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Abstract Gauss periods taking exactly two values are closely related to two-weight
irreducible cyclic codes and strongly regular Cayley graphs. They have been exten-
sively studied in the work of Schmidt and White and others. In this paper, we consider
the question of when Gauss periods take exactly three rational values. We obtain numer-
ical necessary conditions for Gauss periods to take exactly three rational values. We
show that in certain cases, the necessary conditions obtained are also sufficient. We
give numerous examples where the Gauss periods take exactly three values. Further-
more, we discuss connections between three-valued Gauss periods and combinatorial
structures such as circulant weighing matrices and three-class association schemes.
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1 Introduction

Let IF, be the finite field of order ¢, where g is a power of a prime p. Let &, be a
complex primitive pth root of unity and Tr,,, be the trace from F, to Z,, := Z/pZ.
Define

y:F, = C ) =&Y,

which is easily seen to be a nontrivial character of (I, +), the additive group of IF,.
Let x : F7 — C* be a multiplicative character of Fy. Define the Gauss sum by

Gy(0) = D x(@y(a).

s
aEFq

Gauss sums are ubiquitous in number theory and in many areas of combinatorics.
Closely related to Gauss sums are the Gauss periods which we define below. As
before, g is a power of a prime p. Let N > 1 be an integer such that N|(g — 1) and
F = yayN)0<a <N —1of
CéN .q)

y a primitive element of . Then the cosets C[(,N
r™)
or simply C, for Cé
are defined by

in IFZ are called the cyclotomic classes of order N of IF,. We often write

N.F,) . . . . .
"), if there is no confusion. The corresponding Gauss periods

na= ». Y&, 0<a<N-1

rect

Even though Gauss sums and Gauss periods were first introduced by Gauss to study
cyclotomy (“circle-splitting”), they have played an important role in the investigations
of many combinatorial objects, such as difference sets, irreducible cyclic codes, and
strongly regular Cayley graphs, cf. [4,6,7,9,11,13]. In particular, we note that Gauss
sums were used extensively in the work of Baumert and McEliece ([1,11]) on weights
of irreducible cyclic codes. The current paper can be thought as a natural continuation
of [13] in which two-weight irreducible cyclic codes were studied by using Gauss
sums. The Gauss periods involved in [13] take two distinct rational values as they
correspond to the (nonzero) weights of two-weight irreducible cyclic codes. In this
paper, we consider Gauss periods which take three distinct rational values, and use
them to construct various combinatorial objects such as circulant weighing matrices
and association schemes.

A circulant weighing matrix of order N is a square matrix M of the form
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a ay az -+ Aan-1
ayN_1 ap ai --- AanN—

M= N—1 0 1 N-2 (1.1)
ay a asz --- o

with a¢; € {—1,0, 1} for all i and MMT = wl, where w is a positive integer and /
is the identity matrix of order N. The integer w is called the weight of the weighing
matrix. A circulant weighing matrix of order N and weight w will be denoted by
CW(N, w).

Let G be an abelian group of order N. To facilitate the study of circulant weighing
matrices, we use the group ring language. The elements of C[G] are

A= Zagg,

geG

with a, € C; for any integer ¢, we write

AW = Zaggt.

geG

For a subset A of G, it is customary to identify A with the corresponding group ring
element gea & Which will again be denoted by A. We will be using the Fourier
inversion formula quite frequently.

Lemma 1.1 (Inversion formula) Let G be an abelian group of order N and A =
dec agg € C[G]. Then

1
ag =5 2. XM

x€G

forall g € G, where G isthe group of complex characters of G. Hence if A, B € Cl[G]
satisfy x (A) = x(B) forall x € G, then A = B.

Now set G = Zy, a cyclic group of order N with a generator y. That is, Zy =
{1,y,... ,VN_I}. A circulant matrix M in (1.1) satisfies MMT = wl if and only
if DDD = w, where D is the group ring element in C[Zy] defined by D =
ZZNZBI ai7i. Since a; = 0, =1, we can write D = A — B, where A = {7i |0<i <
N—1l,aq;=1}and B={y" |0 <i <N —1,a; = —1}. Thus, a circulant weighing
matrix of order N and weight w is equivalent to a group ring element A — B, where
A and B are disjoint subsets of Zy, such that

(A= B)A—B) Y =w-1inC[Zy].
Next we give a short introduction to association schemes. Let X be a finite set.

A (symmetric) association scheme with d classes on X is a partition of X x X into
subsets Ry, R1, ..., Rg (called associate classes or relations) such that
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(1) Rp = {(x,x) | x € X} (the diagonal relation),
(2) R;is symmetric fori =1,2,...,d,
(3) foralli, j, kin{0, 1, 2, ..., d} thereis an integer pll.‘j such that, forall (x, y) € Ry,

[z € X | (x,2) € Ri and (z, ) € R;j}| = p};.

We denote such an association scheme by (X, {R;}o<i<q). Fori € {0, 1,...,d}, let
A; be the adjacency matrix of the relation R;, that is, the rows and columns of A; are
both indexed by X and

N it () € R,
(Aidey = [ 0 if (r.)) ¢ R.

The matrices A; are symmetric (0, 1)-matrices and

Ag=1, Ao+ A1+ +As=J,

where J is the all-1 matrix of size |X| by | X]|.

By the definition of an association scheme, we have A;A; = Zgzo pl].‘j Ay for
any i, j € {0, 1,...,d}, so Ag, Ay, ..., Az form a basis of the commutative algebra
generated by Ag, Ay, ..., Ag over the reals, which is called the Bose—Mesner algebra
of the association scheme. Moreover, this algebra has a unique basis Eg, E1, ..., Eg
of primitive idempotents; one of the primitive idempotents is ‘IT‘J . We may assume

that Eg = l)l(—lj.Let m; = rank E;. Then
mo=1, mo+mi+---+myg =1X|.

The numbers mg, m1, ..., mq are called the multiplicities of the scheme. Since we have
two bases of the Bose—Mesner algebra, we consider the transition matrices between
them. Define P = (pj (i )) 0<i.j<d (the first eigenmatrix or character table) and Q =

(q (@ )) 0<i.j<d (the second eigenmatrix) as the (d 4+ 1) x (d + 1) matrices with rows
and columns indexed by 0, 1,2, ...,d such that

(Ao, A1, ..., Ag) =(Eo, Ey, ..., EQ)P,

and
|X|(Eo, E1, ..., Eq) = (Ag, Ay, ..., A7)0Q.
Letk; = p;(0),0 < j < d. The k;’s are called valencies of the scheme.

We call an association scheme (X, {R; }ld=o)’ where X is an additively written finite
abelian group, a translation association scheme or a Schur ring if there is a partition
Doy = {0}, Dy, ..., Dg of X such that foreachi =0,1,...,d,

Ri={(x,x+y)|xe X, ye D} (1.2)

Assume that (X, {R;}o<i<q) is a translation association scheme with relations defined
in (1.2). There is an equivalence relation defined on the character group X of X as
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follows: x ~ x’ if and only if x (D;) = x'(D;) forall 0 < i < d. Here x(D) =
deD x(g), forany x € X and D C X. Denote by Dy, Dj, ..., D/, the equivalence
classes, with D, consisting of only the principal character. Define

R ={(x, xx)x € X, x €D

Then, (5(\ , {R;}flzo) also forms a translation association scheme, called the dual of
(X, {Ri}o<i<a)- The first eigenmatrix of the dual scheme is equal to the second eigen-
matrix of the original scheme. We refer the reader to [3, p. 68] for more details. A
translation scheme is called self-dual if it is isomorphic to its dual.

As an example of translation association schemes, we mention the cyclotomic
scheme, which we define below. Let ¢ be a prime power, N > 1 be a divisor of
qg—1.Let C4,0 < a < N — 1, be the cyclotomic classes of order N of ;. Assume
that —1 € Cp. Define Rp = {(x,x) | x € 4}, and fora € {1,2,..., N}, define
Ry ={(x,y) | x,y € Fg,x —y € Cqs—1}. Then (Fy, {Rs}o<a<n) is an association
scheme. This is the so-called cyclotomic association scheme of class N over IF,. The
first eigenmatrix P of the cyclotomic scheme of class N is given by the following
(N + 1) by (N + 1) matrix (with the rows of P arranged in a certain way)

1 k& k kK -k
1 My no n - My

Pp=|1 v WMy MOt Mys (1.3)
L no m m - ny,

where k = % and 1,,0 < a < N — 1, are the Gauss periods of order N defined
above. For future use, the submatrix Py = (p;(i))1<i,j<n of P will be called the
principal part of P. Note that the cyclotomic scheme (Fy, {Rs}o<q<n) is self-dual.

The rest of the paper is organized as follows. In Sect. 2, we obtain necessary
conditions for Gauss periods to take exactly three rational values. Connections between
three-valued Gauss sums and combinatorial structures such as circulant weighing
matrices and three-class association schemes are also developed. In Sect. 3, we show
that in certain cases, the necessary conditions we obtained in Sect. 2 are also sufficient.
Finally in Sect. 4, we provide five infinite classes of examples where the Gauss periods
take exactly three values. Some sporadic examples are also obtained by computer
search. From these examples, we obtain circulant weighing matrices and three-class
self-dual association schemes.

2 Three-valued Gauss periods: necessary conditions

Letg = pf beaprime power and N > 2 be a positive integer such that N | (g — 1). Set
k = (g —1)/N.LetIF, be the finite field of order ¢, y a fixed primitive element of I,
and Cog = (y"). Suppose that the Gauss periods 1, = ¥ (y*Co),a =0,1,..., N—1,
take exactly three distinct rational values o, a2, and 3. We will be working with the
quotient group Zy := IF; / Co, a cyclic group of order N with a generator y = y Cy.
For 1 <i < 3, define subsets I; of Zy by I; = {y® € Zn | ns = ;}.
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Lemma 2.1 With the above assumptions and notation, we have

(il + el + sl e IV + oSVt ol =g 11—z, @)

in the group ring Q[Zy].

Proof As above, Zy is the (cyclic) quotient group Fy / Co with a generator . Let x be
a nontrivial multiplicative character of I, whose restriction to Cy is trivial, so that we
may view x as a character of the quotient group F Z /Co. Such a character of IF; /Co
will again be denoted by x and we have x () = x(y). Note that every nontrivial
character of Zy := IFZ; /Co can be obtained in this manner. We have

N-1

Gy =D D x@¥(x)

i=0 xeC;
=70+ x(m + -+ x ¥ v
= a1 x (1) +axx(2) +azx (13).

Since «;, 1 < i < 3, are rational integers, we have o; = «; for 1 < i < 3. It follows
that

3 3
(Zaixui))(Zaix(m) = Gy(0G,(0 =4q.
i=1 i=1

If x is the trivial multiplicative character of F,, we have aix (1) + a2x(l2) +
a3x(l3) = G4(x) = —1,and

3 3
(Zaixui))(Zaix(m) = G4(00G,(0) =1.
i=1 i=1

The claimed group ring equation now follows from the inversion formula stated in
Lemma 1.1. O

Using Lemma 2.1, we can express the sizes of /;’s in terms of o1, a2, 3.

Lemma 2.2 Suppose that n,, 0 < a < N — 1, take three distinct rational values

o1, o, and az. With notation as above and k = %, we have

~ o3 — 1) + k(g —k+ax+a3)

|| = )
k(ap — o) (a3 — )

D ajasz(g — 1) + k(g —k+a) +a3)

2 =— )
k(ay — o) (o2 — @3)

i) ajon(qg — 1) + k(g —k+ a1 +a)

3| =— .

k(ap — a3) (a3 — ay)
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Proof Firstof all, itis clear that |I1|+|I2| +|I3| = N.Next we have o1|I1|+ 2| 2|+
a3|lz]| = Z,N= _01 n; = —1. Finally, by comparing the coefficient of the identity element
in the two sides of the group ring equation (2.1), we get a?llll + ot%|12| + ot§|13| =
q — k. These three equations now uniquely determine |/1|, | /2|, and |I3|. The proof is
complete. O

Next we derive necessary conditions when the Gauss periods take exactly three
values.

Proposition 2.3 Let ¢ = p! be a prime power and N > 2 be a positive integer such
that N | (g — 1). Assume that the Gauss periods ng, 0 < a < N — 1, take exactly three
rational values o1, an, @3, say, o1 —oy = —tu < Qand oz —oap =tv > Owitht > 0
and gcd (u, v) = 1. Then t is a power of p, and there exist two positive integers r, s,
0 <r, s <N, such that

(i) t(—ur +vs) = —1(mod N),

(i) (N — 1)g + 12(—ur + vs)? = Nt2(u?r + v%s).
Inparticular, t is the largest power of p dividing G4 (x) for all nontrivial multiplicative
character x of ¥, of order dividing N.

Proof Asbefore, let Zy = F}/Co = (7).S0 Zy = Cg := {x | x € Fi. xlc, = 1}.
We define a function 0 : Zy — C by o(¥%) = n4 — a2. In order to simplify
notation, we will sometimes write o (¥“) simply as o (a). The Fourier transform of o
isG : Zy — C, which is defined by

N—-1

PN —ay, (4
o(x)—ﬁ;)o(y )X 7).

Computing the Fourier transform of o, we have

| . . ..
o) = NG Gy(x) if x is a nontrivial character of Zy,
1 _ ar/N if x is trivial.
VN

By assumption n,, 0 < a < N — 1, take exactly three values, we see that o (a) €
{0, —tu, tv}. Note that if ¥ € Zy is nontrivial, then

N-—1 N—-1
Gy =D nax(y) = D (1 — ) x(v*) = t(—ux () + vx(I3)),
a=0 a=0

where I and I3 are defined as before. From the above equation, we see that 7 | G, (x)
for all nontrivial x € Cd‘. It follows that r = p? for some integer 6.

Let (Col)* = COL\{ xo} with xo the trivial character. Since for any a,0 < a <
N —1,

1 —1
= 2, GgOx™ "),
xeC&
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we have |
o7 =5 2 G v —xT ), 22)
Xe(Cy)*
where x ! is the inverse of x € COL and o is assumed to be equal to 7, for some e.

Let ¢’ be the largest power of p dividing all G4(x), x € (Col)*. Then (2.2) implies
that r = ¢’ since ged (N, ¢') = 1.
Moreover, by the definition of & we have

N-1
R 1 t(—ur + vs)
o(x0) = —F—= oY) = ——F7,
75 = N
— — _ 1 _ N __ t(=ur+vs)

where r = |I1|, s = |I3],and 0 < r, s < N. Hence TN ﬁaz =N LIt
follows that t (—ur + vs) = —1 (mod N).
N—1

It is clear from the definition of ¢ that >, o (a)o(a) = 2(u?r + v2s). On the
other hand, we have

tz(—ur + vs)2

_— 1 -
2000500 =5 2 GGG+ v

xeCy XE(C)*

1 2 2
= N((N — Dg + t°(—ur + vs)7).
It now follows from Parseval’s identity that
(N — g + t2(—ur + vs)2 = Ntz(uzr + vzs).

The proof is now complete. O

Remark 2.4 (1) As seen from the proof above, t is the largest power of p dividing all
G,(x), x € (Cd‘)*. By the Stickelberger theorem on the prime ideal factorization
of Gauss sums, we have t = p? = pdg, with 6’ = ﬁmin{sp (k|1 <j<
N —1}andd = f/f’, where f’is the order of p modulo N and s, (-) is the p-adic
digit sum function.

(2) InSect. 4, we will show that the two simple necessary conditions in Proposition 2.3
are sometimes also sufficient.

2.1 Circulant weighing matrices

Let ¢ = p/ be a prime power, y be a primitive element of Fy,and N > 1bea
positive integer such that N | Z%{. In [13], it was shown that if the Gauss periods
N = ¥ (y*Co), 0 < a < N — 1, take exactly two values | and «y, then each of
the index sets I; = {a € Zn |n, = «;}, 1 < i < 2, forms a difference set in Zy,
which is a subdifference set of the Singer difference set. It is natural to ask: if the
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Gauss periods take exactly three values, what combinatorial structures can we obtain
from the index sets I;, I» and I3? In this subsection, we will see that under certain
conditions, three-valued Gauss periods lead to circulant weighing matrices.

Lemma 2.5 Let g = p/ be a prime power and N > 2 be a positive integer such that
N | (g — 1). Assume that the Gauss periods ng,, 0 < a < N — 1, take exactly three
rational values a1, oy, oz which form an arithmetic progression, say, o] —op = —t <
Oand oz —oapy =t > 0. Then

N(a3 + oot +k) +200 —k+1+1

Il= ,
111 T
Iy| = N3 — oot +k)+20 —k—t+1
3 - 2t2 £

N> —a?2—k)—1—2a +k aoN + 1
|| = — L] = = ——.

t t
Moreover, we have
2
_ q asN + 200 — k
(I — B — )Y = o1+ Zt—ZZN 2.3)

in Q[ZyN]. In particular, t must be a power of p.

Proof The fact that ¢ is a power of p follows from Proposition 2.3. The sizes of I, I»,
and I3 can be obtained from Lemma 2.2 and the assumptions that &y = oy — ¢ and
a3 = oo + t. Finally by Lemma 2.2 and the assumptions that ¢y = «ay — ¢ and
o3 = o + t, we have

_ -1
(2 Zy — t(I) — ) eaZy —t(Iy — 1) D =g -1 -2

Zy,

from which (2.3) follows. This completes the proof. O

We further consider the question of when I; — I3 generates a circulant weighing
matrix.

Proposition 2.6 Let ¢ = p/ be a prime power and N > 2 be a positive integer
such that N | (g — 1). Assume that the Gauss periods 1n,, 0 < a < N — 1, take
exactly three rational values o, ar, @3 which form an arithmetic progression, say,
ar—ar = —t <0andaz —ay =t > 0. Then I — I3 generates a circulant weighing
matrix CW(N, %) ifand only if a; = (\/q — 1)/ N and q is a square.

Proof Let g be a square and oy = (/g — 1)/N. Then oz%N + 20 — k = 0; in this
case (2.3) becomes

(h =1 = 1)V = L1,
that is, /1 — I3 generates a circulant weighing matrix of order ¢ and weight t%.
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Conversely, if I} — I3 generates a circulant weighing matrix CW(N, t%), then

aiN + 20 — k = 0. It follows that oy = */?V_l orap = —#. In the latter
case, /g = —1 (mod N), from which we know that the Gauss periods take only two
values [13]. Therefore, we must have ap = @ Since « is rational, we see that g
is a square. O

2.2 Related association schemes

As we remarked in Sect. 1, when the Gauss periods n,,0 < a < N — 1, take exactly
two distinct values, and —1 € Co, then we naturally obtain a strongly regular Cayley
graphs defined on F, with connection set Cy (which is denoted by Cay(IF,, Cp)).
Strongly regular graphs are the same objects as two-class association schemes. We
will see in this section that if the Gauss periods take exactly three values, under certain
conditions, we obtain three-class self-dual association schemes. Before stating our
main theorem, we give some remarks on translation schemes.

Let G = {g1,..., gy} be a multiplicative abelian group of order v, with char-
acter group G. Let p : G — GL,(C) be the regular representation of G, name/l\y

(:O(g))(hl,hg) = 1if hp = h1g, and = 0 otherwise. Also, for a character x € G,

let v, := \%(X(gl), .., x(gy) and E, = V; - V. Then the V; are the common

eigenvectors of p(g), g € G, since ,o(g)v;('— = X(g)v;'(—. The E,’s are the primitive
idempotents of the algebra A := (p(g) : g € G) = C[G], as can be easily checked
by using the orthogonality relations of characters. Moreover, by using the fact that
(EX)(g’h) = %X(gh’l), we have

(WEy) o (VE,) = (VE, ). 2.4)

Now assume that Dy, D1, ..., Dy form a partition of G which yields a translation
scheme, and its dual scheme is given by the following partition of G: D}, Di,..., D).
Write A; = p(D;),0 <i <d, and let Eg, E, ..., E4 be the primitive idempotents
of the Bose-Mesner algebra A := (Ag, A1, ..., Ag) with respect to the matrix mul-
tiplication. We have E; = > xeD! E, with respect to a proper ordering of the E;’s.

Similarly, if we use p’ for the regular representation of G, and write Al = p'(D)),
then Af), e, Aii span .Z, the Bose—Mesner algebra of the dual scheme.

Let W be the linear map from A\to A that maps A; tovE;, 0 <i <d. It follows
from (2.4) that W is an algebra isomorphism ifgom (.Zl\, +, ) to (A, +, o). An easy

corollary is that, ¥ maps the idempotents of (A, +, ) to those of (A, +, o), namely
the A;’s.

Theorem 2.7 Let ¢ = p/ be a prime power and N > 2 be a positive integer such
that N | (g — 1). Assume that —1 € Cq and the Gauss periods 14,0 < a < N — 1, take
exactly three rational values oy, ao, a3, say, 1 —ay = —tu < Oandaz—ay =tv > 0
witht > 0. Let

R0={0}7R1=UCi,R2=UC,',R3=UC[',

iel ieh ielz
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where I; = {a € Zy|n, = o} fori = 1,2,3. If |[I1] = 1 or |Iz] =
(Fy, {Ri}?zo) is a self-dual three-class association scheme. (Here for 0 <
(x,y) e Rjifand onlyifx —y € R;.)

1, then
i <3,

Proof Let Ag, A1, ..., An and Ey, Eq, ..., Ey be the first and the second standard
bases of the Bose—Mesner algebra A of the cyclotomic scheme of class N of F,.
We may assume that the cyclic permutation o = (1, 2, ..., N) is an algebraic auto-
morphism of the association scheme; namely, the linear map that maps A; — Ay (),
0 < i < d, is an automorphism of the Bose—Mesner algebra with respect to both
the matrix multiplication and the Schur product. Notice that A consists of symmetric
matrices.

In what follows we use the notation Eg = > ¢ Ey, Ag = > ¢ Ay forany § C
{1,2,...,N}.Let P = (p;(i)) and Q = (g;(i)) be the first and second eigenmatrix
of the cyclotomic scheme, respectively. With a proper ordering of the E;’s, we have
P = (Q, and the principal part of P is symmetric. The principal part of P has only
three distinct rational entries, namely o1, a2, «3.

Since the Gauss periods have three values from {«, 2, o3}, we have

Ay =kEo+aEp, +nEp, +a3E,,

where the L;’s form a partition of {1, 2, ..., N} (and they come from the /;’s in the
statement of the theorem). Since the cyclotomic scheme is self-dual, by the algebra
isomorphism W described right before the statement of this theorem, we have

El=q '(kAg + a1Am, + 2Ay, +@3An,),

where the M;’s form a partition of {1, 2, ..., N}, and |[M;| = |L;|, foralli = 1,2, 3.

Assume now that |L| = 1, i.e., L1 = {£} for some £ € {1,2,..., N}. We have
a1 = p1(¢). Consider the vector space B spanned by Ao, Ay, Eg, E¢. Noting that
o # a3, it follows from

Ag=Ey+E(+E, +Ep;,
Al =kEy+ o1 Eg+aEp, +a3E],,

that B = (Eo, E¢, Er,, Er;). In particular, B is closed with respect to the matrix
multiplication.
Since o is an algebraic automorphism of 4, we have E;, = q’l(kAo +alA M] +

Ay + a3Ayy), where M] = o =1 (M;). It follows from |M]| = |M;| = |L;| that
M| = {m} for some m € {1,2,...,N}. So, E; = g ' (kAg + a1 A, + OlZAMé +
o3A M§)~ On the other hand, we have

qE;io Ay =qi(1)A; = a1 Ay,

It follows that m = 1. Together with Eg = q_l (Ap+ A1+ AMé + AM;)7 we see that
B = (Ap, A1, A M} A M} ). In particular, 3 is closed with respect to the Schur product.
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Since Ag, Eo € Band Bis symmetric, we conclude that (F,, {R; }1‘3 o) is aself-dual

association scheme with 3 as its Bose-Mesner algebra. O

Remark 2.8 We comment that the condition |I;| = 1 (or |/3] = 1) in Theorem 2.7
is needed. Below is an example in which the Gauss periods take three values, but the
partition of Zy by Iy, I and I3 does not yield a three-class association scheme. Let
g=113N=19 1 ={0,2,3,4,5,6,9,14,16,17}, I, = {8, 10, 12, 13, 15, 18},
and I3 = {1, 7, 11}. In this case, ¥ (y*Coy), a = 0,1,..., N — 1, take the values
—7,4, and 15 according as a € [;, 1 < i < 3, but the partition /1, I, I3 of Zy does
not yield a three-class association scheme.

3 Sufficient conditions for Gauss periods to take exactly three values

In this section, we consider the question when the necessary conditions obtained in
Proposition 2.3 are also sufficient. We pay special attention to the case where either
u = 1 orv = 1. Here we are using the notation of Proposition 2.3. (Many examples
given in Sect. 4 fall into this case.) Furthermore, we show that the partition of Zy by
I, I, and I3 yields a three-class association scheme if u = |I3| = l orv = |I]| = 1.

3.1 Sufficient conditions for Gauss periods to take three values

In this subsection, we give sufficient conditions for Gauss periods to take exactly three
distinct values. First, we give a general sufficient condition. Below, we use N to denote
the set of positive integers.

Proposition 3.1 Let ¢ = p! be a prime power, N > 2 be an integer such that
N (g — 1), and Cy = (yN), where y is a fixed primitive element of F,. Assume that
there are four positive integers u, v, r, s such that

(1) t(—ur +vs) = —1(mod N);
(i) (N — 1)q + t>(—ur + vs)*> = Nt>(u’r + v%s),

where t is the largest power of p dividing all G4(x), x € (C(J)‘)* = (Co)"\{xo}. If
all nonnegative solutions (tx)xez\ (o) to the following system of equations

DX =Dt + 3y x(x + Di—x =u(u+ Dr +v(—1s
DaenX @+ Dt + D cyx(x = Dty =u(u — Dr +v@+ s

satisfy ty #0ifx =iy orip, ty, =0 forall x # iy, and t;, + t;y, < N, where iy, iz
are two distinct integers, then the Gauss periods n, = ¥ (y“Cp), 0 <a < N — 1,
take exactly three distinct values.

Proof Let y = w Defineamap 7 : Zy — C by

Y(y“Co) —y
—

T(a) =
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Since

1 1
Yoo+ =5 2, GaoxT Y,

N
XE(C)*

by t| G4(x) and assumption (i), we see that 7(a) € Z, that is, T is integer valued.
Computing the Fourier transform of 7, we have

| e .

o o TNG"(X) if x is nontrivial,

T(x) = Wi ZZ: t@x () = [ S s wrivial
aA€LiN

It follows from Parseval’s identity that

) o q (—ur + vs)?
2 t@= > T0T =N = Dps + ——
acZn xeCy
By assumption (ii), we have
Z t(a)? = u’r + v%s. (3.1
aEZN
On the other hand, we have
Z t(a) = —ur + vs. (3.2)
anN

Equations (3.1) and (3.2) can be rewritten as

sztx + szt_x = u%r +v%s and thx — th_x = —ur + vs,

xeN xeN xeN xeN

where t, = |{a € Zy | T(a) = x}|, x € N. It follows that

Zx(x — Dty + Zx(x + Dty =u(~+ Dr +v—1s (3.3)
xeN xeN

and
D x4 Dty + D x(x — Dty = u(w — Dr + v+ Ds. (3.4)
xeN xeN
By assumption, the nonnegative solutions (Z;) rcz\ o to the above system of equations
all satisfy 7, % 0 when x = ij or i» and ¢, = O for all x # iy, i. This implies that
t(a) € {0, 1y, iz} foralla € Zy. Consequently, n, = ¥ (y*Cp),0 <a < N — 1, take
exactly three distinct values since #;, + #;, < N. The proof is complete. O
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As an immediate corollary, we have the following.

Corollary 3.2 Letq = p/ beaprimepower, N > 2 be aninteger suchthat N | (g—1),
and Cy = (yN), where y is a fixed primitive element of . Assume that there are
four positive integers u, v, r, s satisfying

(i) t(—ur +vs) = —1(mod N);
(i) (N — 1)g + 12(—ur + vs)> = Nt2(u?r + v%s),

where t is the largest power of p dividing all G4(x), x € (COL)* = (Co)*\{xo})-
Ifu=v=r=1ands+1 < N,oru=v =5 =1landr +1 < N, then
Ne = Y (y?Co), 0 < a < N — 1, take exactly three distinct values; in this case, the
three values taken by n, form an arithmetic progression.

Proof We assume that u = v = s = 1. (The case where 1 = v = r = 1 is similar.)
In this case, (3.4) is reduced to

Zx(x + Dty + Z x(x — Dty = 2.
xeN xeN\(1)

The nonnegative solutions (#y)e7\ (0} to the system of equations

2reny X = Dty + 2 ey x (e + Dy = 2r
zxeNx(x + Dt + ZXEN\{]} x(x =Dty =2

must satisfy 1y = 1,7_; = r and t, = O for all other x,or7_p = 1,71 =r — 3
and t, = O for all other x. It follows that 7(a) € {0, —1, 1} or t(a) € {0, —1, =2}
for all a € Zy. Consequently, n,, a € Zy, take exactly three distinct values since
s + 1 < N. The proof of the corollary is complete. O

The conditions u = v =r = 1 and s + 1 < N in the above corollary are quite
restrictive. Below, we consider more general situations where we can still guarantee
that the Gauss periods take only three values. We start with the following lemma.

Lemma 3.3 Let g = p/ be aprime power, N > 1 be an integer such that N | (g — 1),
and Co = (yN), where y is a fixed primitive element of Fy. Assume that n, =
Y(y?Co), 0 < a < N — 1, take exactly € distinct values, say, a1, o2, ..., ap. Let I; =
{a € Zn|na =i} for 1 <i < L. Then each I; is invariant under the multiplication
by p. Moreover;, assume that m := gcd{ord,(p) |n > 1and n dividesN} > 2. Then
there exists a uniqueio, 1 < ig < ¢, suchthat |I;)| = 1 (mod m) and |I;| = 0 (mod m)
foralli # iy.

Proof Since Try/p(x?) = Try/p(x) for x € Fy, we have np, = n, foralla € Zy.
It follows that each [; is invariant under the multiplication by p. Note that under the
multiplication by p (i.e., under the map x — px, x € Zy), 0 forms a singleton orbit,
and all other orbits have sizes divisible by m. The second conclusion of the lemma
follows. This completes the proof of the lemma. O
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Theorem 3.4 Letg = p/ beaprime power, N > 2 be an integer suchthat N | (g —1),
and Coy = (yN), where y is a fixed primitive element of F,. Assume that there are
four positive integers u, v, r, s such that

(1) t(—ur +vs) = —1(mod N);
(i) (N — g + 12(—ur + vs)* = Nt2(u?r + v3s),

where t is the largest power of p dividing all G4(x), x € (Cd‘)* = (Co) \{xo). Let
m = gcd{ord, (p) |n > 1, and n divides N} and assume that m > 2. If one of the
following conditions holds,

M u=s=1Lvw+1) <2m,andr+1 < N;
2 u=s=1Lvw+1)=2m andr +v? < N;
Bv=r=Lum+1)<2m,ands+1<N;
@ v=r=1Luw+1)=2m ands +u* < N;
Su=v=1,s=m,andr+m < N;
®) u=v=1,r=m,ands+m < N,

then ng = ¥ (y*Co), 0 < a < N — 1, take exactly three values.

Proof First we note that by Lemma 3.3, the ¢, x € Z\{0}, in Egs. (3.3) and (3.4)
satisfy that r, = 1 (mod m) for at most one x and m | ¢, for all other x.

We consider Cases (1) and (2) where u = s = 1. (For Cases (3) and (4), the claims
can be proved in a similar way. We omit the proof.) In these cases, (3.4) is reduced to

Zx(x + Dty + Z x(x = Di_y = v(w+1). (3.5)
xeN xeN\(1}

(1) If v(v 4+ 1) < 2m, noting the divisibility conditions on the 7,’s, we see that the
nonnegative solutions (#y)ez\ (o) to the following system

ZXEN\“}x(x — Dty + D enXx(x+ Dty =2r +v(w—1)
DrenX(x + Dy + erN\{l}x(x — Dty =v(w+1)

mustsatisfy #, = 1,7_; = rand#, = Oforallotherx,ort_y41y = 1,11 =r—2v—1,
and ¢, = O for all other x. It follows that 7 (a) € {0, —1, v}ort(a) € {0, -1, —v—1}
for all a € Zy. Therefore n,, a € Zy, take exactly three values since r + 1 < N.

(2) If v(v + 1) = 2m, the above system has further nonnegative solutions t; = m,
t1=r+m—vandt, =0forall otherx,ort o =m,t_ =r—2m—v,andt, =0
for all other x. So t(a) € {0, —1, 1} or t(a) € {0, —1, =2} for all a € Zy. It follows
that ., a € Zy, take exactly three values since r + v2 < N.

Next, we consider the case whereu =v=1ands =m orr = m.

(3) We assume that s = m. (The case where r = m can be handled similarly). In
this case, (3.4) is reduced to

Dxx+ D+ D x(x— Dty =2m.

xeN xeN\{1}
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If 2m # £(£ + 1) for all £ € Z, then the nonnegative solutions (#y)cz\ (0} to the
following system

Dxemy X = Dix + 2 enx(x + Dty = 2r
2aen X+ Dix + 2 ey X6 — Dy = 2m

must satisfy 1 = m, t_; = r,and t, = 0 for all other x,ort_p =m, t_1 =r — 3m,
and 7, = O for all other x. It follows that t(a) € {0, 1, —1} or t(a) € {0, —1, —2} for
a € Zy. Therefore n,, a € Zy, take exactly three values.

If 2m can be written as 2m = £(£ + 1) for some positive integer ¢, then the above
system has further nonnegative solutions t, = 1,7_1 =r —€({ — 1)/2,and t, =0
for other x,orf_y_1 = 1,11 =r — (L + 1)(£ + 2)/2, and ¢, = O for other x. Again
we have t(a) € {0,£, —1}or t(a) € {0, —1, —¢ — 1} fora € Zy. O

4 Examples of three-valued Gauss periods and related weighing
matrices and association schemes

In this section, we give examples of three-valued Gauss periods. These examples often
lead to interesting combinatorial structures such as circulant weighing matrices and
association schemes.

As apreparation, we consider a group ring version of the Hasse—-Davenport theorem.

Theorem 4.1 ([2, Theorem 11.5.2]) Let x be a nonprincipal multiplicative character
of g =F s and let x' be the lifted character of x to the extension field Fy = F ple
that is, x'(a) 1= x (Normy/,, (@)) for any a € IFZ,. Then, it holds that

Gy (x) = (=D"NG, ()"

Let x be a multiplicative character of IF, of order N > 1, y a primitive element of
Fy,and Co = (¥N). As we saw in the proof of Lemma 2.1, we have

GO =no+mx)+ - +nav_1x (N

where 1, = 1//(CL§N"1)) for 0 < a < N — 1. This motivated us to define the following
group ring element

grn = D Nalal € CIZy],

anN

where I = IF;. (See [5].) Let E be the finite field with g¢ elements, e > 1 a positive
integer. Then it follows from Theorem 4.1 that

geN = (=D "gh v 4.1
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The advantage of this group ring version of the Hasse—Davenport theorem is that
starting with a pair of small (¢, N) with N|(g — 1) we are able to determine the Gauss
periods corresponding to the subgroup of index N of IFZ” efficiently.

4.1 Examples from a conic

Let p be a prime, f a positive integer, F' = Fp3f, and £ = szfe withe > 1. Let y
and w be primitive elements of F" and E, respectively, such that y = Normg, r(w).

3f_ .
Let N = ZL]I' Then C(()N,F) = F;f < F* = ]F;3f, and the Gauss periods 7, =

w(y“C(()N’F)) = pf —1ifTrr/(y%) = Oand —1 otherwise, where L = pr. Denote
by

§i={iezn: Trr() =0}.

Then |S| = pf + 1,and gr Ny = pfS — Zn. As in [8], we identify the points of

the projective plane PG (2, p/) with the elements of Zy. Then S represents a line of

PG (2, p'), and is the well-known Singer difference set in Zy; see [12] for instance.
Now set e = 2. Then by (4.1), we have

geN =—(p'S—Zy)? = —p?/ S+ (p* + p/ — Dzy.

Note that here gen = 2,7, w’(w“C(()N’E))[a] € C[Zn], ¥’ is the canoni-
cal additive character of E. In order to know how many values the Gauss periods
v (w“CéN’E)), 0 < a < N — 1, take, it suffices to compute S2 in the group ring
C[Zy]. For any a € Zy, the coefficient of [a] in 2 is equal to the size of

[iezn: e ™) =0.Trr (™) =0} =Qn(s -,

where Q = {i € Zy : TrF/L(y_i) =0land S —a = {x —a | x € S}. Since
Q is a conic in PG (2, p/) (cf. [10]) and S — a is a line of PG (2, pf), we have
|QN(S—a)| =0, 1 or2, according as S —a is passant, tangent or secant. It follows that
the Gauss periods lp(a)“C(gN‘E)), 0 < a < N —1, take three values o = p2f—|—pf— 1,

ar = pf —1,and a3 = —p?/ + p/ — 1, which form an arithmetic progression with
/67 —
common difference t = p2/. Here |E| = ¢%/ and a» = p/ — 1 = pTl. So

by Proposition 2.6 we obtain a CW(p2/ +1’f+1, p*/). We remark that the circulant
weighing matrix CW(p2/ +pl+1 p*!) obtained here is not new (cf. [14]), but the
connection with three-valued Gauss periods is new.

Note that with the same notation as above, in the special case where p = 2, the
authors of [8] already showed that the Cayley graph Cay(F,, C(()N’q)), with ¢ = 26/
and N = (23/ — 1)/(2f — 1), has three restricted eigenvalues —22/ + 2/ — 1,2 —
1,22/ 42/ —1,and {(x, y) € FyxF;lx—ye€ CéN’q)} is a relation in a three-class
association scheme, see [8, p. 1210].

@ Springer



J Algebr Comb

4.2 More examples from two-valued Gauss periods

Let pbeaprime, f > 1 and e > 1 be integers, and F = Fp_/, E = ]Fp_fe. Assume that
k|(p/ —1). Then certainly k|(p/¢ —1).Let N = (p/ —1)/kand N’ = (p/¢ — 1)/ k.

Then CéN’F) = C(gN,’E). This can be seen as follows. Let @ and y be primitive
plecl N,F
elements of E and F', respectively, such that y = o »/-1  Then Cé B (yN )y =
wfe—HN

(@ "1 ) =(w

Assume that the Gauss periods 1, = w(y“CéN’F)), 0 <a < N — 1, take exactly
two distinct values oy and ap according as a € S or not for some § C Zy. Let ¥ be
the canonical additive character of E. Then, we have

Ny =P,

/ Tr ((Treg/p (@) !
petcd = 3 g <y (T p )
recg®oh
k if TrE/p(a)“) =0,

ay if Trg/p(0%) = y?andb € S,
ay if Trg/p(0?) = yb and b € Zy\S.

That is, the Gauss periods ¥/ (w? C(()N/’E)), 0 < a < N’ — 1, take three distinct values

k, a1 and «. Furthermore, it is routine to check that CéN’F), F*\ C(()N’F), E*\F*
give a three-class association scheme.

4.3 Examples from union of 1-dimensional subspaces

Letg =1 (mod 3) and y an element of order k = 3(¢g — 1) in Fq3, andset N = q3k_—1'

Then the degree of the minimal polynomial of y over I, is equal to ordy(q). Assume

that ordy (¢) = 3. Then 1, y, y? are linearly independent over F,, and it follows that
3

V) =Ny = (1A eF Uy [ A e Fi U {A-y? | A € F%). For any

nontrivial additive character v’ of 3, we have

\ -3 if W’hgq, 1//’|qu, w’thyz are all nontrivial,
v/ () =1 =3+q if exactly one of Y'[g,, ¥'IF,y» ¥'lr, 2 is trivial,
—3+2q if exactly two of ¢'|r_, ¥/, . w’hpqyz are trivial.

Therefore the Gauss periods 1,, 0 < a < N — 1, of ]Fqs take three values o1 =
-3, a0 = —3+4¢q, oz = —3+2¢q, which form an arithmetic progression with common
difference t = g. By Lemma 2.5, we have

(g —1)?

I =
[1] 3

Abl=q—1, =1
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3
Since |/3| = 1, by Theorem 2.7, the subsets Ujey; C,-(N’q ), j =1,2,3, give a three-

class self-dual association scheme. Note that with assumptions as above, oc%N +2ay —
k = 0ifandonlyif (g, N) = (4, 7). Therefore, we obtaina CW (7, 4) in the case when
(g, N) = (4,7), and we do not obtain circulant weighing matrices in other cases.

4.4 Examples from products of subfields

Let ¢, f be two positive integers such that e/ gcd (e, f) = 3 and let ¢ = p'™© /) =
3/ Let C(()N 9 be the subgroup of Fy generated by JF;(, and ]F;f. Then

NP = (p° = D(pf = 1)/ (p 1),

- — Dt (it
where £ = gcd (e, f)and N = DI —D - Let y be a primitive element of IF,. We

compute the Gauss periods 1//(y“C(()N’q)), 0 <a <N —1, as follows.

N. 1 Te r(YTr 37, r(xy®))
W(J/ac(() q)):pﬁ_l Z Z épﬁ Pl p
xEIF;e )'GIF;f-
1
= pg 1 Z (pngrp3f/pf(xy") - 1),
xelF*,
P
where
5 )1 if Trp3f/pf(x)/a) =0,
T3 /00 OV =10 otherwise.
Define

Wo = {x € Fpe | Tr )0 (xy®) = 0},

and set s, = |W,|. Then we have

a Ny PlGa=D = (=1 plsq—pl —p°+1
vic?) = . = - :

pt—1 pt—1
Since W, is an ¥ ¢ -subspace of I e, we have s, = 1, pt, p2t, p3t = pe. Since a basis
of IF e over F pt is also a basis of F p3f over F pls and y¢ # 0, it is impossible to have

W, = Fpe. Therefore, the Gauss periods w(y“CéN’q)), 0 <a < N — 1, take exactly
three values
1— pe 1— pe e

l-p
= pf
pf—l’az P’ +

pt—1

oy = az=p/ P+ D+

pt—1
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By Lemma 2.2, it is routine to compute that

P34 p2f — p2Hf _ ptrf
L+ pl+ p

e bl =pl = p' 1Ll = 1.

Since |I3] = 1, by Theorem 2.7, the subsets | J Ci(N’q)

class association scheme.

,j =1,2,3, give a three-

ielj

4.5 Examples from index 2 Gauss sums

Let g = p/, where p is a prime and f a positive integer. Let N > 1 be a divisor of
g — 1. We now focus on the index 2 case, that is, [Z}“V : (p)] = 2, or equivalently,
ordy(p) = ¢(N)/2, where ¢ is Euler’s phi function. In this case, the Gauss sums
G4(x), where x has order N, have been evaluated (cf. [15]). In [6], the authors
used these Gauss sums to construct several new families of strongly regular graphs. In
particular, they evaluated the Gauss periods in the index 2 case. The following theorem
is a specialized version of Theorem 4.1 and Theorem 5.1 from [6].

Theorem 4.2 (i) ([6, Theorem 4.1]) Let N = p; = 3 (mod 4) be a prime with
p1 > 3, and let p be a prime such that gcd (p, N) = landordy (p) = (N—1)/2.

Let ¢ = p’, where f = (p1 — 1)/2. Then the Gauss periods I/J(y“CéN’q)),

a=0,1,..., N — 1, take at most three values
—24+p 2 b(p1—1) —2+p2cpi—prh
al = 9 az = 9
2p; 2pi
) f=h ub
- — 2 — 2
s — prepimpzhb 42)

2pi

where h is the class number of Q(\/—p1), and b and ¢ are integers determined
byb,c 0 (mod p), 4ph = b2 + pic?, and bp’=" = —2 (mod py).

(i1) ([6, Theorem5.1]) Let N = p1 p», where p1 and p> such that p1 = 1(mod 4) and
p2 = 3(mod 4). Let p be aprime suchthatord,, (p) = p1—1,0rd,, (p) = p2—1,
ordp, p, (p) = (p1 — D(p2 = 1)/2. Let g = pf, where f = (p1 — 1)(p2 —1)/2.
Then the Gauss periods w(yaCéN’Q)), a=0,1,...,N — 1, take at most five

values
e 1+ pE (=LbpP(—1+ pn)+
—1+5p 72 (b+cpip2) p 2°P p1) TPl
o) = , = ,
N N
= —1+4p7 (~LbpF (—14 p) —
—l+3p 2 (b—cpip2) pr\72% p2y—p2
a3 = . o= ,
N N
I =h
-1+ p= (p1 + 3bp (—1+P1)(—1+P2)—P2)
as = ,

N
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where h is the class number of Q(\/— p1 p2), and b and c are integers determined
byb,c £0 (mod p), 4p" = b% + p1pac?, and bp’=" =2 (mod p1 p).
From this theorem, we immediately have the following proposition.

Proposition 4.3 (i) With assumptions and notation the same as in Theorem 4.2 (i),
the Gauss periods I/I(V”C(()N’q)), a=0,1,...,N — 1, take exactly three val-
ues which form an arithmetic progression if and only if py +9 = 4p" and
+3p=M/2 = _2 (mod py).

(ii) With assumptions and notation the same as in Theorem 4.2 (ii), the Gauss peri-
ods I/I(V“C(()N’q)), a=0,1,..., N — 1, take at most three values if4p% =0

A .
(mod p1 + p2) and2pZ(p1 — p2)/(p1 + p2) =2 (mod p;p2). In particular,
they take exactly three values forming an arithmetic progression if and only if
pip2 +9 =4p" and £3p /2 =2 (mod py pa).

Proof (i) First we remark that from the explicit computations of the Gauss periods
w(y“CéN’q)) in the proof of Theorem 4.1 in [6], we know that if o1, &y and o3 are
distinct, then the Gauss periods take exactly three values, and « is taken precisely
once.

It is clear that a1, a2, @3 form an arithmetic progression if and only if b = +3c.
Since b, ¢ # 0 (mod p), we have b = +£3cif and only if ¢ € {—1, 1} and b = £3.
It follows that the Gauss periods take exactly three values in arithmetic progression if
and only if p; + 9 = 4p" and :|:3p% = —2 (mod pyp).

.. h f
(i1) Assume that 4p2 = 0 (mod p; + p2) and 2p2(p1 — p2)/(p1 + p2)
(mod p1p2). We set

1l
2o

h

h
2p2 — 4p2
po 2= pa) o 4P
P11+ p2 P11+ p2
Both b and ¢ are integers, and they satisfy 4p”" = b*> + p;pyc? and bp . 2
(mod p1 p»).Note that the above b, c are all the integer solutions to 4ph = b2—|—p1p2c2
h

. h
= _
and bp 2 =2 (mod p1p>). If b = W and ¢ = p‘:’ﬁ)z, then o1 = o and

I h

a3 = a4. On the other hand, if b = 222P21=P2) and ¢ = — 4P2_ then ¢y = g and
r1+p2 p1+p2

oz = a3. In both cases, the Gauss periods w(y“C(()N’q)), a=0,1,...,N — 1, take

at most three values a1, o3, a5 (also, from the computations in the proof of Theorem
5.11n [6], a5 occurs precisely once); in particular, these o1, @3, o5 form an arithmetic
progression if and only if p; — p» = %6 (i.e., b = £3c). Since b, ¢ % 0 (mod p),
we have b = £3cifand only if ¢ € {—1, 1} and b = £3. It follows that n this case the
Gauss periods take three values in arithmetic progression if and only if py po+9 = 4p”

and :|:3p% =2 (mod pip2). =

Example 4.4 There are only five examples satisfying the index 2 condition, and p; +
9 = 4ph and £3p/=M/2 = 2 (mod py) stated in Proposition 4.3 (i) for p; <
20000:
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(p1.p,h) = (11,5,1),(23,2,3), (43,13, 1), (67,19, 1), (163, 43, 1).

There are only two examples satisfying the index 2 condition, and p;py + 9 = 4p”
and +£3p/="/2 = 2 (mod p) py) stated in Proposition 4.3 (ii) for pj p < 20000:

(p1, p2, p, h) =(5,11,2,4), (17,11, 7, 2).

These results are obtained by a computer search.

Remark 4.5 Let g be a power of a prime p, y be a primitive element of F;,and N > 1
be a divisor of g — 1. In the semi-primitive case, i.e., the case where —1 € (p) (mod N),
it is well known that the Gauss periods I/J(y“C(()N‘q)), 0 <a < N — 1, take exactly
two values. Note that the condition —1 € (p) (mod N) does not involve the extension
degree of IF; over Z,. Therefore, for any e > 1, the Gauss periods corresponding to
the subgroup of index N of F*, also take exactly two values. One is thus led to the
following question: are there examples of (¢, N), where N|(g — 1) and N > 1, such
that the Gauss periods w(y”CéN’q)), 0 <a < N — 1, take exactly three values, and
for any e > 1, the Gauss periods corresponding to the subgroup of index N of ]er
also take exactly three values? The index 2 case with N = p; gives a positive answer
to this question. The reason is given below. Note that since Tr,,(x) = Try/,(x?) for
any x € [F,, each index set /; is invariant under the multiplication by p; in the index 2
case, it follows that each /; is a union of {0}, (p), —(p). Itis clear that this conclusion
holds, irrelevant of the extension degree of I, over Z . Therefore, in this case, if the

Gauss periods 1//()/“C6N’q)), 0 <a < N — 1, take exactly three values, then for any
e > 1, the Gauss periods corresponding to the subgroup of index N of ]er also take
exactly three values. Here, we should remark that the index 2 case sometimes gives
two-valued Gauss periods; all such possibilities are determined under the generalized
Riemann hypothesis in [13]. Except for those examples of two-valued Gauss periods
determined in [13], the index 2 case with N = p; provides a positive answer to the
question above.

4.6 Computer search

We conducted a computer search for examples of three-valued Gauss periods with the

following restrictions: p < 300, p/ < 2%°,3 < N < 1001, (p — Dk = % The
output is listed in Table 1. Note that in Tabel 1 we have removed the known examples
given in the four subsections above because otherwise the table would take too much
space. The multiplicities of the Gauss periods are given by the exponents; for example,
in the first row of Table 1, —7!0 means that the Gauss periods 1,4, 0 < a < 18, take
the value —7 ten times. The AP column indicates whether the Gauss periods are in
arithmetic progression or not, with “o” meaning YES and “x” meaning No. The AS
column indicates whether the index sets I, j = 1, 2, 3, yield a three-class association
scheme or not.
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f_
Table 1 Computer search results for p < 300, pf <256 < N < 1001, N| pp711 except for the known
examples given in Sects. 4.1, 4.2, 4.3, 4.4 and 4.5

p f N Gauss periods AP AS p f N Gauss periods AP AS
11 3 19 —71046 153 o X 53 3 409 —7°%8 46", 993 o X
7 7 29 —414,-7121,2727 o o 139 3 499 —39%78 100102, 2391 o x
29 3 67 —13%,168,45° o x 137 3 511 —=37%1,100'02,237'8 o x
37 3 67 -—21%,16'8,5310 o x 109 3 571 —21%71,88% 19710 x
23 3 79 -78,16'%,393 o x 67 3 651 —7°%0 6062 1273 ° x
2 11 89 —9ll 1% 722 o o 11 6 703 —21%1100'02 22110 o X
5 6 93 —770,18%0 433 o x 149 3 721 —31%86 118120 26715 o x
37 3 201 7' 30%2 673 o x 116 777 —19%! 102133433 x  «x
67 3 217 =219 46% 11310 o x 5 9 829 —19712106'% 231° o x
2 18 219 —19'%3 45%7 109° o x 107 3 889 —13787,94% 2016 ° x
61 3 291 —132%5 489 109° o x 79 3 903 786 7274 1513 ° x
79 3 301 —21231 5800 13710 o X 17 6 921 —91676, 198200 48745 o X
83 3 367 —19%92,64% 147° o X 3 12 949 7870 7476 1553 o x
11 6 399 —37295 8486 2058 o x 113 3 991 —13%3100'2,213° o x

Furthermore, Corollary 3.2 makes it possible to search for (p, f, N) such that the
Gauss periods corresponding to the subgroup of index N of F*, ¢ = p/, take exactly
three values.

We will run the following algorithm to search for triples (p, f, N) satisfying the
conditions in Corollary 3.2: (i) f (vs —ur) + 1 = 0 (mod N), (ii) (N — 1)g + 2 (vs —
ur)? = (u*r 4+ v2s)t*N, and (iii)u =v=landr = lors = 1.Putg = s —r and
h =r + s. In this case, we have h = |g| + 2. The algorithm goes as follows:

(1) For any positive integers N and 7 with 1 < h < N, compute (Nh — (h —
2)2)/(N — 1) in order to know ¢/t

(2) If this value is a prime power, say p”, then compute the order of p modulo N,
call it f/, and the largest positive integer pG, dividing G »l () for all nontrivial
characters x of exponent N of F’; -

(3) Check whether f' — 26’ divides w. Setd = w/(f' —26") and r = p? = p4?'.

Then, check whether (h —2)t +1=0(mod N) or —(h —2)t +1 = 0 (mod N)
holds.

We run the above algorithm for all N < 5000 using a computer. Note that p is
determined as the unique prime factor of (N2 — (h — 2)2)/(N — 1) in steps (1) and
(2), and f is determined as f = df’ in the steps (2) and (3). We find three quadruples
(for convenience we give the value of 6 also) satisfying the conditions of Corollary 3.2:

(p, f,N,0) = (7,7,29,3), (13, 13, 53, 6), (2, 36, 247, 15). 4.3)
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Table 2 Known examples of three-valued Gauss periods

parameters AP AS CwW ref
: 3f_
— — ,0f _pl-l
p=2,q9=p>,N ST o o o Sect. 4.1
poddq:péf N:ﬁ o X o Sect. 4.1
£] bl Pf—l . .
3
_ 3 _pl-l _
g=p3 N= P ,Ord3(pf_l)(pf)—3 o o x Sect. 4.3
fe_ : I i
q=pfe,$lpffl, (ppf%)llvl%, * o x Sect. 4.2
wn y
Cay(Fg.Cy '"7' )isanSRG
g =plmeS) = p3f ¢/gcd (e, f) =3, x o x Sect. 4.4
(N.q) _ *
Co V' =Fpe T,
N =pi.[Z. (p)] =2, f =e(N — 1)/2forany e € N * o x Sect. 4.5
N =p1p2, [Zy ()] =2, f =¢(N)/2 * o x Sect. 4.5

By Theorem 2.7, we obtain three new self-dual three-class association schemes from
the three quadruples above. These self-dual three-class association schemes are dif-
ferent from the examples obtained in Sects. 4.3 and 4.5.

As a counterpart of Conjecture 4.4 in [13], we have the following conjecture.

Conjecture 4.6 Let g be a power of a prime p, y be a primitive element of F, and

N > 1 be a divisor of ¢ — 1. The Gauss periods w(y”C(()N’q)), a=0,1,...,N—1,
take exactly three rational values in arithmetic progression, and one of the three
values occurs exactly once, if and only if the Gauss periods arise from the examples
in Sect. 4.3, or from Example 4.4, or from one of the sporadic cases listed in (4.3).

5 Concluding remarks

In this paper, we study the problem of when the Gauss periods take exactly three
rational values. Also, we give constructions of related combinatorial structures such
as circulant weighing matrices and association schemes.

We have found five infinite classes of three-valued Gauss periods listed in Table 2.
(The meaning of “AP,” “AS” are the same as in Table 1. Here “CW” indicates whether
I — Iz gives a circulant weighing matrix or not. The symbols “«+” means that the class
includes some examples satisfying the condition.) Furthermore, we obtained several
sporadic examples of three-valued Gauss periods as given in Sect. 4.6.

We conclude the paper by listing some problems for future work.
e Classify all triples (p, f, N) which lead to three-valued Gauss periods. A less

challenging task is to find other infinite classes of three-valued Gauss periods not
listed in Table 2.
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e Determine when three-valued Gauss periods take three values in arithmetic pro-

gression. (Then, by Proposition 2.6 one will be able to characterize when I} — I3
forms a circulant weighing matrix.)

e Determine when the index sets 1, />, I3 yield a three-class association scheme if

the Gauss periods take exactly three values.

Acknowledgments The authors would like to thank both reviewers for their comments and constructive
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