a
(D)"G

l D¹* D D=M D, if a"0,

!l D=M D, if a3pRCM0N,

!l D=M D, if a"m(1#pg), m3¹*, g3¹,

pgI!a
i

(mod=M) for all i,

DpR D!l D=M D, if a"m(1#pg), m3¹*, g3¹,

pg,!a
i

(mod=M) for some i.

(3.9)

¹he subset D is a regular PDS in R with parameters

v"p2t, k"l D=M D (pt!1), j"pt#l2 D=M D2!3l D=M D ,

k"l2 D=M D2!l D=M D , (3.10)
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and DX(pRCM0N) is a regular PDS in R with parameters

v"p2t,

k"(l D=M D#1) (pt!1),

j"pt#(l D=M D#1)2!3(l D=M D#1),

k"(l D=M D#1)2!(l D=M D#1). (3.11)

Proof. Equation (3.9), which follows directly from (3.3), states that D has
only two nonprincipal character values: !l D=M D and pt!l D=M D. Thus D is
a regular PDS in R and (3.10) follows from (1.2). To see the claims about
DX(pRCM0N), note that

s
a
(pRCM0N)"G

DpR D!1,

!1,

if a3pR,

if a3RCpR.
(3.12)

Hence DX(pRCM0N) has only two nonprincipal character values:
!(l D=M D#1) and pt!(l D=M D#1). j

The restriction n D
T
:¹PR/pR of n is a bijection. Use q : R/pRP¹ to

denote (n D
T
)~1. Note that q : (R/pR)*P¹* is a group isomorphism. In order

for the construction in Theorem 3.2 to work, all we need is a Z
p
-subspace

= of R/pR such that q (=)Lker l for some nondegenerate linear map
l3HomZ

p2
(R, Z

p2). The kernels of nondegenerate linear maps in
HomZ

p2
(R, Z

p2
) are precisely the subgroups of R of the type Zt~1

p2 . If q(=)
generates a subgroup of R of rank(t, then by Proposition 2.1, q (=) is
contained in a subgroup of R of the type Zt~1

p2 .
In Theorem 3.2, the range for l is 14l4p$*.W. To achieve the maximum

range of the parameters in (3.10) and (3.11), we want to maximize dim=. This
prompts the following de"nition.

DEFINITION 3.3. ¸et R"GR(p2, t) with ¹eichmuK ller set ¹ and let
q :R/pRP¹ be the inverse of the restriction of n :RPR/pR on ¹. De,ne

s(p, t)"maxMdim= := is a Z
p
-subspace of R/pR such that q (=) generates

a subgroup of R of rank(tN. (3.13)
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COROLLARY 3.4. ¸et R"GR(p2, t). ¹hen there are regular PDS in R with
the parameters

v"p2t,

k"r(pt!1),

j"pt#r2!3r,

k"r2!r, (3.14)

where

r"lpt~s(p, t)#e, 14l4ps(p, t), e"0, 1. (3.15)

If s is a proper divisor of t, we have the commutative diagram

GR(p2, s) 6 GR(p2, t) "R

Bn Bn
GR(p2, s)/pGR(p2, s) 6 GR(p2, t)/pGR(p2, t)

E E

GF (ps) GF (pt)

(3.16)

Let = be any one-dimensional GF (ps)-subspace of GF(pt). Then q(=)
generates a free GR(p2, s)-submodule of R of rank 1 since q : (R/pR)*P¹* is
a group isomorphism and q(GF(ps)*)LGR(p2, s). Thus q (=) generates
a subgroup of R of rank s(t. Choosing such a = in Theorem 3.2, one
obtains the PDS of [1]. The above arguments also show that s(p, t) is at least
as big as the largest proper divisor of t.

For the remainder of this paper, our goal is to determine the function s(p, t)
completely.

4. AN EQUIVALENT DEFINITION OF s (p, t)

In this section, we give an equivalent de"nition of s(p, t) (see (4.16) below),
which will be used to determine the values of s (p, t) completely in Section 5.
We indeed have two di!erent approaches to proving the equivalence of the
two de"nitions of s(p, t) given in (3.13) and in (4.16) respectively. The "rst
approach uses the idea that an additive subgroup of GR(p2, t) has rank(t if
and only if it is contained in the kernel of some order p2 additive character of
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GR(p2, t). Therefore this approach involves Galois ring traces. The starting
point of the second approach is the observation that an additive subgroup
H of GR(p2, t) has rank(t if and only if dim

GF(p)
(HWpGR(p2, t))(t. This

also leads to a direct proof of the equivalence of the two de"nitions. Here we
present the "rst approach in its full detail because we feel that some of the
ingredients such as the p-adic expansion of the Galois ring traces in the proof
might have other uses later on, and the connection with the generalized
Reed}Muller codes, in particular the use of derivatives in the proof, might be
interesting to people in related areas. We will also brie#y sketch the main
ideas of the second approach at the end of this section.

Let R"GR(p2, t). The TeichmuK ller sets of R and Z
p2 are denoted by ¹ (R)

and ¹(Z
p2) respectively. We will use the same n to denote both homomor-

phisms from R to R/pR and from Z
p2 to Z

p2/pZ
p2

. The inverse maps of
n D

T(R)
:¹(R)PR/pR"GF(pt) and n D

T(Zp2)
:¹(Z

p2)PZ
p2/pZ

p2"Z
p
are both

denoted by q. Let Tr : RPZ
p2 and tr :GF (pt)PZ

p
be the trace maps of R and

GF(pt) respectively. Every x3Z
p2 can be uniquely written as

x"a (x)#pb(x), a (x), b (x)3¹(Z
p2). (4.1)

Thus we have maps a, b : Z
p2P¹ (Z

p2). Obviously,

pb (x)"x!xp, for all x3Z
p2 . (4.2)

Let m3¹ (R) and x3R/pR. We "rst need to compute Tr((1#pm)q (x)).
Using the commutative diagram

R T3&" Z
p2

Bn Bn

R/pR Z
p2/pZ

p2

E E

GF(pt) 53&" Z
p

(4.3)

we have

Tr((1#pm)q (x))"Tr(q (x))#pTr(mq(x))

"a(Tr(q(x)))#pb (Tr(q(x)))#pq (tr(n(m)x))

"q(tr(x))#pb(Tr(q (x)))#pq(tr(n(m)x)). (4.4)
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By (4.2) and straightforward computations, we have

pb(Tr(q (x)))"Tr(q(x))!(Tr(q(x)))p

"!pq (Q (x)), (4.5)

where Q :GF (pt)PZ
p

is the function de"ned by

Q(x)" +
j0`2`jt~1/p

04j0 ,2, jt~1:p

(p!1)!

j
0
!2j

t~1
!
[p0(x)]j02[pt~1(x)]jt~1 (4.6)

and p is the Frobenius map of GF (pt). Therefore

Tr((1#pm)q (x))"q(tr(x))#pq(tr(n(m)x)!Q(x)). (4.7)

LEMMA 4.1. ¸et s(p, t) be de,ned as in (3.13). ¹hen

s (p, t)"maxMdim=:= is a subspace of R/pR"GF(pt) such that tr(=)"0

and Q D
W

is linearN. (4.8)

Proof. Let R* be the group of units of R. Clearly,

s(p, t)"maxMdim= : Tr(aq (=))"0 for some a3R*N

"maxMdim=: Tr((1#pm)q (=))"0 for some m3¹(R)N. (4.9)

However, by (4.7), Tr((1#pm)q (=))"08tr(=)"0 and Q D
W

( ) )"tr (n(m) ) )
for some m3¹(R); i.e., Q D

W
is linear. j

LEMMA 4.2. ¸et R be a commutative ring with identity, p a prime, and

F (X
1
,2, X

t
)" +

j1`2`jt/p
04j1 ,2 , jt:p

(p!1)!

j
1
!2j

t
!
Xj1

1 2Xjt
t
3R[X

1
,2 , X

t
]. (4.10)

¹hen for any (a
1
,2 , a

t
)3Rt,

F (X
1
#a

1
,2 , X

t
#a

t
)!F (X

1
,2, X

t
)

,(a
1
#2#a

t
) (X

1
#2#X

t
)p~1!a

1
Xp~1

1
!2!a

t
Xp~1

t

(mod R
p~2

[X
1
,2, X

t
]), (4.11)

where R
p~2

[X
1
,2, X

t
]"M f3R[X

1
,2 , X

t
] : deg f4p!2N.
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Proof. First assume that char R"0. Since

pF"(X
1
#2#X

t
)p!Xp

1
!2!Xp

t
, (4.12)

we have

p[F(X
1
#a

1
,2, X

t
#a

t
)!F (X

1
,2 , X

t
)]

,p(a
1
#2#a

t
) (X

1
#2#X

t
)p~1!pa

1
Xp~1

1
!2!pa

t
Xp~1

t

(mod R
p~2

[X
1
,2 , X

t
]) (4.13)

and (4.11) follows. If charRO0, let R@ be the polynomial ring over Z in DR D
indeterminants. Then there is an onto homomorphism / :R@PR which
induces an onto homomorphism / : R@[X

1
,2 , X

t
]PR[X

1
,2 , X

t
].

We obtain formula (4.11) by applying / to the same formula in
R@[X

1
,2, X

t
]. j

Every function f :GF (p)tPGF(p) can be uniquely represented as an ele-
ment in GF (p) [X

1
,2 , X

t
]/(Xp

1
!X

1
,2, Xp

t
!X

t
). The degree of such an

f is the degree of its polynomial representation. The set of all functions from
GF(p)t to GF (p) of degree4r, which is a generalized Reed}Muller code, is
denoted by GRM

p
(r, t). For f :GF (p)tPGF(p) and a3GF(p)t, the derivative of

f in the direction of a is de"ned to be

D
a
f : GF(p)tPGF (p)

x> f (x#a)!f (x). (4.14)

COROLLARY 4.3. ¸et Q be the function de,ned in (4.6). For any a3GF(pt),
we have

(D
a
Q) (x),tr(a) (tr(x))p~1!tr(axp~1) (mod GRM

p
(p!2, t)). (4.15)

Proof. This follows from Lemma 4.2 immediately. j

THEOREM 4.4. ¸et s (p, t) be de,ned as in (3.13). ¹hen

s (p, t)"maxMdim=:= is a subspace of GF(pt) and dim=p(tN,

(4.16)

where=p is the linear span of M<p
i/1

a
i
: a

i
3=N over GF(p).



PARTIAL DIFFERENCE SETS AND GALOIS RINGS 179
Proof. Let s"s(p, t). By Lemma 4.1, there is an s-dimensional subspace
=LGF(pt) such that tr D

W
"0 and Q D

W
is linear. Thus for any

a
1
,2 , a

p
3=, (D

a1
2D

ap
Q) D

W
"0. But by (4.15),

D
a1
2D

ap
Q"(p!1) !(tr(a

1
)2tr(a

p
)!tr(a

1
2a

p
))

"!(p!1)!tr(a
1
2a

p
). (4.17)

Thus tr(a
1
2a

p
)"0. Hence dim=p(t and s4the RHS of (4.16).

On the other hand, assume that there is a subspace=LGF(pt) such that
dim=p(t. Then there exists 0Oa3GF (pt) such that tr(a=p)"0. Let
a"ep for some e3GF (pt), and<"e=. Then tr(<p)"0, hence tr D

V
"0. We

claim that Q D
V

is linear. Since Q(rx)"rQ(x) for all x3GF (pt) and r3GF(p),
it is clear that

Q"Q
p
#Q

1
, (4.18)

where Q
p

and Q
1

are homogeneous of degrees p and 1. For each a3<, by
(4.15), we have

(D
a
Q) D

V
,(tr(a) (tr(x))p~1!tr(axp~1)) D

V
(mod GRM

p
(p!2, t@))

"0, (4.19)

where t@"dim<. Hence, Q
p
D
V
"0. Therefore Q D

V
"Q

1
D
V
, which is linear.

Hence dim="dim<4s (p, t); namely, the RHS of (4.16) is 4s (p, t). This
completes the proof. j

As we mentioned at the beginning of this section, there is a second
approach to proving the equivalence of the two de"nitions of s(p, t). This
approach uses the fact that an additive subgroup H of GR(p2, t) has rank(t
if and only if dim

GF(p)
(HWpGR(p2, t))(t. We brie#y explain the idea of this

approach.
Let R and q be de"ned as before. Let= be a GF(p)-subspace of GF(pt) and

let Sq(=)T be the subgroup of R generated by q(=). In order to "nd the
maximum dimension of = such that rank(Sq (=)T)(t, we therefore con-
sider=@"Sq (=)TWpR. It turns out that by "nding a special generating set
of =@, one can construct a GF(p)-subspace < in GF(pt) such that
dim

GF(p)
="dim

GF(p)
< and dim

GF(p)
=@"dim

GF(p)
<p, where <p is the

GF(p)-subspace spanned by M<p
i/1

v
i
Dv

i
3<, 14i4pN. It then follows that

s(p, t)"maxMdim= := is a subspace of GF(pt) and dim=p(tN. This
provides another proof of Theorem 4.4.
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5. THE DETERMINATION OF s(p, t)

Let t and r be positive integers. We de"ne

M(r, t)"max
k D t

kA
t/k!2

r
#1B . (5.1)

The main result in this section is the following theorem:

THEOREM 5.1. ¸et ELK be ,nite ,elds with [K : E]"t and let r be a
positive integer. ¹hen

M(r, t)"maxMdim
E
= := is an E-subspace of K such that =rOKN, (5.2)

where=r is the E-vector space generated by M<r
i/1

w
i
: w

i
3=, 14i4rN.

It follows immediately from Theorem 5.1 that s(p, t)"M(p, t). We begin
with some preliminary properties of the function M(r, t). Obviously,

M (r, t)5kM Ar,
t

kB for any divisor k of t (5.3)

and

M(r, t)5
t!1

r
. (5.4)

(To see (5.4), let k"1 in (5.1).) Assume that r'1. Let k be a divisor of t and
write t/k"ar#j, 04j4r!1. Then

k A
t/k!2

r
#1B"G

ka"
t!kj

r
4

t

r
, if j"0, 1,

k (a#1)"
t#k (r!j)

r
'

t

r
, if j52.

(5.5)

LEMMA 5.2. Assume that r'1. ¸et

A"Mq : q is a prime divisor of t and q,0 or 1 (mod r)N (5.6)

B"Mq : q is a prime divisor of t and qI0 or 1 (mod r)N. (5.7)

¹hen
(i) M(r, t)"xt/ry if B"0.
(ii) If the smallest prime divisor q of t satis,es q4r/2, then M(r, t)"t/q.
(iii) M(r, t)"t

q
(xq~2

r
y#1) for some q3B if BO0.
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Proof. (i) Let M (r, t)"k(x(t@k)~2
r

y#1), where k D t, and write t/k"ar#j,
where j"0 or 1. Then

M(r, t)"ka"
t!kj

r
4

t

r
. (5.8)

On the other hand,

M(r, t)5
t!2

r
#1"

t

r
. (5.9)

This proves (i).
(ii) Let M (r, t)"k (x(t@k)~2

r
y#1), where k D t. Then

kA
t/k!2

r
#1B5M(r, t)5

t

q
5

2t

r
, (5.10)

which implies that t/k4r!2. Thus M(r, t)"k. Hence k is the largest proper
divisor of t, so k"t/q.

(iii) Use induction on t. Again, let M(r, t)"k(x(t@k)~2
r

y#1), where k Dt. By
(5.5), t/kI0, 1 (mod r). If k"1, choose any q3B. By (5.5),
t
q
(xq~2

r
y#1)5xt~2

r
y #1"M (r, t). Hence M(r, t)"t

q
(xq~2

r
y#1). If k'1,

by the induction hypothesis, M(r, t/k)" t
kq

(xq~2
r
y#1) for some prime divisor

q of t/k with qI0, 1 (mod r). Since

M (r, t)"kA
t/k!2

r
#1B4kMAr,

t

kB"
t

q A
q!2

r
#1B , (5.11)

the conclusion follows. j

To prove Theorem 5.1, we need a series of lemmas. Let ELK be "elds.
For any two E-vector spaces A, B of K, de"ne

AB"the E-vector space generated by Mab : a3A, b3BN . (5.12)

LEMMA 5.3. ¸et ELK be ,elds and let A, B be E-subspaces of K such that
0(dim

E
A(R, 0(dim

E
B(R, and ABOK. ¹hen for each a3A, b3B,

there exist a proper sub,eld H
ab

of K containing E and an H
ab
-vector space

<
ab

in AB such that ab3<
ab

and

dim
E
<
ab
#dim

E
H

ab
5dim

E
A#dim

E
B. (5.13)
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Proof. It su$ces to prove (5.13) for abO0. Replacing A by a~1A and
B by b~1B, we may further assume a"b"1, and 13AWB. Use induction
on dim

E
B. If dim

E
B"1, take <

ab
"A and H

ab
"E, the result follows. Now

assume dim
E
B'1. For any 0Oe3A, put

A(e)"A#Be,
(5.14)

B(e)"BWAe~1.

(We mention that (A(e), B(e)) is called the Dyson e-transform of (A, B); see [8, p.
42].) Note that A(e)B(e)LAB and dim

E
A(e)#dim

E
B(e)"dim

E
A#dim

E
B.

Case 1. B (e)"B for all 0Oe3A. Then BLAe~1 for all 0Oe3A, i.e.,
ABLA. Let H be the sub"eld of K generated by B and let <"A. Since
13B, we have HME and AB"AH"A. Therefore A is an H-space, HOK
as ABOK, 13<LAB, and

dim
E
<#dim

E
H5dim

E
B#dim

E
A. (5.15)

Case 2. B (e)OB for some 0Oe3A. Then 0(dim
E
B (e)(dim

E
B and

13A(e), 13B (e). By the induction hypothesis, there exist a proper sub"eld
H of K containing E and an H-vector space <LA(e)B (e)LAB such that
13< and

dim
E
<#dim

E
H5dim

E
A (e)#dim

E
B (e)

"dim
E

A#dim
E
B. (5.16)

j

In Lemma 5.3, if we do not insist on the sub"eld H
ab

being proper, we can
drop the condition that ABOK.

LEMMA 5.4. ¸et ELK be ,elds and let A, B be E-subspaces of K such that
0(dim

E
A(R and 0(dim

E
B(R. ¹hen for each a3A, b3B, there exist a

sub,eld H
ab

of K containing E and an H
ab
-vector space <

ab
in AB such that

ab3<
ab

and

dim
E
<
ab
#dim

E
H

ab
5dim

E
A#dim

E
B. (5.17)

Proof. In the case AB"K, simply take H
ab
"K and <

ab
"K. j

COROLLARY 5.5. ¸et ELK be ,elds such that [K : E]"t(R. If two
E-subspaces A, B of K satisfy dim A#dim B't, then AB"K.
E E
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Proof. By Lemma 5.4, there exist a sub"eld H of K containing E and an
H-vector space < in AB such that dim

E
<'t!dim

E
H. Since dim

E
H

divides both dim
E
< and t, we have dim

E
<5t. Hence ABM<"K. j

COROLLARY 5.6. ¸et ELK be ,elds such that [E :K]"t is a prime. ¹hen
for any two nonzero E-subspaces of A, B of K,

dim
E

AB5minMt, dim
E
A#dim

E
B!1N . (5.18)

Remarks. (i) Corollary 5.6 can be viewed as a vector space analog of the
following well-known theorem in additive number theory.

THE CAUCHY}DAVENPORT THEOREM [8, p. 44]. ¸et p be a prime and let A,
B be nonempty subsets of Z

p
. ¹hen

DA#B D5minMp, DA D#DB D!1N , (5.19)

where A#B"Ma#b :a3A, b3BN.
(ii) For "nite "elds, Corollary 5.6 can be generalized as follows: Let ELK

be "nite "elds and let A, B be two nonzero E-subspaces of K. Then

dim
E
AB5dim

E
A#dim

E
B!dim

E
H (AB), (5.20)

where H(AB)"Mx3K :xAB-ABN is the stabilizer of AB in K. This general-
ization will be proved in a forthcoming paper.

LEMMA 5.7. ¸et ELK be ,elds such that [K :E]"t(R and let
14s4r be integers. ¸et= be an E-vector space in K with dim

E
='M(r, t).

¹hen for any a
1
,2, a

s
3=, there exist a sub,eld F of K containing E with

dim
E
F"f, and an F-vector space < in=s such that a

1
,2, a

s
3< and

dim
E
<5G

sM(r, t)#1,

sfM Ar,
t

fB ,

if f"1,

if f'1.

(5.21)

Proof. If s"1, choose <"= and F"E. So, assume s52. Put F
1
"E

and <
1
"=. By Lemma 5.4, there exist a sub"eld F

2
of K containing E and

an F
2
-vector space <

2
in =2 such that a

1
a
2
3<

2
and

dim
E
<
2
5dim

E
=#dim

E
=!dim

E
F
2
. (5.22)

Apply Lemma 5.4 to the F
2
-space <

2
and F

2
=, we see that there exist

a sub"eld F
3

of K containing F
2

and an F
3
-vector space <

3
in
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<
2
F
2
="<

2
=L=2 such that a

1
a
2
a
3
3<

3
and

dim
E
<
3
5dim

E
<
2
#dim

E
F
2
=!dim

E
F
3
. (5.23)

Continuing this way, we see that for each 24i4s, there exist a sub"eld F
i
of

K and an F
i
-vector space <

i
in =i such that E"F

1
LF

2
L2LF

s
,

a
12

a
i
3<

i
and

dim
E
<
i
5dim

E
<
i~1

#dim
E
F
i~1
=!dim

E
F
i
. (5.24)

Adding up (5.24) for i"2,2 , s, we have

dim
E
<
s
52 dim

E
=!dim

E
F
s
#

s~1
+
i/2

(dim
E
F
i
=!dim

E
F
i
). (5.25)

Put <"<
s
, F"F

s
and f"dim

E
F
s
. If f"1, then F

i
"E for all 24i4s.

Thus by (5.25)

dim
E
<5sdim

E
=!(s!1)5s(M(r, t)#1)!(s!1)"sM (r, t)#1. (5.26)

Without assuming f"1, we have

dim
E
F
i
=!dim

E
F
i
5dim

E
=!dim

E
F
i

'M(r, t)!dim
E
F
i

5fM Ar,
t

fB!dim
E
F
i
, 24i4s. (5.27)

Since dim
E
F
i

divides both dim
E
F
i
= and f, we have

dim
E
F
i
=!dim

E
F
i
5fM(r, t

f
) for all 24i4s. Thus by (5.25),

dim
E
<'2M(r, t)!f#(s!2) fM (r, t

f
)

5s fM Ar,
t

fB!f. (5.28)

Hence dim
E
<5s fM(r, t

f
) since f Ddim

E
<. j

LEMMA 5.8. ¸et ELK be ,nite ,elds with [K :E]"t and let r be a
positive integer. If = is an E-subspace of K with dim

E
='M(r, t), then

=r"K.
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Proof. The conclusion is obvious when r"1 since M(1, t)"t!1. So
assume that r52. Put =

r~1
"Ma

1
2a

r~1
: a

i
3=, 14i4r!1N. For each

x3=
r~1

, by Lemma 5.7, there exist a sub"eld F
x

of K containing E with
[F

x
:E]"f

x
and an F

x
-vector space <

x
such that x3<

x
L=r~1 and

dim
E
<
x
5G

(r!1)M (r, t)#1,

(r!1) f
x
M Ar,

t

f
x
B ,

if f
x
"1,

if f
x
'1.

(5.29)

Since dim
E
F
x
='M(r, t)5f

x
M (r, t

fx
) and f

x
Ddim

E
F
x
=, we have

dim
E
F
x
=5f

x
(M(r, t

fx
)#1). Thus by (5.29) and (5.4),

dim
E
<
x
#dim

E
F
x
=5G

rM (r, t)#2't,

r f
x
M Ar,

t

f
x
B#f

x
5t ,

if f
x
"1,

if f
x
'1.

(5.30)

If dim
E
<
x
#dim

E
F
x
='t, then K"<

x
F
x
=L=r by Corollary 5.5 and we

are done. Thus we assume that dim
E
<
x
#dim

E
F
x
=4t for all x3=

r~1
. By

(5.30), the assumption implies that for all x3=
r~1

,
(i) f

x
'1, and

(ii) dim
E
F
x
="f

x
(M(r, t

fx
)#1)"t`(r~1)fx

r
.

We may assume that there exist x, y3=
r~1

such that F
x

/LF
y

and
F
y

/LF
x
. Otherwise, the sub"elds F

x
, x3=

r~1
, are linearly ordered,

hence Y
x|Wr~1

F
x
"F

z
for some z3=

r~1
. Since =r~1"+

x|Wr~1
<
x
, we

have F
z
=r~1"=r~1 . Then =r"(F

z
=)r, [K :F

z
](t, and

dim
Fz

F
z
='1

fz
M(r, t)5M(r, t

fz
). Using induction on t, we have =r"

(F
z
=)r"K, and we are done in this case.
Now put F"F

x
WF

y
, f"[F : E], g

x
"[F

x
:F], g

y
"[F

y
:F], s"[K :F],

and ;"F=. Then g
x
'1 and g

y
'1. We have the following diagram of

"elds:

K
D

F
x
F
y

/ C
F
x

F
y

C /
F
E

F
x
WF

y

(5.31)
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Note that fg
x
g
y
D t. Since

dim
E
F
x
F
y
;5dim

E
='M(r, t)5fg

x
g
y
M Ar,

t

fg
x
g
y
B (5.32)

and fg
x
g
y
Ddim

E
F
x
F
y
;, we have

dim
E
F
x
F
y
;5fg

x
g
y AM Ar,

t

fg
x
g
y
B#1B

5fg
x
g
y A

t/fg
x
g
y
!1

r
#1B (by (5.4))

"

t#(r!1) fg
x
g
y

r
. (5.33)

In the same way,

dim
E
;5

t#(r!1) f

r
. (5.34)

Putting together (5.33), (5.34) and the above condition (ii) on F
x

and F
y
, we

have

dim
F
;5

s#(r!1)

r

dim
F
F
x
;"

s#(r!1)g
x

r

dim
F
F
y
;"

s#(r!1)g
y

r

dim
F
F
x
F
y
;5

s#(r!1)g
x
g
y

r
. (5.35)

We now show that (5.35) is impossible. Since g
x
'1, we have

dim
F
F
x
F
y
;'dim

F
F
y
;, hence F

x
;O;. Choose u3F

x
;C; and consider
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the homomorphism

/ : F
y
/FPF

y
;/(F

x
;WF

y
; )

a >au. (5.36)

Since

dim
F
(F

y
/F)"g

y
!1

'

r!1

r
(g

y
!1)

5dim
F
F
y
;!dim

F
;

5dim
F
(F

y
;/(F

x
;WF

y
;)), (5.37)

we have ker /OM0N. Thus there exists an a3F
y
CF such that au3F

x
;.

Clearly, there is an onto homomorphism

t : (F
x
;/;) ?

F
F
y
PF

x
F
y
;/F

y
;

v? a >av. (5.38)

But by (5.35), dim
F
[(F

x
;/;)?

F
F
y
]4r~1

r
(g

x
!1)g

y
4dim

F
(F

x
F
y
;/F

y
;). Hence

kert"M0N. However, it is clear that t (au? 1!u? a)"0,
and 0Oau? 1!u ? a3(F

x
;/;)?

F
F
y

since aNF. We have a
contradiction. j

Now we are ready to prove Theorem 5.1.

Proof of ¹heorem 5.1. Because of Lemma 5.8, it su$ces to "nd an
E-subspace = of K such that dim

E
="M (r, t) and =rOK. We may

assume t'1. Let M(r, t)"k(x(t@k)~2
r

y#1), where k D t, k(t. Let F be the
"eld such that ELFLK and [F : E]"k. Write K"F[x] (x3K). Put
n"x(t@k)~2

r
y and let = be the F-subspace of K generated by M1, x ,2, xnN.

Then =r is the F-subspace generated by M1, x ,2, xnrN. Thus
dim

E
="k(n#1)"M (r, t) and

dim
E
=r"k (nr#1)"k Ar

t/k!2

r
#1B(t. (5.39)
j
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COROLLARY 5.9. ¸et p be a prime and t a positive integer. ¹hen

s (p, t)"M (p, t)"max
k D t

k A
t/k!2

r
#1B . (5.40)

Remarks. (i) When p"2, by Corollary 5.9 and Lemma 5.2, we have
s(2, t)"xt

2
y . This was previously proved in [12] by using some theory of

quadratic forms in characteristic two.
(ii) Corollary 5.9 determines the values of s(p, t) completely. Consequently,

the range of the parameters of the PDS in Corollary 3.4 is completely
determined.
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