
1 23

Designs, Codes and Cryptography
An International Journal
 
ISSN 0925-1022
 
Des. Codes Cryptogr.
DOI 10.1007/s10623-011-9595-9

Pseudocyclic and non-amorphic fusion
schemes of the cyclotomic association
schemes

Tao Feng, Fan Wu & Qing Xiang



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Des. Codes Cryptogr.
DOI 10.1007/s10623-011-9595-9

Pseudocyclic and non-amorphic fusion schemes
of the cyclotomic association schemes

Tao Feng · Fan Wu · Qing Xiang

Received: 7 December 2010 / Revised: 3 October 2011 / Accepted: 30 November 2011
© Springer Science+Business Media, LLC 2011

Abstract We construct twelve infinite families of pseudocyclic and non-amorphic asso-
ciation schemes, in which each nontrivial relation is a strongly regular graph. Three of the
twelve families generalize the counterexamples to A. V. Ivanov’s conjecture by Ikuta and
Munemasa (Eur J Combin 31:1513–1519, 2010).
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1 Introduction

This note is a sequel to [12]. We assume that the reader is familiar with the basic theory of asso-
ciation schemes as can be found in [2,7]. For background in strongly regular graphs, we refer
the reader to [8,13]. All association schemes considered in this paper are commutative and
symmetric. Let (X, {Ri }0≤i≤d)be an association scheme with d classes. For i ∈ {0, 1, . . . , d},
let Ai be the adjacency matrix of the relation Ri , and let E0 = 1

|X | J, E1, . . . , Ed be the prim-
itive idempotents of the Bose-Mesner algebra of the scheme (X, {Ri }0≤i≤d), where J is
the all-one matrix of size |X | × |X |. The basis transition matrix from {E0, E1, . . . , Ed} to
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{A0, A1, . . . , Ad} is denoted by P = (
p j (i)

)
0≤i, j≤d , and usually called the first eigenmatrix

(or character table) of the scheme. Explicitly P is the (d + 1) × (d + 1) matrix with rows
and columns indexed by 0, 1, 2, . . . , d such that

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P.

Let ki = pi (0) and mi = rank(Ei ). The ki ’s and mi ’s are called valencies and multiplicities
of the scheme, respectively. We say that the scheme (X, {Ri }0≤i≤d) is pseudocyclic if there
exists an integer t such that mi = t for all i ∈ {1, . . . , d}. A classical example of pseudocyclic
association schemes is the cyclotomic association scheme over a finite field, which we define
below.

Let q = p f , where p is a prime and f a positive integer. Let γ be a fixed primitive element
of Fq and N |(q − 1) with N > 1. Let C0 = 〈γ N 〉, and Ci = γ i C0 for 1 ≤ i ≤ N − 1.
Assume that −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq}, and for i ∈ {1, 2, . . . , N }, define
Ri = {(x, y) | x, y ∈ Fq , x − y ∈ Ci−1}. Then (Fq , {Ri }0≤i≤N ) is an association scheme.
We will call this scheme the cyclotomic association scheme of class N over Fq . The first
eigenmatrix P of the cyclotomic scheme of class N is the following (N + 1) by (N + 1)
matrix (with the rows of P arranged in a certain way)

P =

⎛

⎜⎜⎜⎜⎜
⎝

1 N−1
q

N−1
q

N−1
q · · · N−1

q
1 ηN−1 η0 η1 · · · ηN−2

1 ηN−2 ηN−1 η0 · · · ηN−3
...

1 η0 η1 η2 · · · ηN−1

⎞

⎟⎟⎟⎟⎟
⎠

(1.1)

where the ηi ’s are the cyclotomic periods (or Gauss periods) of order N defined by

ηi =
∑

x∈Ci

ψ(x).

In the above defintion, ψ is the additive character of Fq defined by

ψ : Fq → C
∗, ψ(x) = ξTr(x)

p , (1.2)

where ξp = e2π i/p and Tr is the absolute trace from Fq to Fp .
The following theorem gives combinatorial characterizations of pseudocyclic association

schemes.

Theorem 1.1 Let (X, {Ri }0≤i≤d) be an association scheme, and for x ∈ X and 1 ≤ i ≤ d,
let Ri (x) = {y | (x, y) ∈ Ri }. Then the following are equivalent.

(1) (X, {Ri }0≤i≤d) is pseudocyclic.

(2) For some constant k, we have k j = k and
∑d

i=1 p j
ii = k − 1, for 1 ≤ j ≤ d.

(3) (X,B) is a 2 − (v, k, k − 1) design, where B = {Ri (x) | x ∈ X, 1 ≤ i ≤ d}.
For a proof of this theorem, we refer the reader to [7, p. 48] and [14, p. 84]. Part 2 of the
above theorem will be useful in Sect. 3.

Let (X, {Ri }0≤i≤d) be an association scheme. For a partition �0 := {0},�1, . . . , �d ′ of
{0, 1, . . . , d}, let R�i = ∪k∈�i Rk , for 0 ≤ i ≤ d ′. If (X, {R�i }0≤i≤d ′) forms an association
scheme, then we say that (X, {R�i }0≤i≤d ′) is a fusion scheme of the original scheme. If
(X, {R�i }0≤i≤d ′) is an association scheme for every partition {�i }0≤i≤d ′ of {0, 1, 2, . . . , d}
with�0 = {0}, then we call the original scheme (X, {Ri }0≤i≤d) amorphic. For a recent survey
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Pseudocyclic association schemes

on amorphic association schemes, we refer the reader to [11]. Given a partition {�i }0≤i≤d ′
of {0, 1, 2, . . . , d} with�0 = {0}, there is a simple criterion in terms of the first eigenmatrix
P of (X, {Ri }0≤i≤d) for deciding whether (X, {R�i }0≤i≤d ′) forms an association scheme or
not. We state this criterion below.

The Bannai–Muzychuk Criterion. Let P be the first eigenmatrix of an association
scheme (X, {Ri }0≤i≤d). Let �0 := {0},�1, . . . , �d ′ be a partition of {0, 1, . . . , d}. Then
(X, {R�i }0≤i≤d ′) forms an association scheme if and only if there exists a partition {�i }0≤i≤d ′
of {0, 1, 2, . . . , d} with �0 = {0} such that each (�i ,� j )-block of P has a constant row
sum. Moreover, the constant row sum of the (�i ,� j )-block is the (i, j) entry of the first
eigenmatrix of the fusion scheme. (For a proof of this criterion we refer the reader to [1,21].)

A. V. Ivanov conjectured in [16] that if each nontrivial relation in an association scheme
is strongly regular, then the association scheme must be amorphic. This conjecture turned
out to be false. A counterexample was given by Van Dam [9] in the case where the associa-
tion scheme is imprimitive. Later on, Van Dam [10] also gave a counterexample in the case
where the association scheme is primitive. More counterexamples were given by Ikuta and
Munemasa [15] in the primitive case. However, it should be noted that there are only a few
known counterexamples to Ivanov’s conjecture in the primitive case (cf. [15]).

The purpose of this note is to generalize the counterexamples to Ivanov’s conjecture by
Ikuta and Munemasa [15] into infinite families. Along the way, we obtain many more infinite
families of counterexamples to Ivanov’s conjecture in the primitive case. The counterexam-
ples we came up with are all pseudocyclic fusion schemes of the cyclotomic schemes. One of
the main tools that we use is the theory of Gauss sums, which we review in the next section.

2 Gauss sums

Let p be a prime, f a positive integer, and q = p f . Let ξp = e2π i/p and letψ be the additive
character of Fq defined in (1.2). Let

χ : F
∗
q → C

∗

be a character of F
∗
q . We define the Gauss sum by

g(χ) =
∑

a∈F∗
q

χ(a)ψ(a).

Note that if χ0 is the trivial multiplicative character of Fq , then g(χ0) = −1. We are usually
concerned with nontrivial Gauss sums g(χ), i.e., those with χ 
= χ0.

While it is easy to show that the absolute value of a nontrivial Gauss sum g(χ) is equal
to

√
q, the explicit determination of Gauss sums is a difficult problem. However, there are a

few cases where the Gauss sums g(χ) can be explicitly evaluated. The simplest case is the
so-called semi-primitive case, where there exists an integer j such that p j ≡ −1 (mod N )
(N is the order of χ in F̂

∗
q , the character group of F

∗
q ). Some authors [5,6] also refer to this

case as uniform cyclotomy, or pure Gauss sums. We refer the reader to [6, p. 364] for the
precise evaluation of Gauss sums in this case.

The next interesting case is the index 2 case, where −1 is not in the subgroup 〈p〉, the
cyclic group generated by p, and 〈p〉 has index 2 in (Z/NZ)∗ (again here N is the order of
χ in F̂

∗
q ). Many authors have investigated this case, including Baumert and Mykkeltveit [4],

McEliece [19], Langevin [17], Mbodj [18], Meijer and Van de Vlugt [20], and Yang and Xia
[22]. In the index 2 case, it can be shown that N has at most two odd prime divisors. Assume
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that N is odd, we have the following three possibilities in the index 2 case (see [22]): Below
both p1 and p2 are primes.

(1) N = pm
1 , p1 ≡ 3 (mod 4);

(2) N = pm
1 pn

2 , {p1 (mod 4), p2 (mod 4)} = {1, 3}, ordpm
1
(p) = φ(pm

1 ), ordpn
2
(p) =

φ(pn
2 );

(3) N = pm
1 pn

2 , p1 ≡ 1, 3 (mod 4), ordpm
1
(p) = φ(pm

1 ) and p2 ≡ 3 (mod 4), ordpn
2
(p) =

φ(pn
2 )/2.

We state below the results on evaluation of Gauss sums in Case (1) and (2) from the above
list.

Theorem 2.1 (Langevin [17]) Let N = pm
1 , where m is a positive integer, p1 is a prime

such that p1 > 3 and p1 ≡ 3 (mod 4). Let p be a prime such that [(Z/NZ)∗ : 〈p〉] = 2
(that is, f := ordN (p) = φ(N )/2) and let q = p f . Let χ be a multiplicative character of
order N of Fq , and h be the class number of Q(

√−p1). Then the Gauss sum g(χ) over Fq

is determined up to complex conjugation by

g(χ) = b + c
√−p1

2
ph0 ,

where

(1) h0 = f −h
2 ,

(2) b, c 
≡ 0 (mod p),
(3) b2 + p1c2 = 4ph,
(4) bph0 ≡ −2 (mod p1).

Theorem 2.2 (Mbodj [18]) Let N = pm
1 pn

2 , where m, n are positive integers, p1 and p2

are prime such that {p1 (mod 4), p2 (mod 4)} = {1, 3}, ordpm
1
(p) = φ(pm

1 ), ordpn
2
(p) =

φ(pn
2 ). Let p be a prime such that [(Z/NZ)∗ : 〈p〉] = 2 (that is, f := ordN (p) = φ(N )/2)

and let q = p f . Let χ be a multiplicative character of order N of Fq , and h be the class
number of Q(

√−p1 p2). Then the Gauss sum g(χ) over Fq is determined up to complex
conjugation by

g(χ) = b + c
√−p1 p2

2
ph0 ,

where

(1) h0 = f −h
2 ,

(2) b, c 
≡ 0 (mod p),
(3) b2 + p1 p2c2 = 4ph,
(4) b ≡ 2ph/2 (mod �), here � ∈ {p1, p2} is the prime congruent to 3 modulo 4.

3 Pseudocyclic fusion schemes of the cyclotomic schemes

Let p be a prime, f be a positive integer and q = p f . Let γ be a fixed primitive element of
Fq , and N > 1 be an integer such that N |(q − 1). As we did in Section 1, let C0 = 〈γ N 〉 and
Ci = γ i C0 for 1 ≤ i ≤ N − 1. Assume that −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq}, and
for i ∈ {1, 2, . . . , N }, define Ri = {(x, y) | x, y ∈ Fq , x − y ∈ Ci−1}. Then (Fq , {Ri }0≤i≤N )

is the cyclotomic association scheme of class N on Fq . It was proven by Baumert, Mills and
Ward [5] that (Fq , {Ri }0≤i≤N ) is amorphic if and only if −1 is congruent to a power of p
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Pseudocyclic association schemes

modulo N (i.e., the so-called semi-primitive condition holds). See also [3] for a proof of this
fact. Below we will show that even though in the index 2 case the cyclotomic association
scheme (Fq , {Ri }0≤i≤N ) is not amorphic, we can still have interesting fusion schemes of
(Fq , {Ri }0≤i≤N ).

3.1 The index 2 case with N = pm
1 p2

In this subsection, we assume that N = pm
1 p2 (m ≥ 1), p1, p2 are primes such that

{p1 (mod 4), p2 (mod 4)} = {1, 3}, p is a prime such that gcd(p, N ) = 1, ordpm
1
(p) =

φ(pm
1 ) and ordp2(p) = φ(p2), and f := ordN (p) = φ(N )/2. Let q = p f , and as before let

C0,C1, . . . ,CN−1 be the N -th cyclotomic classes of Fq . Note that here we have −Ci = Ci

for all 0 ≤ i ≤ N − 1 since either 2N |(q − 1) or q is even. For convenience, we define
d := p1 p2. For 0 ≤ k ≤ d − 1, define

Dk =
pm−1

1 −1⋃

i=0

Cip2+kpm−1
1

(3.1)

Note that Dk = γ kpm−1
1 D0 and {0}, D0, D1, . . . , Dd−1 form a partition of Fq . Now define

R′
0 = R0 and

R′
k = {(x, y) | x, y ∈ Fq , x − y ∈ Dk−1}. (3.2)

We will show that (Fq , {R′
k}0≤k≤d) is a fusion scheme of (Fq , {Ri }0≤i≤N ). The proof depends

on the following evaluation of Gauss sums in the index 2 case, and results from [12].
Let χ1 be the multiplicative character of order pm

1 of Fq defined by χ1(γ ) = exp( 2π i
pm

1
),

and let χ2 be the multiplicative character of order p2 of Fq defined by χ2(γ ) = exp( 2π i
p2
).

By Theorem 2.2, we have

g(χ̄1χ̄2) = b + c
√−p1 p2

2
ph0 , (3.3)

where h0 = f −h
2 (h is the class number of Q(

√−p1 p2)), b, c 
≡ 0 (mod p), b2 + p1 p2c2 =
4ph , and b ≡ 2ph/2 (mod �), here � ∈ {p1, p2} is the prime congruent to 3 modulo 4.

Theorem 3.1 With the definition of R′
k given in (3.2), (Fq , {R′

k}0≤k≤d) is a pseudocyclic
association scheme.

Proof We will first prove that (Fq , {R′
k}0≤k≤d) is an association scheme by using the Ban-

nai–Muzychuk criterion discussed in Sect. 1.
For each a, 0 ≤ a ≤ N − 1, there exists a unique ia ∈ {0, 1, . . ., pm−1

1 − 1} such
that pm−1

1 | (a + p2ia). It follows that there is a unique ja, 0 ≤ ja ≤ p1 p2 − 1, such that
a ≡ −p2ia + pm−1

1 ja (mod N ). It is now easy to check that −i p2+ j pm−1
1 , 0 ≤ i ≤ pm−1

1 −1
and 0 ≤ j ≤ p1 p2 − 1, form a complete set of residues modulo N .

The group of additive characters of Fq consists of ψ0 and ψγ a , 0 ≤ a ≤ q − 2, where ψ0

is the trivial character and ψγ a is defined by

ψγ a : Fq → C
∗, ψγ a (x) = ξ

Tr(γ a x)
p . (3.4)

We usually write ψ1 simply as ψ . The character values of D0 were computed in the proof
of Theorem 5.1 [12]. Since Dk is a (multiplicative) translate of D0, we know the character
values of Dk as well. Explicitly, for each a, 0 ≤ a ≤ N − 1, write
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a ≡ −p2ia + pm−1
1 ja (mod N ),

with 0 ≤ ia ≤ pm−1
1 − 1 and 0 ≤ ja ≤ p1 p2 − 1. For convenience we introduce the

Kronecker delta δa,p1 , which equals 1 if p1|a, 0 otherwise. Also we define δa,p2 by setting
it equal to 1 if p2|a, 0 otherwise. By the results in [12], we have

ψγ a (Dk) = ψ(γ a+pm−1
1 k D0) = 1

N
Ta+pm−1

1 k,

where

Ta+pm−1
1 k = −pm−1

1 − (−1)
p1−1

2 pm−1
1 p2

√
qδa+pm−1

1 k,p2
− (−1)

p2−1
2 pm

1
√

qδ ja+k,p1

+ b

2
ph0 pm−1

1 (p1δ ja+k,p1 − 1)(p2δa+pm−1
1 k,p2

− 1)

−
(

a + pm−1
1 k

p2

)(
ja + k

p1

)
c

2
ph0 pm

1 p2

In the above formula, b, c are given by (3.3), ( .p2
) and ( .p1

) are Legendre symbols. Observe

that a + pm−1
1 k ≡ −p2ia + pm−1

1 ( ja + k) (mod N ). So δa+pm−1
1 k,p2

= δ ja+k,p2 , and
(

a+pm−1
1 k

p2

)
=

(
p1
p2

)m−1(
ja+k

p2

)
. Therefore, ψγ a (Dk) is independent of ia .

In order to apply the Bannai–Muzychuk criterion, we define the following partition of
{ψγ a | a ∈ Z/NZ}. For each j, 0 ≤ j ≤ d − 1, define

� j+1 = {ψ
γ

−p2 i+pm−1
1 j | 0 ≤ i ≤ pm−1

1 − 1},

and �0 = {ψ0}. Clearly �0,�1, . . . , �d form a partition of {ψγ a | a ∈ Z/NZ}. For each
0 ≤ k ≤ d − 1, since ψγ a (Dk) is independent of ia (here a ≡ −p2ia + pm−1

1 ja (mod N )),
we see that ψγ a (Dk) is a constant for those a in the same subset of the above partition. By
the Bannai–Muzychuk criterion (with �0 = {0},� j+1 = {1 + i p2 + pm−1

1 j | 0 ≤ i ≤
pm−1

1 − 1}, 0 ≤ j ≤ d − 1), we see that (Fq , {R′
0, R′

1, . . . , R′
d}) is an association scheme.

Next we show that the association scheme (Fq , {R′
k}0≤k≤d) is pseudocyclic. To this end,

we show that the following group ring equation holds in Z[(Fq ,+)].
Claim:

∑d−1
k=0 D2

k = (q −1) ·0Fq +
(

q−1
p1 p2

− 1
)
(Fq −0Fq ), where 0Fq is the zero element

in Fq .
For any a, 0 ≤ a ≤ N − 1, we write a ≡ −ia p2 + ja pm−1

1 (mod N ) with ia ∈
{0, 1, . . . , pm−1

1 − 1} and ja ∈ {0, 1, 2, . . . , d − 1}. Since ψγ a (Dk) is independent of ia , we
may assume that ia = 0. We now compute

d−1∑

k=0

ψγ a (Dk)
2 = 1

N 2

d−1∑

k=0

T 2
pm−1

1 ( ja+k)
= 1

N 2

d−1∑

k=0

T 2
kpm−1

1

Since the last expression above is independent of a, we see that
∑d−1

k=0 ψγ a (Dk)
2 are equal to

the same constant for all 0 ≤ a ≤ N − 1. Since each Dk is a union of some N -th cyclotomic
classes, it follows that

∑d−1
k=0 ψγ a (Dk)

2 are equal to the same constant for all 0 ≤ a ≤ q −2.
Therefore, by the inversion formula, we have

d−1∑

k=0

D2
k = (n − λ) · 0Fq + λFq ,
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for some integers n, λ. Now applying the principal character to both sides, and computing
the coefficients of 0Fq on both sides, we have

n = p1 p2 · q − 1

p1 p2
,

n + (q − 1)λ = d ·
(

q − 1

p1 p2

)2

.

It follows that n = q − 1, and λ = q−1
p1 p2

− 1. The claim is now established. A direct con-

sequence is that
∑d−1

i=0 p j
i,i = q−1

N − 1, for all j , where p j
i,i are the intersection parameters

given by D2
i = ∑d−1

j=0 p j
i,i D j + p0

i,i ·0Fq . By Part (2) of Theorem 1.1, the association scheme
(Fq , {R′

k}0≤k≤d) is pseudocyclic. The proof is complete. ��
In order to obtain counterexamples to Ivanov’s conjecture, we need to have each R′

k(1 ≤
k ≤ d) in Theorem 3.1 to be strongly regular. Note that R′

k is just the Cayley graph
Cay(Fq , Dk−1), and Cay(Fq , Dk−1) ∼= Cay(Fq , D0) for all 1 ≤ k ≤ d since Dk−1 =
γ (k−1)pm−1

1 D0. It follows that if Cay(Fq , D0) is strongly regular, then all R′
k, 1 ≤ k ≤ d , are

strongly regular. In [12], we obtained necessary and sufficient conditions for Cay(Fq , D0) to
be strongly regular, which we quote below.

Theorem 3.2 (Corollary 5.2 in [12]) With b, c, h given in (3.3), Cay(Fq , D0) is a strongly

regular graph if and only if b, c ∈ {1,−1}, h is even and p1 = 2ph/2 + (−1)
p1−1

2 b, p2 =
2ph/2 − (−1)

p1−1
2 b.

In [12], we used a computer to search for p, p1, p2 satisfying the conditions in The-
orem 3.2. We found six infinite families of strongly regular graphs in this way. By the
discussion preceding Theorem 3.2, and since the parameters of each of the six examples of
srg are neither Latin square type nor negative Latin square type, each of the six families of
srg gives rise to an infinite class of counterexamples to Ivanov’s conjecture. Below we list the
parameters of these examples. For the detailed reasons why we have strongly regular graphs,
we refer the reader to [12].

Example 3.3 Let p = 2, q = 24·3m−1
, p1 = 3, p2 = 5, N = 3m · 5, with m ≥ 1. Then

we have a 15-class pseudocyclic fusion scheme (Fq , {R′
k}0≤k≤15) in which each relation

R′
k, 1 ≤ k ≤ 15, is strongly regular.

We remark that when m = 2, Example 3.3 is the same as Example 1 in [15].

Example 3.4 Let p = 2, q = 24·5m−1
, p1 = 5, p2 = 3, N = 5m · 3, with m ≥ 1. Then

we have a 15-class pseudocyclic fusion scheme (Fq , {R′
k}0≤k≤15) in which each relation

R′
k, 1 ≤ k ≤ 15, is strongly regular.

We remark that when m = 2, Example 3.4 is the same as Example 2 in [15].

Example 3.5 Let p = 3, q = 312·5m−1
, p1 = 5, p2 = 7, N = 5m · 7, with m ≥ 1. Then

we have a 35-class pseudocyclic fusion scheme (Fq , {R′
k}0≤k≤35) in which each relation

R′
k, 1 ≤ k ≤ 35, is strongly regular.

Example 3.6 Let p = 3, q = 312·5m−1
, p1 = 7, p2 = 5, N = 7m · 5, with m ≥ 1. Then

we have a 35-class pseudocyclic fusion scheme (Fq , {R′
k}0≤k≤35) in which each relation

R′
k, 1 ≤ k ≤ 35, is strongly regular.
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Example 3.7 Let p = 3, q = 3144·17m−1
, p1 = 17, p2 = 19, N = 17m · 19, with m ≥ 1.

Then we have a 323-class pseudocyclic fusion scheme (Fq , {R′
k}0≤k≤323) in which each

relation R′
k, 1 ≤ k ≤ 323, is strongly regular.

Example 3.8 Let p = 3, q = 3144·19m−1
, p1 = 19, p2 = 17, N = 19m · 17, with m ≥ 1.

Then we have a 323-class pseudocyclic fusion scheme (Fq , {R′
k}0≤k≤323) in which each

relation R′
k, 1 ≤ k ≤ 323, is strongly regular.

We remark that by using Corollary 3.2 in [15], one can further obtain 3-class fusion
schemes of the above pseudocyclic association schemes, in which two relations are strongly
regular graphs, while the third relation is not (see the character table of these 3-class fusion
schemes in the statement of Corollary 3.2 of [15]).

3.2 The index 2 case with N = pm
1

In this subsection, we assume that N = pm
1 (here m ≥ 1, p1 > 3 is a prime such that

p1 ≡ 3 (mod 4)), p is a prime such that gcd(N , p) = 1, and f := ordN (p) = φ(N )/2. Let
q = p f , and as before let C0,C1, . . . ,CN−1 be the N -th cyclotomic classes of Fq . Note that
−Ci = Ci for all 0 ≤ i ≤ N − 1 since either 2N |(q − 1) or q is even. For 0 ≤ k ≤ p1 − 1,
define

Dk =
pm−1

1 −1⋃

i=0

Ci+kpm−1
1

(3.5)

Note that Dk = γ kpm−1
1 D0 and {0}, D0, D1, . . . , Dp1−1 form a partition of Fq . Now define

R′
0 = R0 and

R′
k = {(x, y) | x, y ∈ Fq , x − y ∈ Dk−1}. (3.6)

We will show that (Fq , {R′
k}0≤k≤p1) is a fusion scheme of (Fq , {Ri }0≤i≤N ). The proof depends

on the following evaluation of Gauss sums in the index 2 case, and results from [12].
Let χ be the multiplicative character of Fq defined by χ(γ ) = exp( 2π i

N ). By Theorem 2.1,
we have

g(χ̄) = b + c
√−p1

2
ph0 , b, c 
≡ 0 (mod p), (3.7)

where h0 = f −h
2 and h is the class number of Q(

√−p1), b2 + p1c2 = 4ph , and bph0 ≡ −2
(mod p1).

Theorem 3.9 With the definition of R′
k given in (3.6), (Fq , {R′

k}0≤k≤p1) is a pseudocyclic
association scheme.

Proof The proof is similar to that of Theorem 3.1. For each a, 0 ≤ a ≤ N − 1, there is a
unique ia ∈ {0, 1, . . . , pm−1

1 − 1}, such that pm−1
1 |(a + ia). It follows that there is a unique

ja, 0 ≤ ja ≤ p1 − 1, such that a ≡ −ia + pm−1
1 ja (mod N ). It is now easy to check that

−i + j pm−1
1 , 0 ≤ i ≤ pm−1

1 − 1 and 0 ≤ j ≤ p1 − 1, form a complete set of residues
modulo N .

The group of additive characters of Fq consists of ψ0 and ψγ a , 0 ≤ a ≤ q − 2. The
character values of D0 were computed in the proof of Theorem 4.1 [12]. Since Dk is a (mul-
tiplicative) translate of D0, we know the character values of Dk as well. Explicitly, for each
a, 0 ≤ a ≤ N − 1, write
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a ≡ −ia + pm−1
1 ja (mod N ),

with 0 ≤ ia ≤ pm−1
1 − 1 and 0 ≤ ja ≤ p1 − 1. For convenience, we also introduce the

Kronecker delta δ ja , which equals 1 if p1| ja , and 0 otherwise. By the results in [12], we have

ψγ a (Dk) = ψ(γ a+kpm−1
1 D0) = 1

N
Ta+kpm−1

1
,

where

Ta+kpm−1
1

= −pm−1
1 + ph0 pm−1

1 b

2
(p1δ ja+k − 1)− ph0 pm

1 c

2

(
ja + k

p1

)
.

In the above formula, b, c are given in (3.7), and ( .p1
) is the Legendre symbol. It is important

to note that ψγ a (Dk) is independent of ia .
We define the following partition of {ψγ a | a ∈ Z/NZ}. For each j, 0 ≤ j ≤ p1 − 1, we

define

� j+1 = {ψ
γ

−i+pm−1
1 j | 0 ≤ i ≤ pm−1

1 − 1},
and �0 = {ψ0}. Then clearly �0,�1, . . . , �p1 form a partition of {ψγ a | a ∈ Z/NZ}. For
each 0 ≤ k ≤ p1−1, sinceψγ a (Dk) is independent of ia (here a ≡ −ia + pm−1

1 ja (mod N )),
we see that ψγ a (Dk) is a constant for those a in the same subset of the above partition. By
the Bannai–Muzychuk criterion (with �0 = {0},� j+1 = {1 + i + pm−1

1 j | 0 ≤ i ≤
pm−1

1 − 1}, 0 ≤ j ≤ p1 − 1), we see that (Fq , {R′
0, R′

1 . . . , R′
p1

}) is an association scheme.
Similarly we can show that the following group ring equation holds in Z[(Fq ,+)]:

p1−1∑

k=0

D2
k = (q − 1) · 0Fq +

(
q − 1

p1
− 1

)
(Fq − 0Fq ),

from which the pseudocyclicity of the scheme (Fq , {R′
0, R′

1, . . . , R′
p1

}) follows. We omit the
details of the proof of the above group ring equation. The proof is now complete. ��

In order to obtain counterexamples to Ivanov’s conjecture, we need to have each R′
k(1 ≤

k ≤ p1) in Theorem 3.9 to be strongly regular. Note that R′
k is just the Cayley graph

Cay(Fq , Dk−1), and Cay(Fq , Dk−1) ∼= Cay(Fq , D0) for all 1 ≤ k ≤ p1 since Dk−1 =
γ (k−1)pm−1

1 D0. Again it follows that if Cay(Fq , D0) is strongly regular, then all R′
k, 1 ≤

k ≤ p1, are strongly regular. In [12], we obtained necessary and sufficient conditions for
Cay(Fq , D0) to be strongly regular, which we quote below.

Theorem 3.10 (Corollary 4.2 in [12]) With b, c given in (3.7), Cay(Fq , D) is a strongly
regular graph if and only if b, c ∈ {1,−1}.

In [12], we used a computer to search for p, p1 satisfying the conditions in Theorem 3.10.
We found six infinite families of strongly regular graphs in this way. By the discussion pre-
ceding Theorem 3.10, each of the six examples of srg gives rise to a class of infinitely many
counterexamples to Ivanov’s conjecture. Below we list the parameters of these examples. For
the detailed reasons why we have strongly regular graphs, we refer the reader to [12].

Example 3.11 Let p = 2, q = 23·7m−1
, p1 = 7, N = pm

1 ,m ≥ 1 is an integer. Then we have
a 7-class pseudocyclic fusion scheme (Fq , {R′

k}0≤k≤7) in which each relation R′
k, 1 ≤ k ≤ 7,

is strongly regular.

We remark that when m = 2, Example 3.11 is the same as Example 3 of [15].
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Example 3.12 Let p = 3, q = 353·107m−1
, p1 = 107, N = pm

1 ,m ≥ 1 is an integer. Then
we have a 107-class pseudocyclic fusion scheme (Fq , {R′

k}0≤k≤107) in which each relation
R′

k, 1 ≤ k ≤ 107, is strongly regular.

Example 3.13 Let p = 5, q = 59·19m−1
, p1 = 19, N = pm

1 ,m ≥ 1 is an integer. Then
we have a 19-class pseudocyclic fusion scheme (Fq , {R′

k}0≤k≤19) in which each relation
R′

k, 1 ≤ k ≤ 19, is strongly regular.

Example 3.14 Let p = 5, q = 5249·499m−1
, p1 = 499, N = pm

1 ,m ≥ 1 is an integer. Then
we have a 499-class pseudocyclic fusion scheme (Fq , {R′

k}0≤k≤499) in which each relation
R′

k, 1 ≤ k ≤ 499, is strongly regular.

Example 3.15 Let p = 17, q = 1733·67m−1
, p1 = 67, N = pm

1 ,m ≥ 1 is an integer. Then
we have a 67-class pseudocyclic fusion scheme (Fq , {R′

k}0≤k≤67) in which each relation
R′

k, 1 ≤ k ≤ 67, is strongly regular.

Example 3.16 Let p = 41, q = 4181·163m−1
, p1 = 163, N = pm

1 ,m ≥ 1 is an integer. Then
we have a 163-class pseudocyclic fusion scheme (Fq , {R′

k}0≤k≤163) in which each relation
R′

k, 1 ≤ k ≤ 163, is strongly regular.

Again we remark that by using Corollary 3.2 in [15], one can further obtain 3-class fusion
schemes of the above pseudocyclic association schemes, in which two relations are strongly
regular graphs, while the third relation is not.

Acknowledgments Tao Feng was supported in part by the Fundamental Research Funds for the central
universities. Qing Xiang was supported in part by NSF Grant DMS 1001557, by the Overseas Cooperation
Fund (Grant 10928101) of China, and by Y. C. Tang disciplinary development fund, Zhejiang University.

References

1. Bannai E.: Subschemes of some association schemes. J. Algebra 144, 167–188 (1991).
2. Bannai E., Ito T.: Algebraic combinatorics I: association schemes. Benjamin/Cummings, Menlo Park

(1984).
3. Bannai E., Munemasa A.: Davenport-Hasse theorem and cyclotomic association schemes. In: Proc. Alge-

braic Combinatorics, Hirosaki University, Hirosaki (1990).
4. Baumert L.D., Mykkeltveit J.: Weight distributions of some irreducible cyclic codes. DSN Progr. Rep.

16, 128–131 (1973).
5. Baumert L.D., Mills M.H., Ward R.L.: Uniform cyclotomy. J. Number Theory 14, 67–82 (1982).
6. Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi sums. A Wiley-Interscience Publication, New

York, (1998).
7. Brouwer A.E., Cohen A.M., Neumaier A.: Distance regular graphs, Ergebnisse der Mathematik und ihrer

Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18. Springer-Verlag, Berlin (1989).
8. Brouwer A.E., Haemers W.H.: Spectra of graphs, course notes, available at http://homepages.cwi.nl/

~aeb/math/ipm.pdf.
9. van Dam E.R.: A characterization of association schemes from affine spaces. Des. Codes Cryptogr. 21,

83–86 (2000).
10. van Dam E.R.: Strongly regular decompositions of the complete graph. J. Algebraic Combin. 17, 181–201

(2003).
11. van Dam E., Muzychuk M.: Some implications on amorphic association schemes. J. Combin. Theory (A)

117, 111–127 (2010).
12. Feng T., Xiang Q.: Strongly regular graphs from union of cyclotomic classes. J. Combin. Theory (B)

(in press).
13. Godsil C., Royle G.: Algebraic graph theory, GTM 207, Springer-Verlag, Berlin (2001).

123

Author's personal copy

http://homepages.cwi.nl/~aeb/math/ipm.pdf
http://homepages.cwi.nl/~aeb/math/ipm.pdf


Pseudocyclic association schemes

14. Hollmann Henk D.L.: Association schemes, Master Thesis, Eindhoven University of Technology, The
Netherlands (1982).

15. Ikuta T., Munemasa A.: Pseudocyclic association schemes and strongly regular graphs. Eur. J. Combin.
31, 1513–1519 (2010).

16. Ivanov A.A., Praeger C.E.: Problem session at ALCOM-91. Eur. J. Combin 15, 105–112 (1994).
17. Langevin P.: Calculs de certaines sommes de Gauss. J. Number Theory 63, 59–64 (1997).
18. Mbodj O.D.: Quadratic Gauss sums. Finite Fields Appl. 4, 347–361.
19. McEliece R.J.: Irreducible cyclic codes and Gauss sums. Combinatorics (Proc. NATO Advanced Study

Inst., Breukelen, 1974), Part 1: Theory of designs, finite geometry and coding theory, pp. 179–196. Math.
Centre Tracts, No. 55, Math. Centrum, Amsterdam.

20. Meijer P., van der Vlugt M.: The evaluation of Gauss sums for characters of 2-power order. J. Number
Theory 100, 381–395 (2003).

21. Muzychuk M.E.: V -rings of permutation groups with invariant metric, Ph.D. thesis, Kiev State University
(1987).

22. Yang J., Xia L.: Complete solving of explicit evaluation of Gauss sums in the index 2 case. Sci. China
Ser. A 53, 2525–2542 (2010).

123

Author's personal copy


	Pseudocyclic and non-amorphic fusion schemes  of the cyclotomic association schemes
	Abstract
	1 Introduction
	2 Gauss sums
	3 Pseudocyclic fusion schemes of the cyclotomic schemes
	3.1 The index 2 case with N=p1mp2
	3.2 The index 2 case with N=p1m

	Acknowledgments
	References


