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Constructions of strongly regular Cayley graphs using
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Abstract We give a construction of strongly regular Cayley graphs on finite fields
Fq by using union of cyclotomic classes and index 4 Gauss sums. In particular, we
obtain two infinite families of strongly regular graphs with new parameters.

Keywords Cyclotomy · Gauss sum · Index 4 Gauss sum · Strongly regular graph

1 Introduction

A strongly regular graph srg(v, k, λ,μ) is a simple and undirected graph, neither
complete nor edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.
(2) For each pair of adjacent vertices x, y, there are λ vertices adjacent to both x

and y.
(3) For each pair of nonadjacent vertices x, y, there are μ vertices adjacent to both x

and y.

For example, a pentagon is an srg(5,2,0,1), the 3 × 3 grid (the Cartesian product
of two triangles) is an srg(9,4,1,2), and the Petersen graph is an srg(10,3,0,1).
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The first two examples can be generalized. Let q = 4t + 1 be a prime power. The
Paley graph P(q) is the graph with the elements of the finite field Fq as vertices; two
vertices are adjacent if and only if their difference is a nonzero square in Fq . One can
readily check that P(q) is an srg(4t + 1,2t, t − 1, t). For a survey on strongly regular
graphs, we refer the reader to [4] and [10]. Strongly regular graphs are closely related
to two-weight linear codes, projective two-intersection sets in finite geometry, quasi-
symmetric designs, and partial difference sets. We refer the reader to [4, 6, 10, 16]
for these connections.

The adjacency matrix of a (simple) graph Γ is a (0,1)-matrix A with rows and
columns both indexed by the vertices of Γ , where Axy = 1 if and only if x, y have
an edge in Γ . Clearly A is symmetric with zeros on the diagonal. The eigenvalues of
Γ are by definition the eigenvalues of its adjacency matrix A. For convenience, we
call an eigenvalue of Γ restricted if it has an eigenvector orthogonal to the all-one
vector. Below is a well-known characterization of srg by using their eigenvalues; we
refer the reader to [4] for its proof.

Theorem 1.1 For a graph Γ of order v, neither complete nor edgeless, with adja-
cency matrix A, the following are equivalent:

(1) Γ is an srg(v, k, λ,μ) for certain integers k,λ,μ.
(2) A2 = (λ − μ)A + (k − μ)I + μJ , where I, J are the identity matrix and the

all-one matrix, respectively.
(3) A has precisely two distinct restricted eigenvalues.

The two distinct restricted eigenvalues of an srg are usually denoted by r and s, where
r is the positive eigenvalue and s the negative one. The Paley graphs are probably
the simplest examples of the so-called cyclotomic strongly regular graphs, which we
define below. Let Fpf be the finite field of order pf , where p is a prime and f is a
positive integer. Let D be a subset of Fpf such that −D = D and 0 �∈ D. We define
the Cayley graph Cay(Fpf ,D) to be the graph with the elements of Fpf as vertices;
two vertices are adjacent if and only if their difference belongs to D. When D is a
subgroup of the multiplicative group F

∗
pf of Fpf and Cay(Fpf ,D) is strongly regular,

then we say that Cay(Fpf ,D) is a cyclotomic strongly regular graph. Specializing to
the case where D is the subgroup of F

∗
q consisting of the nonzero squares, where q

is a prime power congruent to 1 modulo 4, we see that Cay(Fq,D) is nothing but the
Paley graph P(q).

Cyclotomic srg have been extensively studied by many authors; see [1, 5, 11,
13, 15, 17, 18]. Some of these authors used the language of cyclic codes in their
investigations. We choose to use the language of srg. Let D be a subgroup of F

∗
pf

of index N > 1. If D is the multiplicative group of a subfield of Fpf , then it is easy
to show that Cay(Fpf ,D) is an srg. These cyclotomic srg are usually called subfield
examples. Next if there exists a positive integer t such that pt ≡ −1 (mod N ), then
Cay(Fpf ,D) is an srg by an old result of Stickelberger [19]. These examples are usu-
ally called semi-primitive cyclotomic srg. The following conjecture of Schmidt and
White [18] says that besides the two classes of cyclotomic srg mentioned above, there
are only 11 sporadic examples of cyclotomic srg.
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Table 1
N p f [(ZN)∗ : 〈p〉]

11 3 5 2

19 5 9 2

35 3 12 2

37 7 9 4

43 11 7 6

67 17 33 2

107 3 53 2

133 5 18 6

163 41 81 2

323 3 144 2

499 5 249 2

Conjecture 1.2 (Conjecture 4.4, [18]) Let Fpf be the finite field of order pf ,

N |(pf −1
p−1 ), N > 1, and let C0 be the subgroup of F

∗
pf of index N . Assume that

−C0 = C0. If Cay(Fpf ,C0) is an srg, then one of the following holds:

(1) (subfield case) C0 = F
∗
pe , where e|f ,

(2) (semi-primitive case) There exists a positive integer t such that pt ≡ −1 (mod N ),
(3) (exceptional case) Cay(Fpf ,C0) is one of the eleven “sporadic” examples ap-

pearing in Table 1.

The above conjecture remains open. On the construction side, semi-primitive
Gauss sums have been quite useful for constructing strongly regular Cayley graphs.
Here by semi-primitive Gauss sums g(χ) over Fpf , where the order of χ is N , we
mean that there exists some positive integer t such that pt ≡ −1 (mod N). In such
a situation, it is known that an arbitrary union of cyclotomic classes of order N of
Fpf will give rise to an srg. We refer the reader to [2, 5, 15] and [7] for work in this
direction. Quite recently, motivated by the examples of De Lange [14] and Ikuta and
Munemasa [11], Feng and Xiang [8] considered the problem of constructing strongly
regular graphs Cay(Fpf ,D), where D is a union of at least two cyclotomic classes
of order N and it is assumed that a single cyclotomic class of order N does not give
rise to an srg. They succeeded in generalizing seven of the index 2 examples of cy-
clotomic srg in Table 1 into infinite families. The main tools used in [8] are index 2
Gauss sums. We remark that even though the first example in Table 1 is an index 2
example (ord11(3) = 5), the construction in [8] could not generalize it into an infinite
family since ord11m(3) �= φ(11m)/2 when m > 1.

In this paper, we use similar idea to construct strongly regular Cayley graphs. Our
goal is to generalize the index 4 example in Table 1. Naturally the main tools that we
use are index 4 Gauss sums, which will be introduced Sect. 2. We obtain two infinite
families of srg with new parameters. The first family generalizes the index 4 example
listed in Table 1, and it has parameters
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v = 79·37m−1
, k = v − 1

37
, r = 9 · 7

9·37m−1−1
2 − 1

37
, and

s = −4 · 7
9·37m−1+1

2 − 1

37
,

where m ≥ 1 is an integer. (Note that the λ and μ values of the srg can be computed
from v, k, r and s.) The second family generalizes a (trivial) subfield example of
cyclotomic srg, and it has parameters

v = 33·13m−1
, k = v − 1

13
, r = 3

3·13m−1+3
2 − 1

13
, and

s = −4 · 3
3·13m−1−1

2 − 1

13
,

where m ≥ 1 is an integer.

2 Index 4 Gauss sums

Let p be a prime, f be a positive integer, and q = pf . Let Fq be the finite field of
order q , ζp be a complex primitive pth root of unity, and Trq/p be the trace from Fq

to Fp . The multiplicative characters of Fq are the homomorphisms from the multi-
plicative group F

∗
q to the multiplicative group C

∗ of the complex field C. On the other
hand, the additive characters of Fq are the homomorphisms from the additive group
(Fq,+) to C

∗, and they are given by

ψa : Fq → C
∗, ψa(x) = ζ

Trq/p(ax)
p ,

where a ∈ Fq . We usually write ψ1 simply as ψ , which is called the canonical addi-
tive character of Fq .

Now let χ be a multiplicative character of Fq . Define the Gauss sum by

g(χ) =
∑

x∈F∗
q

χ(x)ψ(x).

We first list some basic properties of Gauss sums.

Proposition 2.1 (Lemma 1.1 [9])

(1) Let χ0 be the trivial multiplicative character of Fq . Then g(χ0) = −1. Also
g(χ)g(χ) = q for any χ �= χ0.

(2) Let N |(q − 1), χ be a multiplicative character of Fq of order N , and
σa,b ∈ Gal(Q(ζN , ζp)/Q) be such that σa,b(ζN) = ζ a

N and σa,b(ζp) = ζ b
p . Then

σa,b(g(χ)) = χa(b)g(χa). Also σp,1(g(χ)) = g(χp) = g(χ).
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For more properties of Gauss sums, we refer the reader to [3] and [12]. Gauss sums
can be viewed as the Fourier coefficients of the Fourier expansion of the additive
characters in terms of the multiplicative characters of Fq . That is,

ψ(a) = 1

q − 1

∑

χ∈F̂∗
q

g(χ̄)χ(a), for all a ∈ F
∗
q, (2.1)

where χ̄ = χ−1 and F̂∗
q denotes the character group of F

∗
q .

In this paper, we will need certain index 4 Gauss sums, which we define below.
Let p be a prime, N ≥ 2 such that gcd(p(p − 1),N) = 1. Thus p ∈ Z

∗
N , the unit

group of ZN . Furthermore, we assume that −1 �∈ 〈p〉 and the order of p modulo N

is f = φ(N)
4 . It follows that [Z∗

N : 〈p〉] = 4 and the decomposition field K of p in the
cyclotomic field Q(ζN) is a quartic abelian imaginary field. Let χ be a multiplicative
character of Fq of order N . Then the Gauss sum g(χ) is called an index 4 Gauss
sum. Note that since we assumed that gcd(N,p − 1) = 1, we have χ(b) = 1 for
any b ∈ F

∗
p , where χ ∈ F̂∗

q has order N . It follows that g(χ) ∈ Z[ζN ] by part (2) of
Proposition 2.1.

Since gcd(p(p − 1),N) = 1, N must be odd. The assumption [Z∗
N : 〈p〉] = 4

implies that N has at most three distinct prime factors (cf. [9]). In fact, the authors of
[9] listed all possibilities of N satisfying the above assumptions. In this paper, we are
only concerned with one of these possibilities, namely, N = pm

1 , where m is a positive
integer, p1 is an odd prime and p1 ≡ 5 (mod 8). In this case, the decomposition field
K is the unique imaginary cyclic quartic subfield of Q(ζN). In fact, K is a subfield of
Q(ζp1). The Galois group Gal(K/Q) is canonically isomorphic to the group Z

∗
N/〈p〉.

Henceforth, we often identify these two groups. We can choose a primitive element
g modulo p1 such that g is also a primitive element modulo N = pm

1 (cf. [12, p. 43]).
Let σ : ζN 
→ ζ

g
N . Then σ is a generator of Gal(Q(ζN)/Q) and its restriction to K is

a generator of Gal(K/Q) ∼= Z
∗
N/〈p〉 ∼= Z

∗
p1

/〈p〉. By the choice of g and the index 4

assumption we have Z
∗
p1

= 〈p〉 ∪ g〈p〉 ∪ g2〈p〉 ∪ g3〈p〉. We will use the following
notation:

C̃j = gj 〈p〉 ⊆ Z
∗
p1

(0 ≤ j ≤ 3);

f̃ = φ(p1)
4 = p1−1

4 ;
bj = 1

p1

∑
z∈([1,p1−1]∩C̃j )

z (0 ≤ j ≤ 3), where [1,p1 − 1] denotes the set of inte-
gers x, 1 ≤ x ≤ p1 − 1;
b = min{b0, b1, b2, b3} = bλ for some λ ∈ {0,1,2,3};
c = min{bλ+1 − b, bλ+3 − b}, where the subscripts are read modulo 4;
ηj = ∑

a∈C̃j
ζ a
p1

(0 ≤ j ≤ 3), where ζp1 is a complex primitive p1th root of unity.

Lemma 2.2 [9] With the above assumptions and notation {ηj | 0 ≤ j ≤ 3} is an
integral basis of K, and ηj = σ j (η0), where σ(ζp1) = ζ

g
p1 . The equation p1 = X2 +

Y 2 has a unique integer solution (A,B) such that A ≡ 3 (mod 4). Furthermore,
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4η0,4η2 = (−1 + √
p1) ± i

√
2[p1 − A

√
p1] 1

2 ,

4η1,4η3 = (−1 − √
p1) ± i

√
2[p1 + A

√
p1] 1

2 .

Below let χ be a multiplicative character of Fq of order N .

Theorem 2.3 [9] Under the above assumptions, we have p− f −f̃
2 −bg(χ) ∈ OK (the

integer ring of K).

By Lemma 2.2, we now write p− f −f̃
2 −bg(χ) as

p− f −f̃
2 −bg(χ) = N0η0 + N1η1 + N2η2 + N3η3, Ni ∈ Z, ∀i.

Without loss of generality we assume that

4η0 = (−1 + √
p1 ) + i

√
2[p1 − A

√
p1 ] 1

2 = 4η2,

4η1 = (−1 − √
p1 ) + i

√
2[p1 + A

√
p1 ] 1

2 = 4η3.

Then

4p− f −f̃
2 −bg(χ)

= −(N0 + N1 + N2 + N3) + (N0 − N1 + N2 − N3)
√

p1

+ i
√

2
[
(N0 − N2)(p1 − A

√
p1)

1
2 + (N1 − N3)(p1 + A

√
p1)

1
2
]
. (2.2)

We make the following transformation:
⎧
⎪⎪⎨

⎪⎪⎩

M0 = N0 + N1 + N2 + N3,

M1 = N0 + N1 − N2 − N3,

M2 = N0 − N1 + N2 − N3,

M3 = N0 − N1 − N2 + N3,

⎧
⎪⎪⎨

⎪⎪⎩

4N0 = M0 + M1 + M2 + M3,

4N1 = M0 + M1 − M2 − M3,

4N2 = M0 − M1 + M2 − M3,

4N3 = M0 − M1 − M2 + M3.

Then

4p− f −f̃
2 −bg(χ)

= −M0 + M2
√

p1

+ i
√

2

[
M1 + M3

2
(p1 − A

√
p1)

1
2 + M1 − M3

2
(p1 + A

√
p1)

1
2

]
. (2.3)

Theorem 2.4 [9] The integers M0,M1,M2,M3 defined above satisfy the following
conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

16pf̃ −2b = M2
0 + p1

(
M2

1 + M2
2 + M2

3

)
,

2M0M2 + 2AM1M3 = B
(
M2

1 − M2
3

)
,

M0 + M1 + M2 + M3 ≡ 0 (mod 4),

M1 ≡ M2 ≡ M3 (mod 2),

M0 ≡ 4p−b (mod p1).
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3 Cyclotomic classes and strongly regular Cayley graphs

Let q = pf be a prime power, and γ be a fixed primitive element of Fq . Let N > 1
be a divisor of q − 1. Then the N th cyclotomic classes C0,C1, . . . ,CN−1 are defined
by

Ci =
{
γ i+jN

∣∣∣ 0 ≤ j ≤ q − 1

N
− 1

}
,

where 0 ≤ i ≤ N − 1.
Note that C0 consists of all the N th powers in F

∗
q . Therefore C0 does not depend

on the choice of γ . The other classes Ci , 1 ≤ i ≤ N − 1, do depend on the choice
of γ . As usual, let ψ be the canonical additive character of Fq . The N th cyclotomic
periods (also called Gauss periods) are defined by

τa =
∑

x∈Ca

ψ(x),

where 0 ≤ a ≤ N − 1.
Now using (2.1), we have

τa =
∑

x∈C0

ψ
(
γ ax

)

=
∑

x∈C0

1

q − 1

∑

χ∈F̂∗
q

g(χ̄)χ
(
γ ax

)

= 1

(q − 1)

∑

χ∈F̂∗
q

g(χ̄)χ
(
γ a

) ∑

x∈C0

χ(x)

= 1

N

∑

χ∈C⊥
0

g(χ̄)χ
(
γ a

)
,

where C⊥
0 is the subgroup of F̂∗

q consisting of all characters χ which are trivial on C0,

i.e. C⊥
0 is the unique subgroup of F̂∗

q of order N . The above computations give the
relationship between Gauss periods and Gauss sums.

Assume that N = pm
1 , where p1 is an odd prime and p1 ≡ 5 (mod 8), and p1 > 5.

Let p �= p1 be a prime such that [Z∗
N : 〈p〉] = 4. It follows that gcd(p − 1,p1) = 1.

(This can be seen as follows. If p ≡ 1 (mod p1), then by using Lemma 3 of [12,

p. 42] repeatedly, we obtain ppm−1
1 ≡ 1 (mod pm

1 ), contradicting the assumptions

that ordpm
1
(p) = pm−1

1 (p1−1)

4 and p1 > 5.) Therefore we have gcd(p(p − 1),N) =
1. Define f = ordN(p) = 1

4φ(N) and q = pf . Let C0,C1, . . . ,CN−1 be the N th
cyclotomic classes of Fq . Define

D =
pm−1

1 −1⋃

i=0

Ci. (3.1)

Using D as connection set, we construct the Cayley graph Cay(Fq,D).
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Theorem 3.1 The Cayley graph Cay(Fq,D) is an undirected, simple, regular graph
of valency |D|, and it has at most five distinct restricted eigenvalues.

Proof Note that −1 ∈ C0 since either 2N |(q − 1) or q is even. Hence −Ci = Ci

for all 0 ≤ i ≤ N − 1, so D = −D. Also 0 �∈ D. We conclude that the Cayley graph
Cay(Fq,D) is undirected and without loops. The Cayley graph Cay(Fq,D) is clearly
regular of valency |D|. The restricted eigenvalues of Cay(Fq,D), as explained in [4,
p. 122], are given by

ψ
(
γ aD

) =
∑

x∈D

ψ
(
γ ax

)
, 0 ≤ a ≤ N − 1.

Now we turn to the computations of ψ(γ aD). We have

ψ
(
γ aD

) =
pm−1

1 −1∑

i=0

ψ
(
γ aCi

)

=
pm−1

1 −1∑

i=0

τi+a

= 1

N

pm−1
1 −1∑

i=0

∑

χ∈C⊥
0

g(χ̄)χ
(
γ a+i

)

= 1

N

∑

χ∈C⊥
0

g(χ̄)

pm−1
1 −1∑

i=0

χ
(
γ a+i

)
.

Consider the inner sum
∑pm−1

1 −1
i=0 χ(γ a+i ), where χ ∈ C⊥

0 . Note that C⊥
0 is the

unique subgroup of F̂∗
q of order N = pm

1 . If χ ∈ C⊥
0 and ord(χ) = 1 (that is,

χ = χ0), then g(χ̄) = −1 and
∑pm−1

1 −1
i=0 χ(γ a+i ) = pm−1

1 . If χ ∈ C⊥
0 and ord(χ) =

p
j

1 (1 ≤ j ≤ m − 1), then χ(γ ) �= 1, χ(γ )p
m−1
1 = 1, and

∑pm−1
1 −1

i=0 χ(γ a+i ) =
χ(γ a)

∑pm−1
1 −1

i=0 χ(γ i) = χ(γ a)
χ(γ )

p
m−1
1 −1

χ(γ )−1 = 0. Hence,

ψ
(
γ aD

) = 1

N

(
−pm−1

1 +
∑

χ∈C⊥
0

ord(χ)=pm
1

g(χ̄)

pm−1
1 −1∑

i=0

χ
(
γ a+i

)
)

.

Next, we consider the characters χ ∈ C⊥
0 such that ord(χ) = N = pm

1 , i.e., the
generators of C⊥

0 . We define a multiplicative character θ of Fq by setting θ(γ ) = ζN .
It is clear that θ is a generator of C⊥

0 . Thus all generators of C⊥
0 are given by θ t ,

where t ∈ Z
∗
N . It follows that
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ψ
(
γ aD

) = 1

N

(
−pm−1

1 +
∑

χ∈C⊥
0

ord(χ)=pm
1

g(χ̄)

pm−1
1 −1∑

i=0

χ
(
γ a+i

)
)

= 1

N

(
−pm−1

1 +
∑

t∈Z
∗
pm

1

g
(
θ̄ t

)pm−1
1 −1∑

i=0

θ t
(
γ a+i

)
)

.

For convenience, we set

Sa :=
∑

t∈Z
∗
pm

1

g
(
θ̄ t

)pm−1
1 −1∑

i=0

θ t
(
γ a+i

)
,

where 0 ≤ a ≤ N − 1.
For each t ∈ Z

∗
pm

1
, we write t = t1 + p1t2, where t1 ∈ Z

∗
p1

, t2 ∈ Z
pm−1

1
. For each

a,0 ≤ a ≤ N − 1, there is a unique ia ∈ {0,1,2, . . . , pm−1
1 − 1}, such that pm−1

1 |
(a + ia). Write a + ia = pm−1

1 ja for some integer ja . (When N = p1, we have ia = 0
and ja = a for all 0 ≤ a ≤ N − 1.)

By Theorem 2.3, we have p− f −f̃
2 −bg(θ̄) ∈ OK . We can write p− f −f̃

2 −bg(θ̄) =
N0η0 + N1η1 + N2η2 + N3η3, Ni ∈ Z, ∀i. Making the following transformation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M0 = N0 + N1 + N2 + N3,

M1 = N0 + N1 − N2 − N3,

M2 = N0 − N1 + N2 − N3,

M3 = N0 − N1 − N2 + N3.

By Theorem 2.4, the integers M0,M1,M2,M3 satisfy the following conditions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

16pf̃ −2b = M2
0 + p1

(
M2

1 + M2
2 + M2

3

)
,

2M0M2 + 2AM1M3 = B
(
M2

1 − M2
3

)
,

M0 + M1 + M2 + M3 ≡ 0 (mod 4),

M1 ≡ M2 ≡ M3 (mod 2),

M0 ≡ 4p−b (mod p1).

(3.2)

Here the notation is the same as in Sect. 2.
Next we want to determine how many distinct values ψ(γ aD), 0 ≤ a ≤ N −1, will

take. Since ψ(γ aD) = 1
N

(−pm−1
1 +Sa), it suffices to determine the value distribution

of {Sa | 0 ≤ a ≤ N − 1}.
Since ηj , 0 ≤ j ≤ 3, are in Q(ζp1), we have σt (ηj ) = σt1+p1t2(ηj ) = σt1(ηj ).

Hence σt (g(θ̄)) = σt1(g(θ̄)). Therefore g(θ̄ t ) = g(θ̄ t1) = p
f −f̃

2 +b(N0η
σt1
0 +N1η

σt1
1 +

N2η
σt1
2 + N3η

σt1
3 ). We now continue the computations of Sa . We have
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Sa =
∑

t∈Z
∗
pm

1

g
(
θ̄ t

)pm−1
1 −1∑

i=0

θ t
(
γ a+i

)

=
∑

t1∈Z∗
p1

∑

t2∈Z
p
m−1
1

g
(
θ̄ t1+p1t2

)pm−1
1 −1∑

i=0

θ t1+p1t2
(
γ a+i

)

=
∑

t1∈Z∗
p1

∑

t2∈Z
p
m−1
1

g
(
θ̄ t1

)pm−1
1 −1∑

i=0

θ t1+p1t2
(
γ a+i

)

=
∑

t1∈Z∗
p1

pm−1
1 −1∑

i=0

g
(
θ̄ t1

)
θ t1

(
γ a+i

) ∑

t2∈Z
p
m−1
1

(
θp1

(
γ a+i

))t2 .

If θp1(a+i)(γ ) �= 1, that is, pm−1
1 � (a + i), then

∑

t2∈Z
p
m−1
1

(
θp1

(
γ a+i

))t2 = 1 − θp1(a+i)·pm−1
1 (γ )

1 − θp1(a+i)(γ )
= 0.

Recall that for each a, 0 ≤ a ≤ N − 1, there is a unique ia ∈ {0,1,2, . . . , pm−1
1 − 1},

such that pm−1
1 | (a + ia), and we write a + ia = pm−1

1 ja . Thus we have

Sa = pm−1
1

∑

t1∈Z∗
p1

g
(
θ̄ t1

)
θ t1

(
γ pm−1

1 ja
)
.

Note that by the definition of θ , we have θ t1(γ pm−1
1 ja ) = ζ

pm−1
1 ja ·t1

N = ζ
ja ·t1
p1 . It will

be convenient to introduce ψja , which is an additive character of the prime field Zp1

such that ψja (t1) = ζ
ja ·t1
p1 . In this way, we have θ t1(γ pm−1

1 ja ) = ψja (t1). We now have

Sa = pm−1
1

∑

t1∈Z∗
p1

g
(
θ̄ t1

)
ψja (t1)

= pm−1
1 p

f −f̃
2 +b

∑

t1∈Z∗
p1

(
N0η

σt1
0 + N1η

σt1
1 + N2η

σt1
2 + N3η

σt1
3

)
ψja (t1)

= pm−1
1 p

f −f̃
2 +b

3∑

i=0

∑

t1∈gi 〈p〉

(
N0η

σt1
0 + N1η

σt1
1 + N2η

σt1
2 + N3η

σt1
3

)
ψja (t1)

= pm−1
1 p

f −f̃
2 +b

[
(N0η0 + N1η1 + N2η2 + N3η3)

∑

t1∈〈p〉
ψja (t1)

+ (N0η1 + N1η2 + N2η3 + N3η0)
∑

t1∈g〈p〉
ψja (t1)
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+ (N0η2 + N1η3 + N2η0 + N3η1)
∑

t1∈g2〈p〉
ψja (t1)

+ (N0η3 + N1η0 + N2η1 + N3η2)
∑

t1∈g3〈p〉
ψja (t1)

]
.

When a runs through ZN , ja runs through Zp1 correspondingly. Note that Z
∗
p1

=
〈p〉 ∪ g〈p〉 ∪ g2〈p〉 ∪ g3〈p〉. We therefore have five cases to consider according to
ja = 0, and ja ∈ gi〈p〉, i = 0,1,2,3.

Case I. ja = 0. In this case, we have
∑

t1∈gi 〈p〉 ψja (t1) = p1−1
4 , for 0 ≤ i ≤ 3.

Sa = pm−1
1 p

f −f̃
2 +b

[
(N0η0 + N1η1 + N2η2 + N3η3)

p1 − 1

4

+ (N0η1 + N1η2 + N2η3 + N3η0)
p1 − 1

4

+ (N0η2 + N1η3 + N2η0 + N3η1)
p1 − 1

4

+ (N0η3 + N1η0 + N2η1 + N3η2)
p1 − 1

4

]

= −pm−1
1 p

f −f̃
2 +b(N0 + N1 + N2 + N3)

p1 − 1

4
.

This value of Sa will be denoted by pm−1
1 p

f −f̃
2 +bT1, where T1 = (N0 + N1 +

N2 + N3)
1−p1

4 .
Case II. ja ∈ 〈p〉. In this case

∑
t1∈gi 〈p〉 ψja (t1) = ηi , 0 ≤ i ≤ 3. We have

Sa = pm−1
1 p

f −f̃
2 +b

[
(N0η0 + N1η1 + N2η2 + N3η3)η0

+ (N0η1 + N1η2 + N2η3 + N3η0)η1

+ (N0η2 + N1η3 + N2η0 + N3η1)η2

+ (N0η3 + N1η0 + N2η1 + N3η2)η3
]

= pm−1
1 p

f −f̃
2 +b

[
N0

(
η2

0 + η2
1 + η2

2 + η2
3

)

+ N1(η0η1 + η1η2 + η2η3 + η3η0)

+ N2(η0η2 + η1η3 + η2η0 + η3η1)

+ N3(η0η3 + η1η0 + η2η1 + η3η2)
]
.

This value of Sa will be denoted by pm−1
1 p

f −f̃
2 +bT2.

Case III. ja ∈ g〈p〉. In this case
∑

t1∈gi 〈p〉 ψja (t1) = ηi+1, 0 ≤ i ≤ 3. Similarly we
have

Sa = pm−1
1 p

f −f̃
2 +b

[
N0(η0η1 + η1η2 + η2η3 + η3η0)

+ N1
(
η2

0 + η2
1 + η2

2 + η2
3

)

+ N2(η0η1 + η1η2 + η2η3 + η3η0)

+ N3(η0η2 + η1η3 + η2η0 + η3η1)
]
.
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This value of Sa will be denoted by pm−1
1 p

f −f̃
2 +bT3.

Case IV. ja ∈ g2〈p〉. In this case
∑

t1∈gi 〈p〉 ψja (t1) = ηi+2, 0 ≤ i ≤ 3. Similarly we
have

Sa = pm−1
1 p

f −f̃
2 +b

[
N0(η0η2 + η1η3 + η2η0 + η3η1)

+ N1(η0η1 + η1η2 + η2η3 + η3η0)

+ N2
(
η2

0 + η2
1 + η2

2 + η2
3

)

+ N3(η0η3 + η1η0 + η2η1 + η3η2)
]
.

This value of Sa will be denoted by pm−1
1 p

f −f̃
2 +bT4.

Case V. ja ∈ g3〈p〉. In this case
∑

t1∈gi 〈p〉 ψja (t1) = ηi+3, 0 ≤ i ≤ 3. Similarly we
have

Sa = pm−1
1 p

f −f̃
2 +b

[
N0(η0η3 + η1η0 + η2η1 + η3η2)

+ N1(η0η2 + η1η3 + η2η0 + η3η1)

+ N2(η0η1 + η1η2 + η2η3 + η3η0)

+ N3
(
η2

0 + η2
1 + η2

2 + η2
3

)]
.

This value of Sa will be denoted by pm−1
1 p

f −f̃
2 +bT5.

Therefore we have shown that Sa , 0 ≤ a ≤ N − 1, take at most five distinct val-
ues. It follows that the Cayley graph Cay(Fq,D) has at most five distinct restricted
eigenvalues. The proof of the theorem is complete. �

We are now ready to consider the question that under what conditions, the Cayley
graph Cay(Fq,D), with D defined in (3.1), is strongly regular. By Theorem 1.1, the
question is the same as asking under what conditions, the Cayley graph Cay(Fq,D)

will have exactly two distinct restricted eigenvalues. Using the transformation be-
tween {N0,N1,N2,N3} and {M0,M1,M2,M3}, and the following equations satisfied
by ηi :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

η2
0 + η2

1 + η2
2 + η2

3 = 1 − p1

4
,

η0η1 + η1η2 + η2η3 + η3η0 = 1 − p1

4
,

η0η2 + η1η3 + η2η0 + η3η1 = 1 + 3p1

4
,

we have {T1, T2, T3, T4, T5} = { 1−p1
4 M0,

1−p1
4 M0 + p1N0,

1−p1
4 M0 + p1N1,

1−p1
4 M0 + p1N2,

1−p1
4 M0 + p1N3}. From the proof of Theorem 3.1, we see that

the value distribution of the restricted eigenvalues of Cay(Fq,D) is completely de-
termined by the value distribution of {T1, T2, T3, T4, T5}.

Theorem 3.2 If Cay(Fq,D) is strongly regular, then either p1 − 1 or p1 − 9 is a
perfect square. In the case where p1 − 1 is a square, Cay(Fq,D) is strongly regular
if and only if the integer solutions (M0,M1,M2,M3) of (3.2) satisfy (M0 : M1 : M2 :
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M3) ∈ {(1 : 1 : 1 : 1), (1 : 1 : −1 : −1), (1 : −1 : 1 : −1), (1 : −1 : −1 : 1)}. In the case
where p1 − 9 is a square, Cay(Fq,D) is strongly regular if and only if the integer
solutions (M0,M1,M2,M3) of (3.2) satisfy (M0 : M1 : M2 : M3) ∈ {(3 : −1 : −1 :
−1), (3 : −1 : 1 : 1), (3 : 1 : −1 : 1), (3 : 1 : 1 : −1)}.

Proof Up to a permutation of indices, we may assume that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 = 1 − p1

4
M0,

T2 = 1 − p1

4
M0 + p1N0,

T3 = 1 − p1

4
M0 + p1N1,

T4 = 1 − p1

4
M0 + p1N2,

T5 = 1 − p1

4
M0 + p1N3.

We first note that the set {T1, T2, T3, T4, T5} has at least two distinct elements. Other-
wise, we will have N0 = N1 = N2 = N3 = 0; it follows that the Gauss sum g(θ̄) = 0,
which is impossible.

If the set {T1, T2, T3, T4, T5} has exactly two distinct elements, there are fifteen
possible cases in total. We discuss these cases one by one.

Case 1. T2 = T3 = T4 = T5 �= T1 ⇔ N0 = N1 = N2 = N3 �= 0 ⇔ M1 = M2 =
M3 = 0,M0 �= 0. Under the assumptions of this case, we have M2

0 = 16pf̃ −2b . But

f̃ = p1−1
4 is odd since p1 ≡ 5 (mod 8). It follows that M0 �∈ Z, a contradiction. We

conclude that Case 1 cannot occur.
Case 2. T1 = T3 = T4 = T5 �= T2 ⇔ N1 = N2 = N3 = 0,N0 �= 0 ⇔ (M0 : M1 :
M2 : M3) = (1 : 1 : 1 : 1). In this case we have A = −1 and p1 − 1 = B2.

Case 3. T1 = T2 = T4 = T5 �= T3 ⇔ N0 = N2 = N3 = 0,N1 �= 0 ⇔ (M0 : M1 :
M2 : M3) = (1 : 1 : −1 : −1). In this case we have A = −1 and p1 − 1 = B2.

Case 4. T1 = T2 = T3 = T5 �= T4 ⇔ N0 = N1 = N3 = 0,N2 �= 0 ⇔ (M0 : M1 :
M2 : M3) = (1 : −1 : 1 : −1). In this case we have A = −1 and p1 − 1 = B2.

Case 5. T1 = T2 = T3 = T4 �= T5 ⇔ N0 = N1 = N2 = 0,N3 �= 0 ⇔ (M0 : M1 :
M2 : M3) = (1 : −1 : −1 : 1). In this case we have A = −1 and p1 − 1 = B2.

Case 6. T1 = T4 = T5 �= T2 = T3 ⇔ N2 = N3 = 0,N0 = N1 �= 0 ⇔ M0 =
M1 �= 0, M2 = M3 = 0. In this case we have B = 0, which is impossible.

Case 7. T1 = T3 = T5 �= T2 = T4 ⇔ N1 = N3 = 0,N0 = N2 �= 0 ⇔ M0 = M2,M1 =
M3 = 0. In this case, we have M0 = M1 = M2 = M3 = 0, which is impossible.

Case 8. T1 = T3 = T4 �= T2 = T5 ⇔ N1 = N2 = 0,N0 = N3 �= 0 ⇔ M0 =
M3 �= 0 ,M1 = M2 = 0. In this case we have B = 0, which is impossible.

Case 9. T1 = T2 = T5 �= T3 = T4 ⇔ N0 = N3 = 0,N1 = N2 �= 0 ⇔ M0 = −M3,

M1 = M2 = 0. In this case we have B = 0, which is impossible.
Case 10. T1 = T2 = T4 �= T3 = T5 ⇔ N0 = N2 = 0,N1 = N3 �= 0 ⇔
M0 = −M2,M1 = M3 = 0. In this case we have M0 = M1 = M2 = M3 = 0, which
is impossible.
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Case 11. T1 = T2 = T3 �= T4 = T5 ⇔ N0 = N1 = 0,N2 = N3 �= 0 ⇔ M0 = −M1,

M2 = M3 = 0. In this case we have B = 0, which is impossible.
Case 12. T3 = T4 = T5 �= T1 = T2 ⇔ N1 = N2 = N3 �= 0,N0 = 0 ⇔ (M0 : M1 :
M2 : M3) = (3 : −1 : −1 : −1). In this case we have A = 3 and p1 − 9 = B2.

Case 13. T2 = T4 = T5 �= T1 = T3 ⇔ N0 = N2 = N3 �= 0,N1 = 0 ⇔ (M0 : M1 :
M2 : M3) = (3 : −1 : 1 : 1). In this case we have A = 3 and p1 − 9 = B2.

Case 14. T2 = T3 = T5 �= T1 = T4 ⇔ N0 = N1 = N3 �= 0,N2 = 0 ⇔ (M0 : M1 :
M2 : M3) = (3 : 1 : −1 : 1). In this case we have A = 3 and p1 − 9 = B2.

Case 15. T2 = T3 = T4 �= T1 = T5 ⇔ N0 = N1 = N2 �= 0,N3 = 0 ⇔ (M0 : M1 :
M2 : M3) = (3 : 1 : 1 : −1). In this case we have A = 3 and p1 − 9 = B2.

If Cay(Fq,D) is strongly regular, then it has exactly two distinct restricted eigen-
values, thus {T1, T2, T3, T4, T5} has exactly two distinct elements. From the analysis
above, either p1 − 1 or p1 − 9 is a square; suppose (M0,M1,M2,M3) is a solu-
tion of (3.2), we see that (M0,M1,M2,M3) must be one of the possibilities listed in
the statement of the theorem. That is, when A = −1,p1 − 1 is a perfect square,
(M0 : M1 : M2 : M3) ∈ {(1 : 1 : 1 : 1), (1 : 1 : −1 : −1), (1 : −1 : 1 : −1), (1 :
−1 : −1 : 1)}; when A = 3, p1 − 9 is perfect square and (M0 : M1 : M2 : M3) ∈
{(3 : −1 : −1 : −1), (3 : −1 : 1 : 1), (3 : 1 : −1 : 1), (3 : 1 : 1 : −1)}.

Conversely, if the integer solutions (M0,M1,M2,M3) of (3.2) satisfy the con-
ditions stated in the theorem, then it is easy to see from the above analysis that
{T1, T2, T3, T4, T5} has exactly two distinct elements. It follows that Cay(Fq,D) is
strongly regular.

The proof of the theorem is now complete. �

4 New infinite families of strongly regular Cayley graphs

We used a computer to search for prime pairs (p,p1), 2 ≤ p < 10,000, 3 ≤ p1 <

10,000, satisfying the conditions specified in Sect. 2 and in the statement of The-
orem 3.2. We found two such pairs which are given below. Note that in general
for a prime pair (p,p1) satisfying the conditions p1 ≡ 5 (mod 8), gcd(p(p −
1),p1) = 1 and ordpm

1
(p) = φ(pm

1 )/4 for all m ≥ 1, there are possibly many solu-
tions (M1,M2,M3,M4) to (3.2); only those solutions (M1,M2,M3,M4) which can
be used to represent the Gauss sums g(θ̄) should be considered. We refer the reader
to Lemma 3.2 of [9] for a method to decide when a solution (M1,M2,M3,M4) to
(3.2) can be used to represent the Gauss sum g(θ̄).

Example 4.1 Let p1 = 37, p = 7, N = pm
1 where m ≥ 1 is any integer. Note that

in this case we have p1 ≡ 5 (mod 8) and p1 > 5. It is straightforward to check that
ord37(7) = 9 = φ(37)

4 . By induction on m, one can show that ord37m(7) = φ(37m)
4 .

Let f = ord37m(7) = φ(37m)
4 and Fq be the finite field of order q = 7f . Let γ be a

fixed primitive element of Fq . Let C0 = 〈γ N 〉,C1 = γC0, . . . ,CN−1 = γ N−1C0 be
the N th cyclotomic classes of Fq and let

D =
37m−1−1⋃

i=0

Ci.
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We claim that the Cayley graph Cay(Fq,D) is strongly regular. To prove this claim,
it suffices to apply Theorem 3.2 to the current situation.

Lemma 4.1 (Example 1, [9]) When p1 = 13 or 37, we have

b = min{b0, b1, b2, b3} = f̃ − 1

2
,

where f̃ = φ(p1)
4 .

Now for p1 = 37, we have f̃ = φ(37)
4 = 9, b = 4, and p1 − 1 = 36 is a perfect

square. The integer solutions (A,B) to p1 = A2 + B2 with A ≡ 3 (mod 4) are
(−1,±6). That is, A = −1 and B = ±6. Also 4p−b = 4 ·7−4 ≡ 4 ·9 ≡ −1 (mod 37).
We need to determine the (M0,M1,M2,M3) satisfying (3.2). In our case, (3.2) be-
comes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

112 = M2
0 + 37

(
M2

1 + M2
2 + M2

3

)
,

2M0M2 − 2M1M3 = B
(
M2

1 − M2
3

)
,

M0 + M1 + M2 + M3 ≡ 0 (mod 4),

M1 ≡ M2 ≡ M3 (mod 2),

M0 ≡ −1 (mod 37).

From the first equation we obtain M2
0 = 1 and M2

1 + M2
2 + M2

3 = 3. Therefore,
M0 = −1, and M1,M2,M3 ∈ {±1}. Together with the conditions, we get a total of
four integer solutions (−1,1,1,−1), (−1,1,−1,1), (−1,−1,1,1), (−1,−1,−1,−1).
Since each of these four solutions satisfies the conditions of Theorem 3.2, we con-
clude that Cay(Fq,D) is a strongly regular graph, with parameters

v = 79·37m−1
, k = v − 1

37
, r = 9 · 7

9·37m−1−1
2 − 1

37
, and

s = −4 · 7
9·37m−1+1

2 − 1

37
.

Example 4.2 Let p1 = 13,p = 3,N = pm
1 , where m ≥ 1 is an integer. By induction

on m, we also can show that ord13m(3) = φ(13m)
4 . Also, we let f = φ(13m)

4 , q = 3f ,
and C0,C1, . . . ,CN−1 be the N th cyclotomic classes of Fq . Using

D =
13m−1−1⋃

i=0

Ci

as connection set, we construct the Cayley graph Cay(Fq,D). Now p1 − 9 = 4 is a

perfect square, f̃ = φ(13)
4 = 3 and b = f̃ −1

2 = 1 by Lemma 4.1.
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The integer solutions (A,B) to p1 = A2 + B2 with A ≡ 3 (mod 4) are (3,±2).
That is, A = 3 and B = ±2. Also 4p−b = 4 · 3−1 ≡ 4 · (−4) ≡ −3 (mod 13). We
need to determine the (M0,M1,M2,M3) satisfying (3.2). In our case, (3.2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

48 = M2
0 + 13

(
M2

1 + M2
2 + M2

3

)
,

2M0M2 + 6M1M3 = B
(
M2

1 − M2
3

)
,

M0 + M1 + M2 + M3 ≡ 0 (mod 4),

M1 ≡ M2 ≡ M3 (mod 2),

M0 ≡ −3 (mod 13).

From the first equation we obtain M2
0 = 9 and M2

1 + M2
2 + M2

3 = 3. There-
fore, M0 = −3 and M1,M2,M3 ∈ {±1}. Similarly, we also get four solutions
(−3,−1,−1,1), (−3,1,−1,−1), (−3,−1,1,−1), (−3,1,1,1). Since each of them
satisfies the conditions of Theorem 3.2, we conclude that Cay(Fq,D) is also a
strongly regular graph.

If m = 1, then N = 13, f = 3, q = pf = 27 and D = C0 = F
∗
3, where F3 is the

prime subfield of F33 . The strongly regular graph in this case belongs to the so-
called subfield case, and is rather boring. But for m ≥ 2, the strongly regular graphs
Cay(Fq,D) are new and their parameters are

v = 33·13m−1
, k = v − 1

13
, r = 3

3·13m−1+3
2 − 1

13
, and

s = −4 · 3
3·13m−1−1

2 − 1

13
.
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