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1 Introduction

In this paper, we are concerned with the weight distributions of binary cyclic codes with two primitive

nonzeros. Let q = 2m, where m � 1 is an integer, and F = Fq, the finite field of size q. Let α be a

primitive element of F, and Cd be the binary cyclic code of length q− 1 with two nonzeros α−1 and α−d,

where d is an integer such that 1 � d � q − 2, gcd(d, q − 1) = 1. Then Cd is a [q − 1, 2m]2 code, and its

codewords are given by

c(a, b) = (Tr(a+ b),Tr(aαd + bα), . . . ,Tr(aα(q−2)d + bαq−2)), a, b ∈ F,

where Tr is the absolute trace function defined on F.

Let us consider the Hamming weights of c(a, b), where a, b ∈ F. When exactly one of a, b is 0, the

codeword c(a, b) has weight q/2. When a, b are both nonzero, c(a, b) has weight

1

2

q−2∑
i=0

(1− (−1)Tr(aα
di+bαi)) =

1

2

(
q −

∑
x∈F

(−1)Tr(x
d+ba− 1

d x)

)
, (1.1)

where we use 1/d to denote the unique integer j such that jd ≡ 1 (mod q − 1) and 1 � j � q − 2.

Therefore, the weight distribution of Cd is completely determined by the Walsh spectrum of the function

fd : F→F2, x �→ Tr(xd), and vice versa. Here the Walsh coefficients of fd are defined by

Wd(a) =
∑
x∈F

(−1)Tr(x
d+ax), a ∈ F.
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The distribution of Wd(a), a ∈ F, is called the Walsh spectrum of fd. The problem of determining the

Walsh spectrum of fd is also equivalent to the problem of determining the crosscorrelations of an m-

sequence and its d-decimation. We refer the reader to the appendix in [9] for more details on various

formulations of this problem. A lot of work has been done on determining the Walsh spectrum of fd
when d takes special forms, see [2, 4, 8, 11]. There are a few general conjectures on the Walsh spectrum

of fd, which have proved to be quite challenging. We refer the reader to the recent paper [1] for a list of

these conjectures, and some recent progress made on them.

In this paper, we are primarily interested in the following well-known conjecture due to Sarwate [1];

see [3, p. 258] also.

Conjecture 1.1. Let m = 2t, and Cd be the [2m − 1, 2m] binary cyclic code with two nonzeros α−1

and α−d (gcd(d, 2m − 1) = 1), where α is a primitive element of F. Then the minimum distance of

Cd � 2m−1 − 2t.

Using (1.1), the existence of a nonzero codeword of weight � 2m−1 − 2t is equivalent to the existence

of a nonzero a ∈ F such that Wd(a) � 2t+1. Charpin [3] showed that Conjecture 1.1 is true when d ≡ 2j

(mod 2t − 1), for some j, 0 � j � t− 1. (Such d’s are called the Niho exponents.)

In this paper, without putting any conditions on d (of course, gcd(d, 2m − 1) = 1 is still assumed),

we shall prove an upper bound on the minimum distance of Cd, which is slightly weaker than the bound

in Conjecture 1.1. Furthermore, we will determine the weight distributions of Cd for two special classes

of d; one of the two classes was previously considered by Cusick and Dobbertin [4], the other class is

new. Details are given in Section 3. Throughout the rest of this paper, we shall fix m = 2t, and use Trm,

Trt to denote the absolute traces defined on F and F2t , respectively. Also we use Trm/t (resp. Nm/t) to

denote the relative trace (resp. norm) from F to F2t . We shall drop the subscripts if we believe that no

confusion will arise.

2 An upper bound on the minimum weight of Cd

First, we give a summary of some well-known identities involving the Walsh coefficients Wd(a), a ∈ F.

We refer the reader to [3, 6, 7, 9] for the proof of these identities.

Lemma 2.1. (1)
∑

a∈F
Wd(a) = q,

∑
a∈F

Wd(a)
2 = q2.

(2) ∑
a∈F2t

Wd(au) =

{
q, if u ∈ F∗

2t ,

0, if u /∈ F2t .

Now, we are ready to prove our first result.

Theorem 2.1. Let m = 2t, and Cd be the [2m − 1, 2m] binary cyclic code with two nonzeros α−1

and α−d (gcd(d, 2m − 1) = 1), where α is a primitive element of F. Then the minimum distance of

Cd < 2m−1 − 2t−1 − 2�t/2�−1; in other words, there is a nonzero a ∈ F such that Wd(a) > 2t + 2�t/2�.

Proof. For any nonzero b ∈ F \ F2t , by direct calculations we have∑
a∈F2t

Wd(a)(1 − (−1)Trm(ba)εb) = 2m + 2t|Mb|, (2.1)

where Mb =
∑

x∈F2t
(−1)Trm((x+b)d) and εb = ±1 is chosen such that εbMb = −|Mb|. For each b ∈ F\F2t ,

it will be convenient to introduce a function pb on F2t defined by

pb(a) := 1− (−1)Trm(ba)εb, ∀ a ∈ F2t .

Then for b ∈ F \ F2t , we have
∑

a∈F2t
pb(a) = 2t, pb(a) � 0, and (2.1) can be rewritten as

∑
a∈F2t

Wd(a)pb(a) = 2m + 2t|Mb|. (2.2)
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Next we compute∑
b∈F

M2
b = 2t

∑
b∈F

∑
x∈F2t

(−1)Trm((x+b)d+bd)

= 2t|F|+ 2t
∑
b∈F

∑
x∈F

∗
2t

(−1)Trm(xd((1+b)d+bd))

= 2t|F|+ 2t(2t · |{b ∈ F | Trm/t((1 + b)d + bd) = 0}| − |F|)
= 22t|{b ∈ F | (1 + b)d + bd ∈ F2t}|.

Since Mb = 2t if b ∈ F2t , we thus have∑
b∈F\F2t

M2
b = 22t · |{b ∈ F \ F2t | (1 + b)d + bd ∈ F2t}|.

Let c ∈ F∗ be an element of order 2t + 1. Then a system of coset representatives of (F2t ,+) in (F,+)

is given by uc, u ∈ F2t . Since Mb+x =Mb for any x ∈ F2t , and F \ F2t =
⋃

u∈F
∗
2t
(uc+ F2t), we get

∑
u∈F

∗
2t

M2
uc = 2t · |{b ∈ F \ F2t | (1 + b)d + bd ∈ F2t}|. (2.3)

If u ∈ F∗
2t , then we have

Muc =
∑
x∈F2t

(−1)Trm((x+uc)d) =
∑
x∈F2t

(−1)Trt(u
d((x+c)d+(x+c2

t
)d)) =

∑
z∈Rd

ψud(z),

where Rd denotes the multiset “(x+c)d+(x+c2
t

)d, x ∈ F2t” (each element of Rd indeed belongs to F2t),

and ψud is the additive character of F2t defined by

ψud(x) = (−1)Trt(u
dx), x ∈ F2t .

We write the multiset Rd as a group ring element, Rd=
∑

g∈F2t
rg[g]∈Q[(F2t ,+)]. Then

∑
g∈F2t

rg=2t,

each rg is a nonnegative integer, and for u ∈ F∗
2t , Muc = ψud(Rd). Furthermore, note that each coeffi-

cient rg of Rd must be even since (x + c)d + (x+ c2
t

)d = ((x + c+ c2
t

) + c)d + ((x+ c+ c2
t

) + c2
t

)d for

any x ∈ F2t , and c + c2
t �= 0. We compute the coefficient of the identity (i.e., the zero element of F2t)

in RdR
(−1)
d in two ways, where R

(−1)
d =

∑
g∈F2t

rg[−g]. In fact, we have R
(−1)
d = Rd here since the

characteristic of F2t is 2. On the one hand, this coefficient is equal to∑
g∈F2t

r2g � 22 · 2t−1 = 2t+1.

On the other hand, by the inversion formula (see, for example, [6]), the coefficient of the identity element

in RdR
(−1)
d is equal to 1

2t

∑
u∈F2t

ψud(Rd)
2 = 1

2t

∑
u∈F2t

M2
uc. It follows that∑

u∈F2t

M2
uc � 22t+1.

Using (2.3) we now obtain

(2t)2 + 2t · |{b ∈ F \ F2t | (1 + b)d + bd ∈ F2t}| � 22t+1.

Therefore,

|{b ∈ F \ F2t | (1 + b)d + bd ∈ F2t}| � 2t,

with equality if and only if Rd has size 2t−1 as a set. As a consequence, there exists an element u ∈ F∗
2t

such that

|Muc| �
√
22t/(2t − 1) > 2�t/2�.

Using the above element uc as b in (2.2), we see that there is some a ∈ F2t such that Wd(a) > 2t +2�t/2�

by an averaging argument. The proof of the theorem is now complete.
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Remarks. (1) In the case where d = 1 + 2i, for x ∈ F2t , we have Trm((x+ b)d) = Trt(xv) + Trm(bd),

where v = Trm/t(b)
2i + Trm/t(b)

2−i

. Choosing b ∈ F \ F2t such that Trm/t(b) = 1, we have v = 0, and

|Mb| = 2t. We see that Conjecture 1.1 is true in this case by using (2.2).

(2) If d is a Niho exponent, then from [3, p. 253] we know that 2t|Wd(a) for all a ∈ F. Combining this

divisibility result with the conclusion of Theorem 2.1 that there is some a ∈ F withWd(a) > 2t+2�t/2�, we
immediately get Wd(a) � 2t+1. The same argument shows that more generally, for any d, 1 � d � q− 2,

gcd(d, q − 1) = 1, such that 2t|Wd(a) for all a ∈ F, Conjecture 1.1 is also true.

3 The Walsh spectrum of Tr(xd) with d = 1+ 2i + 2i+t

In this section, we assume that d = 1+ 2i + 2i+t for some i, 0 < i < t− 1, and gcd(d, 2m − 1) = 1. Such

a d is not a Niho exponent. First, we show that for any d of the aforementioned form, Conjecture 1.1

is true. Secondly, specializing to the i = 1 case, i.e., d = 3 + 2t+1, we determine the Walsh spectrum of

Tr(xd) completely.

For a nonzero integer n, we use v2(n) to denote the largest nonnegative integer a such that 2a|n.
Lemma 3.1. Let m = 2t and d = 1 + 2i + 2i+t for some i, 0 < i < t − 1, with gcd(d, 2m − 1) = 1.

Then v2(i+ 1) � v2(t).

Proof. Since gcd(d, 2m − 1) = 1, we have gcd(2i+1 +1, 2t − 1) = 1. It follows that gcd(2i+1 − 1, 2t − 1)

= gcd(22(i+1) − 1, 2t − 1). Therefore, gcd(i+ 1, t) = gcd(2(i+ 1), t), which is easily seen to be equivalent

to v2(i+ 1) � v2(t). The proof is complete.

Let c be a fixed element of F∗ such that c �= 1 and c2
t+1 = 1. Then each element of F can be written

uniquely as x+ yc with x, y ∈ L := F2t . We shall write c̄ := c2
t

, θ := c+ c̄. Now we compute Wd(a+ bc̄),

where a, b ∈ L. For x, y ∈ L, we have

Tr((x + yc)d + (a+ bc̄)(x + yc)) = Tr(xNm/t(x+ yc)2
i

+ yNm/t(x+ yc)2
i

c+ ax+ by + ayc+ bxc̄)

= Trt(y(x
2 + xyθ + y2)2

i

θ) + Trt(ayθ + bxθ)

= Trt(yx
2i+1

θ + y1+2iθ1+2ix2
i

) + Trt(y
1+2i+1

θ + ayθ + bxθ)

= Trt((y
2t−i−1

θ2
t−i−1

+ y1+2t−i

θ1+2t−i

+ bθ)x) + Trt(y
1+2i+1

θ + ayθ).

Therefore,

Wd(a+ bc̄) =
∑
y∈L

∑
x∈L

(−1)Trt((y
2t−i−1

θ2t−i−1
+y1+2t−i

θ1+2t−i
+bθ)x)+Trt(y

1+2i+1
θ+ayθ)

= 2t
∑
y

(−1)Trt(y
1+2i+1

θ+ayθ),

where the last sum is taken over

{y ∈ L | yθ + (yθ)2+2i+1

+ (bθ)2
i+1

= 0}.
After a change of variable, we have

Wd(a+ bc̄) = 2t
∑
z∈Sb

(−1)Trt(z
1+2i+1

θ−2i+1
+az), (3.1)

where

Sb := {z ∈ L | z + z2+2i+1

+ (bθ)2
i+1

= 0}.
When b = 0, we have S0 = {0, 1} since gcd(2i+1 + 1, 2t − 1) = 1. It follows that

Wd(a) = 2t(1 + (−1)Trt(θ
−1+a)), ∀ a ∈ L.

Choosing a = θ−1, we have Wd(θ
−1) = 2t+1. Thus we have proved the following:
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Theorem 3.1. Conjecture 1.1 holds when d is of the form 1+2i+2i+t, 0 < i < t−1, and gcd(d, 2m−1)

= 1.

In order to determine the Walsh spectrum of Tr(xd), it remains to computeWd(a+bc̄) for those b ∈ L∗.
In the case when b �= 0, to compute Wd(a+ bc̄) using (3.1), we need to solve the equation

z + z2
i+1+2 = w, z ∈ L,

for each w ∈ L∗. For general i, 0 < i < t− 1, the solutions are complicated. We will consider the i = 1

case below.

From now on, we assume that i = 1 (so d = 3 + 2t+1). By Lemma 3.1, v2(t) � 1; that is, either t is

odd or t ≡ 2 (mod 4). The equation we need to consder is now z6 + z = w, z ∈ L and w ∈ L∗.
Assume that z0 ∈ L∗ is a solution to z6 + z = w, w ∈ L∗. Suppose z0 + x is another solution with

x ∈ L∗. Now expanding (z0 + x)6 + z0 + x = w gives

(
x

z0

)5

+

(
x

z0

)3

+

(
x

z0

)
=

1

z50
.

The polynomial X5+X3+X ∈ F2[X ] is the Dickson polynomial D5(X, 1). For convenience of the reader,

we include the definition of the Dickson polynomials here. Let a ∈ Fq (here q is an arbitrary prime power)

and n be a positive integer. We define the Dickson polynomial Dn(X, a) over Fq by

Dn(X, a) =

�n/2�∑
j=0

n

n− j

(
n− j

j

)
(−a)jXn−2j.

It is well known [10] that the Dickson polynomial Dn(X, a), a ∈ F∗
q , is a permutation polynomial of Fq if

and only if gcd(n, q2 − 1) = 1. For more details about Dickson polynomials, we refer the reader to [10].

We are now ready to determine the Walsh spectrum of Tr(xd) in the case where m = 2t, t is odd, and

d = 3 + 2t+1.

Theorem 3.2. Let m = 2t be a positive integer with t odd, and d = 3 + 2t+1. The Walsh spectrum

of Tr(xd) over F = F2m is given in below.

Wd(·) Multiplicity

0 3 · 22t−2

2t+1 22t−3 + 2t−2

−2t+1 22t−3 − 2t−2

Proof. We have observed that X5 + X3 + X ∈ F2[X ] is the Dickson polynomial D5(X, 1). If t is

odd, then gcd(5, 22t − 1) = 1; consequently D5(X, 1) induces a permutation of L = F2t . Hence by the

computations that we did above, |Sb| = 0 or 2 when b �= 0. We also saw that S0 = {0, 1}. It follows that
Wd(a+ bc̄), a, b ∈ L, take three values only: 0, ±2t+1. Now denote by N0, N+, N− the multiplicity of 0,

2t+1, −2t+1 in the Walsh spectrum of Tr(xd), respectively. From Lemma 2.1(1), we have

N0 +N+ +N− = 22t, 2t+1N+ − 2t+1N− = 22t, 22t+2N+ + 22t+2N− = 24t.

Solving this system of equations, we get

N0 = 22t − 22t−2, N+ = 22t−3 + 2t−2, N− = 22t−3 − 2t−2.

Remarks. (1) Let t be an odd positive integer. The fact that z6+z = w, w ∈ F2t , has 0 or 2 solutions

in L is equivalent to the fact that D(6) = {(1, x, x6) | x ∈ F2t} ∪ {(0, 1, 0), (0, 0, 1)} is a hyperoval in

PG(2, 2t). See [5] for more details.

(2) Theorem 3.2 was first proved in [4] by a slightly different argument.
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Next, we consider the case where d = 3 + 2t+1 and t ≡ 2 (mod 4).

Theorem 3.3. Let m = 2t be a positive integer with v2(t) = 1, t � 6, and d = 3 + 2t+1. The Walsh

spectrum of Tr(xd) over F = F2m is given in below.

Wd(·) Multiplicity

0 22t−1 − 22t−5 − 2t−1 + 2t−3

2t 22t+2t

5

−2t 22t+2t

5

2t+1 22t−4 + 2t−2

−2t+1 22t−4 − 2t−2

2t+2 22t−6−2t−4

5

−2t+2 22t−6−2t−4

5

Remarks. The webpage of Philippe Langevin (http://langevin.univ-tln.fr/project/spectrum/) contains

very useful data on the Walsh spectrums of the power functions Tr(xd) over F2m , for all integers m < 26,

and all invertible (modulo 2m − 1) exponents d.

The remaining part of this paper is devoted to the proof of Theorem 3.3. From now on, we always

assume that v2(t) = 1 and t � 6. Let

G := {x ∈ F | x2t+1 = 1}.
Furthermore, we will assume that the element c used in (3.1) to have order 5. Since t ≡ 2 (mod 4) by

assumption, we have 5 | (2t + 1). Thus c2
t+1 = 1, i.e., c ∈ G (and c �∈ L).

Lemma 3.2. Let w ∈ L∗. Then the number of solutions z ∈ L to

z6 + z = w

is 0, 1, 2 or 6.

Proof. The main difference from the t odd case is that X5 + X3 + X ∈ F2[X ] no longer induces a

permutation of L = F2t when t ≡ 2 (mod 4). We start in the same way as before. Assume that z0 ∈ L∗

is a solution to z6 + z = w, w ∈ L∗. Suppose z0 + x is another solution with x ∈ L∗. Then expanding

(z0 + x)6 + z0 + x = w

gives (
x

z0

)5

+

(
x

z0

)3

+

(
x

z0

)
=

1

z50
. (3.2)

The above equation has 0, 1, or 5 solutions in L when v2(t) = 1 and t � 6. This can be seen as follows.

It is well known that each element y of L∗ can be written in the form u + 1
u , with u ∈ L∗ or u ∈ G,

according as Trt(1/y) is equal to 0 or 1 (see [10]). Now if x = z0(u + 1
u ) ∈ L is a solution to (3.2), then

so are z0(γu+ 1
γu ), γ ∈ F∗ and γ5 = 1, since

D5

(
γu+

1

γu
, 1

)
= (γu)5 +

1

(γu)5
= u5 +

1

u5
.

When u ∈ L∗, γu + 1
γu is in L if and only if γ = 1. When u ∈ G, any choice of γ (γ5 = 1) will give

γx+ 1
γx ∈ L. This proves the claim that (3.2) has 0, 1 or 5 solutions in L. The conclusion of the lemma

follows as a consequence.

From Lemma 3.2 and (3.1), we see that the Walsh coefficients of Tr(x3+2t+1

) are in {±i · 2t | i = 0,

1, 2, 4, 6}. We use Ni to denote the number of a + bc̄ ∈ F such that Wd(a + bc̄) = i · 2t, for i ∈ {0,
±1,±2,±4,±6}.
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3.1 The equation z6 + z = w, w ∈ L∗

Now, we examine for which w ∈ L∗, z6+z = w, has six solutions in L. Assume that z0 and x are as in the

proof of Lemma 3.2. By the above analysis, there exists u ∈ G such that x
z0

= u+ 1
u , and

1
z5
0
= u5 + 1

u5 ,

i.e., z50 = 1
u−5+u5 . Since gcd(5, 2t − 1) = 1, we get z0 = 1

(u−5+u5)1/5
. The other five solutions are

1

(u−5 + u5)1/5

(
1 + uγ +

1

uγ

)
, γ5 = 1.

Therefore, z6 + z = w, w ∈ L∗, has six solutions in L if and only if w is in the following set

T6 :=

{
z6 + z

∣∣∣∣ z =
1

(u−5 + u5)1/5
, u ∈ G, u5 �= 1

}
.

The set T6 has size 2t+1−5
5·2·6 = 2t−2−1

15 , the factor 5 in the denominator comes from the fact that u �→ u5 is

5-to-1 on G; the factor 6 comes from the fact that z �→ z6 + z is 6-to-1 on the set in consideration; and

the factor 2 comes from the fact that u and u−1 give the same element. In this case, with (bθ)4 = w,

Wd(a+ bc̄) ∈ {±i · 2t | i = 0, 2, 4, 6}.
Next, we examine for which w ∈ L, z6 + z = w has two solutions in L. Clearly, when w = 0, this

equation has two solutions in L. So in what follows we consider the case where w �= 0. Assume that z0
and x are as in the proof of Lemma 3.2. By the same analysis, there exists u ∈ L∗ such that x

z0
= u+ 1

u ,

and 1
z5
0
= u5 + 1

u5 , i.e., z
5
0 = 1

u−5+u5 . Therefore, z
6 + z = w, w ∈ L, has two solutions in L if and only if

w is in the following set

T2 :=

{
z6 + z

∣∣∣∣ z = 1

(u−5 + u5)1/5
, u ∈ L \ F4

}
∪ {0}.

The set T2 has size 2t−4
2·2 + 1 = 2t−2. In this case, with (bθ)4 = w, Wd(a+ bc̄) ∈ {±i · 2t : i = 0, 2}.

It now follows that there are 2t − 2 · 2t−2 − 6 · 2t−4
60 = 2t+1+2

5 elements w ∈ L such that z6 + z = w

has only one solution in L. Only these w will give the values Wd(a + bc̄) = ±2t (again with (bθ)4 = w).

We observe that the two values, 2t and −2t, occur for equally many a ∈ L, since for the unique solution

z0 ∈ L∗ to z6 + z = w, half of the a’s in L satisfy Trt(az0) = 0 and the other half satisfy Trt(az0) = 1.

Therefore, we have

N1 = N−1 = 2t−1 · 2
t+1 + 2

5
=

22t + 2t

5
.

Finally, we note that the number of w ∈ L such that z6 + z = w has no solutions in L at all is equal

to 2t − 2t−2−1
15 − 2t−2 − 2t+1+2

5 = 2t−1
3 .

3.2 N6 = N−6 = 0

We now show that Wd(a+ bc̄) �= ±6 · 2t for all a, b ∈ L. As seen above, only when z6 + z = w, w = (bθ)4

∈ L∗, has 6 solutions in L, could Wd(a + bc̄) possibly be equal to ±6 · 2t. Let z0 = 1
(u−5+u5)1/5

∈ L∗,
u ∈ G, be a solution to z6 + z = w, w = (bθ)4 ∈ L∗. The other five solutions are zj = z0 + xj ∈ L, with
xj

z0
= uγj + 1

uγj , 1 � j � 5, o(γ) = 5, u ∈ G. The fact that ±6 · 2t won’t occur as Walsh coefficients of

Tr(xd) amounts to the fact that the following system of equations does not have a solution a ∈ L:

Trt(z
5
j θ

−4 + azj) = Trt(z
5
0θ

−4 + az0), 1 � j � 5.

We will prove the latter fact by way of contradiction. Assume that the above system has a solution a ∈ L.

With zj = xj + z0, we get

Trt(xj(z
4
0θ

−4 + z2
t−2

0 θ−1 + a)) = Trt(x
5
jθ

−4), 1 � j � 5.

Since
xj

z0
= uγj + 1

uγj = Trm/t(uγ
j), we have

Trm(uγjz0(z
4
0θ

−4 + z2
t−2

0 θ−1 + a)) = Trm((u5 + u3γ3j)z50θ
−4), 1 � j � 5.
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Now, we rewrite the above equations as

Tr4(γ
jU) = V +Tr4(γ

3jW ), 1 � j � 5,

where

U := Trm/4(uz0(z
4
0θ

−4 + z2
t−2

0 θ−1 + a)) = Trm/4

(
u

u5 + u−5
θ−4 +

u

(u5 + u−5)1/4
θ−1 + uz0a

)
,

V := Trm(u5z50θ
−4) = Trm

(
u5

u5 + u−5
θ−4

)
= Trt(θ

−1),

W := Trm/4(u
3z50θ

−4) = Trm/4

(
u3

u5 + u−5
θ−4

)
.

Taking summation of the above equations over 1 � j � 5, we get V = 0. However, as we stated before,

Trt(θ
−1) = 1 since θ = c+ c−1 with c ∈ G. This contradiction completes the proof.

3.3 N4 and N−4

(1) We now compute N4 and N−4. As we have seen above, Wd(a+ bc̄) = ±2t+2 if and only if z6+ z = w,

w = (bθ)4 ∈ L∗, has 6 solutions in L, and for some i0 ∈ {0, 1, . . . , 5} the following equations hold:

Trt(z
5
j θ

−4 + azj) = Trt(z
5
i0θ

−4 + azi0) + 1, 0 � j � 5, j �= i0.

Without loss of generality, we may assume that i0 = 0. Similar to the above computations, we can rewrite

the above equations as

Tr4(γ
jU) = Tr4(γ

3jW ), 1 � j � 5,

where U,W are the same as above. It follows that

Tr4(γ
jU) = Tr4(γ

jW 2), 1 � j � 5.

Since γj, 1 � j � 5, span F24 , we obtain that U =W 2, i.e.,

Trm/4(uz0a) = Trm/4

(
u

(u5 + u−5)1/5
a

)

= Trm/4

(
u

u5 + u−5
θ−4 +

u

(u5 + u−5)1/4
θ−1 +

u6

u10 + u−10
θ−8

)
.

Since the element c has (multiplicative) order 5, it follows that θ = c+ c̄ has order 3. We have

Trm/4(uz0a) = Trm/4

(
u

u5 + u−5
θ2 +

u

(u5 + u−5)1/4
θ2 +

u6

u10 + u−10
(θ2 + 1)

)

= θ2 Trm/4

(
u

u5 + u−5
+

u16

u20 + u−20
+

u6

u10 + u−10

)
+Trm/4

(
u6

u10 + u−10

)

= θ2 Trm/4

(
u

u5 + u−5
+

u−4

u20 + u−20

)
+Trm/4

(
u3

u5 + u−5

)2

= θ2 Trm/4

(
u+ u−1

u5 + u−5

)
+ θ2 Trm/2

(
u−1

u5 + u−5

)
+Trm/4

(
u3

u5 + u−5

)2

= θ2 Trt/2

(
u+ u−1

u5 + u−5

)
+ θ2 Trt/2

(
u+ u−1

u5 + u−5

)
+Trm/4

(
u3

u5 + u−5

)2

= Trm/4

(
u3

u5 + u−5

)2

.

Conversely, if Trm/4(uz0a) = Trm/4(
u3

u5+u−5 )
2, a ∈ L, and z6 + z = w, w = (bθ)4 ∈ L∗, has 6 solutions

in L, then Wd(a+ bc̄) = ±2t+2.
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Below we will count the number of solutions to

Trm/4(uz0a) = Trm/4

(
u3

u5 + u−5

)2

, a ∈ L. (3.3)

Write Trm/4(
u3

u5+u−5 )
2 = h+ gγ with h, g ∈ F22 and

uz0 =
u

(u5 + u−5)1/5
= α+ βγ, α, β ∈ L = F2t , o(γ) = 5.

We claim that α/β �∈ F∗
4. Otherwise, u is in F∗

24 ·F∗
2t and thus has order dividing lcm(15, 2t−1) = 5(2t−1).

Noting that u has order dividing 2t + 1, we have u5 = 1, which is a contradiction. Now (3.3) becomes

Trm/4(αa) + Trm/4(βa)γ = h+ gγ, that is,

Trt/2(αa) = h, Trt/2(βa) = g.

Since α/β �∈ F∗
4, this system of equations clearly has 2t−4 solutions a ∈ L.

We thus have

N4 +N−4 = 6 · 2t−4 · 2
t−2 − 1

15
=

22t−5 − 2t−3

5
.

(2) Let b ∈ L∗ be such that z6 + z = w, w = (bθ)4 ∈ L∗, has 6 solutions in L. Assume that the six

solutions are zj , 0 � j � 5, as given above. We claim that for each i0 ∈ {0, 1, . . . , 5} there exists an x ∈ L

such that

Trm/4(uzi0x) = 0, Trt(zjx) = 1, ∀ j, 0 � j � 5. (3.4)

An immediate consequence is that N4 = N−4; this can be seen as follows: If Wd(a+ bc̄) = 4 · 2t, a, b ∈ L,

then Wd(x+ a+ bc̄) = −4 · 2t since every term in the sum on the right-hand side of (3.1) is negated and

Trm/4(uzi0(x+ a)) = Trm/4(uzi0a) = Trm/4(
u3

u5+u−5 )
2. We thus conclude that

N4 = N−4 =
22t−6 − 2t−4

5
.

Now we prove the claim about the existence of solution to (3.4). Again, without loss of generality, we

assume that i0 = 0. Multiplying both sides of Trm/4(uz0x) = 0 by γj and taking trace to F2, we get

Trt(xjx) = 0, ∀ 1 � j � 5.

As above, writing uz0 = α + βγ, α, β ∈ L, o(γ) = 5, and noting that zj = xj + z0, for 1 � j � 5, we see

that the system of equations under consideration reduces to

Trt/2(αx) = 0, Trt/2(βx) = 0, Trt(z0x) = 1.

We prove that this system of equations has a solution by showing that z0 does not lie in the F4-linear

span of α and β. Raising uz0 = α+ βγ to the 2t-th power gives u−1z0 = α+ βγ−1. We solve that

α =
uγ−1 + u−1γ

γ + γ−1
z0, β =

u+ u−1

γ + γ−1
z0.

Suppose to the contrary that there exist r, s ∈ F4 such that rα+ sβ = z0. After expansion we get

u2(r + sγ−1) + u(γ + γ−1) + (r + sγ) = 0.

This is a degree 2 equation with coefficients in F24 . Since u ∈ F22t and 2||t, we have u ∈ F∗
16. Hence

u5 = 1, which is impossible.
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3.4 N2, N−2 and N0

It remains to determine N0, N2, N−2. By Lemma 2.1, we have the following equations:

N0 +N2 +N−2 = 22t − 22t−5 − 2t−3

5
− 2 · 2

2t + 2t

5
= 19 · 22t−5 − 3 · 2t−3,

2t+1(N2 −N−2) = 22t,

22t+2(N2 +N−2) = 24t − 22t−5 − 2t−3

5
· 22t+4 − 2 · 2

2t + 2t

5
· 22t = 24t−1.

Solving these equations, we get

N0 = 22t−1 − 22t−5 − 2t−1 + 2t−3, N2 = 22t−4 + 2t−2, N−2 = 22t−4 − 2t−2.

The proof of Theorem 3.3 is now complete.
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