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In a previous paper, [Des., Codes and Cryptogr. 8 (1996), 215�227]; we used
Galois rings to construct partial difference sets, relative difference sets and a dif-
ference set. In the present paper, we first generalize and improve the construction
of partial difference sets in [Des., Codes and Cryptogr. 8 (1996), 215�227]; also we
obtain a family of relative difference sets from these partial difference sets. Second,
we construct a class of relative difference sets in (Z4)2m+1 � (Z4)r � (Z2�Z2)s,
r+s=m, r, s�0 with respect to a subgroup (Z2)2m+1. These constructions make
use of character sums from Galois rings, and relate relative difference sets to
Hadamard difference sets. � 1996 Academic Press, Inc.

1. INTRODUCTION

Let G be a finite group of order v. A k-element subset D of G is called a
(v, k, *, +)-partial difference set (PDS) in G if the differences d1d &1

2 , d1 , d2 # D,
d1{d2 , represent each nonidentity element in D exactly * times and each
nonidentity element not contained in D exactly + times. D is called abelian if
G is abelian. It is well known that a PDS D with e � D and [d &1: d # D]=D
is equivalent to a strongly regular Cayley graph, such a PDS is called
regular. The study of partial difference sets is closely related to partial
geometries, Schur rings, strongly regular Cayley graphs and two-weight
codes. The recent survey of Ma [5] contains very detailed descriptions of
these connections.

Assume that v=mn and that G contains a normal subgroup N of order n.
A k-element subset R of G is called an (m, n, k, *)-relative difference set
(or, in short an (m, n, k, *)-RDS) in G relative to N if the differences
d1 d &1

2 , d1 , d2 # R, d1{d2 , represent each element in G"N exactly * times
and each nonidentity element in N zero time. If G=H_N, where H is
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some subgroup of G, then R is called a splitting RDS. We will focus on
( pa, pb, pa, pa&b)-relative difference sets in this paper, these relative dif-
ference sets have been studied extensively, we refer the reader to the recent
survey of Pott [8] for a summary.

In a previous paper [7], we used Galois rings to construct partial dif-
ference sets, relative difference sets and a difference set. The main idea is as
follows. Given a subgroup of the unit group of a Galois ring, we may view
the orbits of the multiplication action of that subgroup on the Galois ring
as analogues of cyclotomic classes of finite fields, hence they may be used
to construct partial difference sets, relative difference sets, and difference
sets. Instead of calculating cyclotomic numbers, we use additive characters
of the Galois ring to show that the candidate subsets we come up with
have the required ``difference'' property. Galois rings have attracted a great
deal of attention recently because of their applications in coding theory
[3]. In this paper, we first generalize and improve the construction of par-
tial difference sets in [7]; also we obtain a family of relative difference sets
from these partial difference sets. Second, we construct a class of non-
splitting relative difference sets in (Z4)2m+1� (Z4)r� (Z2�Z2)s, r+s=m,
r, s�0 with respect to a subgroup (Z2)2m+1.

The following well-known character theoretic characterizations of
abelian partial difference sets and relative difference sets will be used in our
constructions.

Lemma A. Let G be an abelian group of order v and D be a subset of G
with [d &1: d # D]=D. Then D is a (v, k, *, +)-partial difference set in G if
and only if, for any character / of G,

:
d # D

/(d )={
k if / is principal on G,

;\- ;2+4#
2

if / is nonprincipal on G,

where ;=*&+; #=k&* if e # D, and #=k&+ if e � D.

Lemma B. Let G be an abelian group of order mn with a subgroup N of
order n, and R be a k-element subset of G. Then R is an (m, n, k, *)-relative
difference set in G relative to N if and only if, for any character / of G,

k if / is principal on G,

} :
r # R

/(r) }={- k&*n if / is nonprincipal on G but principal on N,

- k if / is nonprincipal on N.
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2. GALOIS RINGS OVER Z�p2Z

For every integer t�1, let Fp t denote the finite field of order pt, where
p is a prime. Let +1 : Z�p2Z � Z�pZ=Fp be the modulo p reduction map.
We can extend +1 to Z�p2Z[x] in the natural way. Let ,� (x) be a primitive
polynomial of degree t over Fp and let 8(x) be a preimage of ,� (x) under
the homomorphism +1 . There is a unique monic 8(x) whose root g
satisfies gp t&1=1.

The ring Z�p2Z[ g] is an algebraic extension of Z�p2Z; it is the Galois
extension of Z�p2Z of degree t. This extension Z�p2Z[ g] is called a Galois
ring and is denoted by GR( p2, t).

GR( p2, t) is a finite local ring, it has the unique maximal ideal
B=[0, p, pg, ..., pgq&2], where q=pt, the residue class field GR( p2, t)�B=
K=[0� , 1� , g� , ..., g� q&2] is isomorphic to Fq . We can take the Teichmuller
system T=[0, 1, g, ..., gq&2] as a set of representatives of GR( p2, t)�B.
Therefore an arbitrary element : of GR( p2, t) is uniquely represented as
:=:0+p:1 , :0 , :1 # T. We denote the set of invertible elements of
GR( p2, t) by GR( p2, t)*=GR( p2, t)"B. Every element of GR( p2, t)* has
a unique representation in the form gi (1+p:), 0�i�q&2, : # T.
GR( p2, t)* is a multiplicative group of order ( pt&1) pt which is a direct
product H_U, where H is the cyclic group of order pt&1 generated by g,
and U is the group of principal units of GR( p2, t), that is, elements of the
form 1+p:, : # T. U has the structure of an elementary abelian group
of order pt and is isomorphic to the additive group of K via the map
1+p: [ :� , : # T.

For the proof of the above assertions on the structure of GR( p2, t)*
and more detailed description of Galois rings, we refer the reader to
MacDonald [6].

For : # K=[0� , 1� , g� , ..., g� q&2], we define the trace function from K to Fp

by trt, 1(:)=:+:p+ } } } +:pt&1
. Let s be a positive divisor of t. Then there

is a unique subfield Fps of K with ps elements, we denote the trace maps
from K to Fps and from Fps to Fp by trt, s and trs, 1 respectively. By transi-
tivity of trace, we have trt, 1=trs, 1 b trt, s . The additive characters of K can
be easily described by the trace function.

Lemma C. All additive characters /y of K are given by

/y(x)=! tr t, 1(xy)
p , x # K

where !p is a primitive pth root of unity.

The Frobenius map f from GR( p2, t) to GR( p2, t) is the ring auto-
morphism f : :0+p:1 [ : p

0 +p: p
1 , :0 , :1 # T. The Galois group of
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GR( p2, t) over Z�p2Z is a cyclic group of order t which is generated by f.
The set of elements of GR( p2, t) invariant under f is identical with Z�p2Z.

For : # GR( p2, t), we define the trace function from GR( p2, t) to Z�p2Z
by Tt, 1(:)=:+: f+ } } } +: ft&1

. Let s be a positive divisor of t. Then there
is a unique subring GR( p2, s) of GR( p2, t) with p2s elements (see [6]). Let
us denote the relative traces from GR( p2, t) to GR( p2, s) and from
GR( p2, s) to GR( p2, 1)=Z�p2Z by Tt, s and Ts, 1 respectively. It is easy to
check that Tt, 1=Tt, s b Ts, 1 and the diagram

GR( p2, t) ww�
+ t K=Fp t

T t, s tr t, s

GR( p2, s)
+ s Fps

T s, 1 tr s, 1

Z�p2Z
+ 1 Fp

is commutative, where +t and +s are the natural homomorphisms from
the Galois rings GR( p2, t) and GR( p2, s) to their residue class fields
respectively.

The additive characters of GR( p2, t) can also be described by the trace
function.

Lemma D. All additive character *; of GR( p2, t) are given as follows

*;(:)=!T t, 1 ( ;:)
p 2 , : # GR( p2, t)

where !p 2 is a primitive p2 th root of unity.

For the proofs of Lemma C and Lemma D, we refer the reader to
Yamamoto and Yamada [9].

3. PARTIAL DIFFERENCE SETS

In this section, we generalize and improve the construction of partial dif-
ference sets in [7]. We will follow the notations used in Section 1 and 2.
Considering the subgroup H of GR( p2, t)*, we enumerate the cosets of H
in GR( p2, t)* as, E0� =H, E1� =(1+p)H, Eg� =(1+pg)H, ..., Eg� q&2=
(1+pgq&2)H, where q=pt. We note that E0� , E1� , Eg� , ..., Eg� q&2 , B"[0],
[0] are the orbits of the multiplication action of H on GR( p2, t), and
|E0� |=|E1� |=|Eg� |= } } } =|Eg� q&2 |=q&1.
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Let s be a positive divisor of t, s<t. There exists an element 0� {g� a # K
such that trt, s(g� a)=0� . Let V=[x� # K: trt, s(g� ax� )=0� ]. Then V is a (t�s&1)-
dimensional Fps -subspace of K.

Let V==[/ is an additive character of K: / | V=/0� ]. We claim that
V==[/0� ] _ [/h� : h� =g� a:� , :� # F*ps]. To see this, one just needs to note that
trt, s(:� g� ax� )=:� trt, s(g� ax� )=0� for all x� # V, :� # F*p s , and |V= |=|K�V |=ps.

Define D=�x� # V Ex� . Then we have the following theorem.

Theorem 3.1. D is an (n2, r(n&1), n+r2&3r, r2&r)-PDS in the
additive group of GR( p2, t) with n=pt, r=pt&s ; D _ (B"[0]) is an
(n2, r1(n&1), n+r2

1&3r1 , r2
1&r1)-PDS in the additive group of GR( p2, t)

with r1=pt&s+1.

Proof. Let * be an arbitrary additive character of GR( p2, t). By
Lemma D, we consider the following three cases.

(1) * is principal; i.e., *=*0 . In this case, *(D)=|D|= |V |( pt&1)=
pt&s( pt&1).

(2) *=*pgu , 0�u�(q&2). In this case, * has order p. By the com-
putation in the proof of Theorem 4.1 in [7], we know that *(Ex� )=&1.
Hence *(D)=(&1)|V |=&pt&s.

(3) *=*; , ;=(1+pb)gu, where 0�u�(q&2), and b # T. In this
case, * has order p2, and

*;(D)= :
x� # V

:
q&2

i=0

*;((1+px)gi)

= :
x� # V

:
q&2

i=0

!T t, 1 ((1+px) gi (1+pb) g u)
p 2

= :
x� # V

:
q&2

i=0

!T t, 1 ((1+pb) gi)
p 2 !T t, 1 ( pxg i )

p2

= :
q&2

i=0

!T t, 1 ((1+pb)g i)
p2 /g� i (V ).

By the claim proved before Theorem 3.1, we know that

/g� i (V )={ |V |
0

if g� i=g� a:� for some :� # F*ps ,
otherwise.
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Hence,

*;(D)=|V | :
:� # F*p s

!T t, 1 ((1+pb) ga:)
p 2

=|V | :
:� # F*p s

!T s, 1 (T t, s ((1+pb) ga):)
p2

=|V | :
:� # F*p s

*T t, s ((1+pb) ga)(:).

By the commutative diagram in Section 2, we have

+s(Tt, s((1+pb) ga))=trt, s(+t((1+pb) ga))=trt, s(g� a)=0� .

This shows that Tt, s((1+pb)ga) is in the maximal ideal of GR( p2, s), hence
*T t, s ((1+pb)ga) is either the principal character or a character of order p of
GR( p2, s). Let Tt, s(ga)=pgw # GR( p2, s). By the surjectivity of trt, s , there
exists b� # K such that g� w+trt, s(g� ab� )=0� ; hence there exists b # GR( p2, t)
such that Tt, s((1+pb)ga)=0, i.e., *T t, s ((1+pb) ga) is the principal character
for some b # GR( p2, t). Therefore, we have

*;(D)={pt&s( ps&1)
&pt&s

if *Tt, s ((1+pb) ga) is the principal character,
if *Tt, s ((1+pb) ga) is a character of order p.

Summing up all these calculations, we have shown that, for any nonprin-
cipal additive character * of GR( p2, t), *(D)=pt&s( ps&1) or &pt&s. By
Lemma A, D is an (n2, r(n&1), n+r2&3r, r2&r)-PDS in the additive
group of GR( p2, t) with n=pt, r=pt&s.

For the proof of the second part of the theorem, we note that for any
nonprincipal additive character * of GR( p2, t),

*(B"[0])={&1
pt&1

if * has order p2,
if * has order p.

Then by the above calculations of *(D) and Lemma A, we see that
D _ (B"[0]) is an (n2, r1(n&1), n+r2

1&3r1 , r2
1&r1)-PDS in the additive

group of GR( p2, t) with r1=pt&s+1. This completes the proof of the
theorem. K

Remark. In Theorem 3.1, if we let s=1 and choose g� a=1� (hence p | t),
we obtain Theorem 4.1 in [7]. S. L. Ma informed us that he and K. H.
Leung also can get rid of the condition p | t in our previous construction
in [7] by using very different method. Here we could generalize our
original construction to the case t>s>1, s | t.

We continue to obtain more partial difference sets from the above
construction.
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Since V=[x� # K: trt, s(g� ax� )=0� ] is an Fps -subspace of K, D=�x� # V Ex� is
a subgroup of GR( p2, t)*. Let D0=D, D1=g1D, ..., Dps&1=gps&1D be the
cosets of D in GR( p2, t)*, where gi # U, 1�i�ps&1. The character values
of Di can be easily calculated as

*0(Di)=pt&s( pt&1),

*pg u(Di)=*pgug i (D0)=&pt&s,

and

*(1+pb) g u(Di)=*(1+pb) g ug i (D0)

={
pt&s( ps&1)

if *T t, s ((1+pb) g ag i ) is the principal character,
&pt&s

if *T t, s ((1+pb) gag i ) is a character of order p,

for i=1, 2, ..., ps&1.
Also for any fixed character *(1+pb) g u , we have

:
p s&1

i=0

* (1+pb) g u (Di)=*(1+pb) g u (GR( p2, t)"B)=0.

Let x=|[i | 0�i�ps&1, *(1+pb) gu(Di)=pt&pt&s]|. Then the above
equation becomes x( pt&pt&s)&( ps&x) pt&s=0; hence x=1. From this
observation we have the following theorem.

Theorem 3.2. Let [i1 , i2 , ..., il] � [0, 1, 2, ..., ps & 1], 1 � l � ps.
Di 1

_ Di 2
_ } } } _ Dil is an (n2, r2(n&1), n+r2

2&3r2 , r2
2&r2)-PDS in the

additive group of GR( p2, t) with n=pt, r2=lpt&s ; � l
j=1 Dij _ (B"[0]) is an

(n2, r3(n&1), n+r2
3&3r3 , r2

3&r3)-PDS in the additive group of GR( p2, t)
with r3=lpt&s+1.

Proof. It suffices to check that the character values of � l
j=1 Dij are as

required by Lemma A. *0(� l
j=1 Dij )=lpt&s( pt&1). For any order p

character *pgu , *pg u(� l
j=1 Di j)=&lpt&s. For any order p2 character

*(1+pb) g u , by the observation made before Theorem 3.2, we know that
there is at most one j, 1� j�l, such that *(1+pb) g u (Dij )=pt&pt&s.

*(1+pb) g u \ .
l

j=1

Di j+
={pt&lpt&s

&lpt&s

if *(1+pb) gu (Dij )=pt&pt&s for some j, 1� j �l,
otherwise.
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This shows that Di1
_ Di2

_ } } } _ Dil is an (n2, r2(n&1), n+r2
2&3r2 , r2

2&r2)-
PDS in the additive group of GR( p2, t) with n=pt, r2=lpt&s. The second
part of the theorem can be similarly proved. This completes the proof. K

4. RELATIVE DIFFERENCE SETS

In this section, we give two constructions of relative difference sets.
The first is a consequence of the construction of partial difference sets in
Section 3. The second construction is for abelian 2-groups, in its general
form (Theorem 4.6), the construction gives new relative difference sets in
abelian 2-groups. We will maintain the notation in previous sections.

Let G=(GR( p2, t), +)�P, where (GR( p2, t), +) is the additive group
of GR( p2, t), and P is any abelian group of order ps, where s | t,
1�s<t. Assume that P=[x0 , x1 , ..., xp s&1]. We define R=(D0 , x0) _

(D1 , x1) _ } } } _ (Dps&1 , xps&1) _ (B, 0), where D0 , D1 , ..., Dps&1 were
defined in Section 3. Then we have the following theorem.

Theorem 4.1. R is a ( p2t, ps, p2t, p2t&s)-relative difference set in G
relative to P.

Proof. Let � be an arbitrary character of G. Then �=*�/, where * is
an additive character of GR( p2, t) and / is a character of P. We consider
two cases.

Case 1. / is the principal character:

�(R)= :
p s&1

i=0

*(Di )+*(B).

If * is principal, then �(R)=|R|=p2t.
If * is not principal, then we distinguish two cases.

(1) *=*pgu . In this case, * has order p, *(B)=|B|=pt, and
*(Di)=&pt&s, 0�i�ps&1. Hence �(R)=(&pt&s) ps+pt=0.

(2) *=*; , ;=(1+pb) gu, where 0�u�(q&2), and b # T. In this
case, * has order p2, *(B)=0, and by the observation made before
Theorem 3.2, we know that there is a unique j, 0� j �ps&1, such that
*(1+pb) g u (Dj)=pt&pt&s. Hence �(R)=pt&pt&s+( ps&1)(&pt&s)=0.

Case 2. / is nonprincipal on P:

�(R)= :
p s&1

i=0

*(Di) /(xi)+*(B);

we also distinguish three cases.
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(1) * is principal: �(R)=|D0 | � ps&1
i=0 /(xi)+|B|=pt.

(2) * has order p; i.e., *=*pg u . In this case, *(B)=|B|=pt and
*(Di)=&pt&s, 0�i�ps&1. So �(R)=&pt&s � p s&1

i=0 /(xi)+pt=pt.

(3) * has order p2 ; i.e., *=*; , ;=(1+pb) gu. As in Case 1, there
is a unique j, 0� j �ps&1, such that *(1+pb) gu (Dj)=pt&pt&s. Hence,
�(R)=( pt&pt&s) /(xj)+�i{j /(xi)(&pt&s)=pt/(xj). Therefore, |�(R)|=pt.

So we have shown that

p2t if � is principal on G.

|�(R)|={ 0 if � is nonprincipal on G but principal on P.

pt if � is nonprincipal on P.

By Lemma B, R is a ( p2t, ps, p2t, p2t&s)-relative difference set in G
relative to P. This completes the proof. K

Remark. We remark that there are many constructions of
( pa, pb, pa, pa&b)-relative difference sets, see [8] for a summary. The good
thing in Theorem 4.1 is that P is an arbitrary abelian p-group of order ps.

The RDS in Theorem 4.1 is splitting. In the following, we construct a
nonsplitting RDS in abelian 2-groups.

Let A=[x� # K | trt, 1(x� )=0� ], G=(GR(4, t), +)� (A, +), and Fa� =
Ea� _ [0]. Assume that A=[:1, :2, ..., :2 t&1], :i # T, 1�i�2t&1. Define
R=�2 t&1

i=1 (F:i , :i). We have the following theorem.

Theorem 4.2. If t=2m+1, m�1, then R is a (24m+1, 22m+1,
24m+1, 22m)-relative difference set in G relative to B, where B is the unique
maximal ideal of GR(4, t).

Proof. Let � be an arbitrary character of G. Then �=*�/, where * is
an additive character of GR(4, t) and / is a character of A.

If � is principal, then �(R)=|R|=24m+1.
If * is principal, / is nonprincipal; then �(R)=|F: 1

| �2 t&1

i=1 /(:i)=0.
If * has order 2, i.e., * is principal on B but not principal on GR(4, t),

then �(R)=�2 t&1

i=1 (1+*(E:i)) /(:i). Noting that *(E:i)=&1, we have
�(R)=0.

If * has order 4, we consider two cases.

Case 1. / is principal:

�(R)= :
2 t&1

i=1

(*(E:i)+1)= :
2 t&1

i=1

*(E:i)+2t&1.
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By a result of Yamamoto and Yamada [9], we know that �2 t&1

i=1 *(E: i)=
\2t&1!4 , where !4=- &1. Hence |�(R)|=- 2 2t&1=- 22t&1.

Case 2. / is nonprincipal. We assume that *=*(1+2b) gu , and /=/g� v ,
where gu # H, g� v # K, v{0, then

�(R)= :
2 t&1

i=1

(*(E:i)+1) /(:i)

= :
2 t&1

i=1

:
2 t&2

j=0

(!Tt, 1 ((1+2:i ) g j (1+2b) gu )
4 +1)(&1)tr t, 1 (g� v: i)

= :
2 t&1

i=1

:
2 t&2

j=0

!T t, 1 ((1+2b+2: i) g j )
4 (&1)tr t, 1 (g� v: i)

= :
2 t&2

j=0

!Tt, 1 ((1+2b) g j )
4 :

2 t&1

i=1

(&1)tr t, 1 ((g� j+g� v) :i)

= :
2 t&2

j=0

!Tt, 1 ((1+2b) g j )
4 /g� j+g� v (A)

Since A is the trace zero hyperplane in K, if an additive character / is
neither /0� nor /1� , then /(A)=0. Let g� j+g� v=0� . Then g� j=g� v. If we set
g� j+g� v=1� , then g� j=1� &g� v=g� w (say). Hence

�(R)=!T t, 1 ((1+2b) g v)
4 2t&1+!T t, 1((1+2b) gw)

4 2t&1

=2t&1((&1)tr t, 1 (g� vb� )!T t, 1(gv)
4 +(&1)tr t, 1( g� wb� ) !T t, 1(g w)

4 ).

By the commutative diagram in Section 2, we have +1(Tt, 1(gv))=
trt, 1(g� v), and +1(Tt, 1(gw))=trt, 1(1� &g� v)=t+trt, 1(g� v). So if t is odd, then
+1(Tt, 1(gv)) and +1(Tt, 1(gw)) have opposite parity. Therefore |�(R)|=
2t&1 |\1\!4 |=- 2 2t&1=- 22t&1.

Summing up all these calculations, we have shown that

22t&1 if � is principal on G.

|�(R)|={0 if � is nonprincipal on G but principal on B.

- 22t&1 if � is nonprincipal on B.

By Lemma B, we conclude that R is a (24m+1, 22m+1, 24m+1, 22m)-
relative difference set in G relative to B. This completes the proof. K

Remark. Jungnickel [4] has given a construction of (2a, 2b, 2a, 2a&b)-
RDS in (Z4)b � (Z2)a&b. Our method of construction here is quite different
from Jungnickel's method. Also the construction in Theorem 4.2 gives
Hadamard difference sets in (A, +) as we will show below, these
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Hadamard difference sets in turn allow us to generalize the construction in
Theorem 4.2 to more general groups.

Let A and Fa� be the same as before, and * be any order 4 character of
GR(4, t). We assume that *=*# 1+2#2

for some #1 , #2 # T, #1{0, also we
will denote the trace map Tt, 1 from GR(4, t) to Z4 simply by T, then we
have the following lemma.

Lemma 4.1. �x # T *(x)=(�x # T !T (x)
4 ) !&T (# 2 �#1)

4 .

Proof (Calderbank). From Section E of [3], we know that
_: x [ (ax+b)2m

, a, b # T, a{0 induces a permutation on T. Hence

:
x # T

*(x)= :
x # T

!T((# 1+2# 2)x)
4

= :
x # T

!T((# 1+2# 2)(ax+b) 2 m
)

4

= :
x # T

!T((# 1+2# 2)(ax+b+2(abx) 2 m&1))
4

= :
x # T

!T(a# 1 x+2a# 2x+# 1b+2# 2 b+2#1 (abx) 2 m&1
)

4 .

Noting that T(2y)=T(2y2) for y # T, and letting a=1�#1, b=#2�#2
1 , we

have

:
x # T

*(x)= :
x # T

!T(x&(#2 �# 1))
4

=\ :
x # T

!T(x)
4 + !&T(#2 �#1)

4 .

This completes the proof. K

Assume that A=[:1, :2, ..., :2 t&1], :1=0� , :i # T; then F0� =T and for
each i, 2�i�2t&1, F:i=(1+2:i)T. Given any order 4 character *(1+2#) gu ,
# # T, 0�u�2t&2, one has

*(1+2#) gu(F:i)= :
2 t&2

j=0

!T((1+2#) g u(1+2: i) g j )
4 +1

= :
2 t&2

j=0

!T ((1+2#)(1+2:i ) g j )
4 +1

=*1+2#(F: i),

so we may concentrate on characters of the form *1+2# , # # T.
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For any fixed *1+2# , # # T, we have

*1+2#(F:i)= :
x # T

!T((1+2#)(1+2: i)x)
4

= :
x # T

!T((1+2#+2:i)x)
4 .

Assuming that #+:i=;i+2%i , ;i , %i # T, by Lemma 4.1, we have

*1+2#(F: i)= :
x # T

!T((1+2; i)x)
4

=*1(F0� ) !&T(; i)
4 .

On the other hand,

*1+2#(F0� )= :
x # T

!T((1+2#)x)
4

=*1(F0� ) !&T(#)
4 ;

noting that #2+2#:i+:2
i =;2

i , we have

*1+2#(F:i)
*1+2#(F0� )

=!&T(; i&#)
4

=!&T(; i
2&#2)

4

=!&T((1+2#):i)
4 .

Since trt, 1(:i)=0� , T((1+2#):i)=T(:i)+2T(#:i) # [0, 2].
Define |# : A � [\1] via |#(:i)=*1+2#(F:i )�*1+2#(F0� )=!T((1+2#) : i)

4 .
We have the following theorem.

Theorem 4.3. If t=2m+1, m�1, then |&1
# [1] is a (22m, 22m&1\2m&1,

22m&2\2m&1)-difference set in (A, +) for all # # T.

Proof. First we note that

:
2 t&1

i=1

*1+2#(F:i)= :
2 t&1

i=1

*1+2#(E:i)+2t&1=22m\22m!4 ,

where �2 t&1

i=1 *1+2#(E:i)=\22m!4 follows from Yamamoto and Yamada
[9]. Hence

||&1
# [1]| *1+2#(F0� )&(2t&1&||&1

# [1]| ) *1+2#(F0� )=22m\22m!4 .
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Also by a result of Boztas, Hammons, and Kumar in [1], we know that
*1+2#(F:i)=\2m\2m!4 . It follows that ||&1

# [1]|=22m&1\2m&1. From
the proof of Theorem 4.2, Case 2, / is nonprincipal; therefore we have

�(D)= :
2 t&1

i=1

*1+2#(F:i ) /(:i)

=*1+2#(F0� ) /(|&1
# [1])&*1+2#(F0� ) /(A"|&1

# [1])

=2*1+2#(F0� ) /(|&1
# [1]),

where �, /, and D are the same as those in the proof of Theorem 4.2.
By Theorem 4.2, |�(D)|=- 2 22m ; also |*1+2#(F0� )|=- 2 2m. We have
|/(|&1

# [1])|=2m&1, for every nonprincipal character / of A. Hence
|&1

# [1] is a Hadamard difference set in A. This completes the proof. K

From the above theorem, we see that each # # T gives rise to a
Hadamard difference set |&1

# [1] in (A, +); the relationship between these
|&1

# [1], # # T, is given in the following proposition.

Proposition 4.4. (1) If # # T, #� # A, then |&1
# [1]=|&1

0 [1]+#� if
T(#)=0, A"|&1

# [1]=|&1
0 [1]+#� if T(#)=2.

(2) If # # T, #� � A, assuming that #� =1� +:i for some :i # A, then
|&1

# [1]=|&1
1 [1]+:i if T(#&1)=0; A"|&1

# [1]=|&1
1 [1]+:i if

T(#&1)=2. Also |&1
1 [1]=|&1

0 [1].

Proof. We prove the proposition for the case # # T, #� # A, T(#)=0. The
rest of the proposition can be similarly proved.

If x� # |&1
0 [1], x # T, then T(x)=0. We claim that x� +#� # |&1

# [1], so
|&1

0 [1]+#� �|&1
# [1]. Let x� +#� =y� , y # T. Assume that x+#=y+2z,

z # T, then #&y=2z&x, so #2&2y#+y2=x2.

T( y(1+2#))=T( y2)&2T( y#)

=T(x2)&T(#2)

=&T(#)=0.

Hence y� =x� +#� # |&1
# [1]. This proves the claim.

Conversely, for any x� # |&1
# [1], x # T, we can similarly prove that

x� &#� # |&1
0 [1]; hence x� # |&1

0 [1]+#� .
Summing up, we have shown that |&1

# [1]=|&1
0 [1]+#� if T(#)=0.

This completes the proof of the proposition. K
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We remark that |# can also be defined by |#(:i)=!T((1+2# 2) : i
2)

4 ,
:i # T, since T((1+2#) :i)=T((1+2#2):2

i ). In general, we have
|#(x� )=!T((1+2#2) x2)

4 , where we do not require x # T. This definition is
more convenient to use.

We note that |# : A � [\1] defines a function b# : A � [0, 1] via
|#(x� )=(&1)b#(x� ) for all # # T. By the relationship between Hadamard dif-
ference sets and bent functions (see [2]), we have the following corollary.

Corollary 4.5. b# is a bent function on A$F 2m
2 for every # # T.

We continue to study the bent functions b# , # # T.

Lemma 4.2 For each # # T, b# is a quadratic form on A$F 2m
2 .

Proof. It suffices to prove that b#(x� +y� )&b#(x� )&b#( y� ) is a bilinear
form on A. From the definition of b# , we see that

(&1)(b #(x� +y� )&b#(x� )&b #( y� ))=!T((1+2#2)(x+y) 2)&T((1+2#2) x 2)&T((1+2#2) y2)
4

=!T(2xy)
4

=(&1)tr t, 1 (xy).

So b#(x� +y� )&b#(x� )&b#( y� )=trt, 1(xy) is a bilinear form on A. This
completes the proof. K

From Remark 6.3.1 of [2], we know that b# , # # T (up to complementa-
tion), belong to family Q (see [2]), and it has the form

b#(X, Y )=X1Y1+X2Y2+ } } } +Xm Ym

with respect to a suitable basis x1 , x2 , ..., xm , y1 , y2 , ..., ym of A over F2 .
Hence the difference set |&1

# [1] (up to complementation) is the Menon
composition (which corresponds to the Kronecker product of the corre-
sponding Hadamard matrices, see [2]) of singleton difference sets in
Z2xi+Z2 yi , i=1, 2, ..., m.

Let W=(Z4)r � (Z2�Z2)s, r+s=m. We define a bijection f# : A � W
by setting f#=f (1)_f (2)_ } } } _f (m), where f (i) : Z2xi+Z2 yi � Z4 or
(Z2�Z2) is an arbitrary bijection. We note that the definition of f#

depends on the basis x1 , x2 , ..., xm , y1 , y2 , ..., ym of A over F2 . We need the
following lemma.

Lemma 4.3. f#(|&1
# [1]+z) are Hadamard difference sets for all # # T

and z # A.

Proof. We prove the lemma in the case m=2. The rest follows by
induction on m.
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If m=2, let Gi=Z2xi+Z2yi and let Di be trivial difference sets in Gi ,
i=1, 2 (by trivial difference sets we mean that Di is either a singleton
difference set or the complement of a singleton difference set). From the
discussion above we see that |&1

# [1]=[D1_(G2"D2)] _ [(G1"D1)_D2].
Let z=(z1 , z2), zi # Gi , i=1, 2. Then

|&1
# [1]+z=[(D1+z1)_((G2 "D2)+z2)] _ [((G1"D1)+z1)_(D2+z2)]

=[(D1+z1)_(G2"(D2+z2))] _ [(G1 "(D1+z1))_(D2+z2)];

f#(|&1
# [1]+z)=[ f (1)(D1+z1)_( f (2)(G2)" f (2)(D2+z2))]

_ [( f (1)(G1)" f (1)(D1+z1))_f (2)(D2+z2)].

Since D1 and D2 are trivial difference sets in G1 and G2 , f (1)(D1+z1) and
f (2)(D2+z2) are trivial difference sets in G1 and G2 , respectively. Hence
f#(|#

&1[1]+z) is a Hadamard difference set in f (1)(G1)_f (2)(G2). The
proof is complete. K

With the above preparation, we can now generalize Theorem 4.2 as
follows.

Let G=(GR(4, t), +)�W, where t=2m+1, m�1, W=(Z4)r �

(Z2�Z2)s, r+s=m, r, s�0, and let f0 be the bijection from A to W
defined before Lemma 4.3. We define R=�2 t&1

i=1 (F:i , f0(:i)), where
A=[:1, :2, ..., :2 t&1], :1=0� , :i # T is the trace zero hyperplane of
K=GR(4, t)�B. We have the following theorem.

Theorem 4.6 R is a (24m+1, 22m+1, 24m+1, 22m)-relative difference set in
G relative to B, where B is the unique maximal ideal of GR(4, t).

Proof. Let � be an arbitrary character of G. Then �=*�/, where * is
an additive character of GR(4, t) and / is a character of W.

If � is principal, then �(R)=|R|=24m+1.
If * is principal, / is nonprincipal, then �(R)=|F: 1

| �2 t&1

i=1 /( f0(:i))=0.
If * has order 2, i.e., * is principal on B but not principal on GR(4, t),

then �(R)=�2 t&1

i=1 (1+*(E:i)) /( f0(:i)). Noting that *(E:i)=&1, we have
�(R)=0.

If * has order 4, we consider two cases:

Case 1. / is principal:

�(R)= :
2 t&1

i=1

(*(E: i)+1)

=2t&1\2t&1!4 .

Hence |�(R)|=- 2 2t&1=- 22t&1.
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Case 2. / is nonprincipal. We assume that *=*(1+2#) gu , # # T.
Noting that *(1+2#) gu(F: i)=*1+2#(F:i), we have

�(R)= :
2 t&1

i=1

*1+2#(F:i) /( f0(:i)).

If #=0, then

�(R)=*1(F0� ) /( f0(|&1
0 [1]))&*1(F0� ) /(W" f0(|&1

0 [1]))

=2*1(F0� ) /( f0(|&1
0 [1])).

By Lemma 4.3, we know that |/( f0(|&1
0 [1]))|=2m&1, so |�(R)|=

2 - 2 2m2m&1=- 2 22m.
If #{0, #� # A, then

�(R)= :
x� # A

*1(Fx� +#� ) /( f0(x� )).

Let x� +#� =y� . Then

�(R)= :
y� # A+#�

*1(Fy� ) /( f0(y� &#� ))

= :
y� # A

*1(Fy� ) /( f0( y� &#� ))

=*1(F0� ) /( f0(|&1
0 [1]&#� ))&*1(F0� ) /(W" f0(|&1

0 [1]&#� ))

=2*1(F0� ) /( f0(|&1
0 [1]&#� )).

By Lemma 4.3, we know that |/( f0(|&1
0 [1]&#� ))|=2m&1, so |�(R)|=

2 - 2 2m2m&1=- 2 22m.
If #=1, then

�(R)= :
2 t&1

i=1

*3(F:i) /( f0(:i))

= :
2 t&1

i=1

*1(F:i) /( f0(:i))

=2*1(F0� ) /( f0(|&1
0 [1])).

Hence |�(R)|=2 - 2 2m2m&1=- 2 22m.
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If #� � A, #{1, we can write #� =1� +;� with ;� # A; then *1+2#(F:i)=
*3(F;� +:i)=*1(F;� +:i), so

�(R)= :
x� # A

*1(Fx� +;� ) /( f0(x� ))

= :
y� # A+;�

*1(Fy� ) /( f0(y� &;� ))

= :
y� # A

*1(Fy� ) /( f0( y� &;� ))

=*1(F0� ) /( f0(|&1
0 [1]&;� ))&*1(F0� ) /(W" f0(|&1

0 [1]&;� ))

=2*1(F0� ) /( f0(|&1
0 [1]&;� )).

Hence by Lemma 4.3 |�(R)|=2 - 2 2m2m&1=- 2 22m.

In summary, we have shown that

22t&1 if � is principal on G,

|�(R)|={0 if � is nonprincipal on G but principal on B,

- 22t&1 if � is nonprincipal on B.

Therefore R is a (24m+1, 22m+1, 24m+1, 22m)-relative difference set in G
relative to B, where B is the unique maximal ideal of GR(4, t).

Remark. If we replace the group W in Theorem 4.6 by any abelian
2-group L, and if there is a bijection \: A � L which maps every translate
of |&1

0 [1] to a difference set in L, then the construction in Theorem 4.6
still works for the group (GR(4, t), +)�L, but it seems difficult to con-
struct such a bijection \ except in the case W=(Z4)r� (Z2�Z2)s,
r+s=m, r, s�0.
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