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Abstract Gauss periods taking exactly two values are closely related to two-weight
irreducible cyclic codes and strongly regular Cayley graphs. They have been exten-
sively studied in the work of Schmidt andWhite and others. In this paper, we consider
the questionofwhenGauss periods take exactly three rational values.Weobtain numer-
ical necessary conditions for Gauss periods to take exactly three rational values. We
show that in certain cases, the necessary conditions obtained are also sufficient. We
give numerous examples where the Gauss periods take exactly three values. Further-
more, we discuss connections between three-valued Gauss periods and combinatorial
structures such as circulant weighing matrices and three-class association schemes.
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1 Introduction

Let Fq be the finite field of order q, where q is a power of a prime p. Let ξp be a
complex primitive pth root of unity and Trq/p be the trace from Fq to Zp := Z/pZ.
Define

ψ : Fq → C
∗, ψ(x) = ξ

Trq/p(x)
p ,

which is easily seen to be a nontrivial character of (Fq ,+), the additive group of Fq .
Let χ : F∗

q → C
∗ be a multiplicative character of Fq . Define the Gauss sum by

Gq(χ) =
∑

a∈F∗
q

χ(a)ψ(a).

Gauss sums are ubiquitous in number theory and in many areas of combinatorics.
Closely related to Gauss sums are the Gauss periods which we define below. As
before, q is a power of a prime p. Let N > 1 be an integer such that N |(q − 1) and

γ a primitive element of Fq . Then the cosets C
(N ,Fq )
a = γ a〈γ N 〉, 0 ≤ a ≤ N − 1, of

〈γ N 〉 in F∗
q are called the cyclotomic classes of order N of Fq . We often write C (N ,q)

a

or simply Ca for C
(N ,Fq )
a , if there is no confusion. The corresponding Gauss periods

are defined by

ηa =
∑

x∈C(N ,q)
a

ψ(x), 0 ≤ a ≤ N − 1.

Even though Gauss sums and Gauss periods were first introduced by Gauss to study
cyclotomy (“circle-splitting”), they have played an important role in the investigations
of many combinatorial objects, such as difference sets, irreducible cyclic codes, and
strongly regular Cayley graphs, cf. [4,6,7,9,11,13]. In particular, we note that Gauss
sums were used extensively in the work of Baumert and McEliece ([1,11]) on weights
of irreducible cyclic codes. The current paper can be thought as a natural continuation
of [13] in which two-weight irreducible cyclic codes were studied by using Gauss
sums. The Gauss periods involved in [13] take two distinct rational values as they
correspond to the (nonzero) weights of two-weight irreducible cyclic codes. In this
paper, we consider Gauss periods which take three distinct rational values, and use
them to construct various combinatorial objects such as circulant weighing matrices
and association schemes.

A circulant weighing matrix of order N is a square matrix M of the form
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M =

⎛

⎜⎜⎝

a0 a1 a2 · · · aN−1
aN−1 a0 a1 · · · aN−2
· · · · · · · · · · · · · · ·
a1 a2 a3 · · · a0

⎞

⎟⎟⎠ (1.1)

with ai ∈ {−1, 0, 1} for all i and M M� = w I , where w is a positive integer and I
is the identity matrix of order N . The integer w is called the weight of the weighing
matrix. A circulant weighing matrix of order N and weight w will be denoted by
CW(N , w).

Let G be an abelian group of order N . To facilitate the study of circulant weighing
matrices, we use the group ring language. The elements of C[G] are

A =
∑

g∈G

agg,

with ag ∈ C; for any integer t , we write

A(t) :=
∑

g∈G

aggt .

For a subset A of G, it is customary to identify A with the corresponding group ring
element

∑
g∈A g, which will again be denoted by A. We will be using the Fourier

inversion formula quite frequently.

Lemma 1.1 (Inversion formula) Let G be an abelian group of order N and A =∑
g∈G agg ∈ C[G]. Then

ag = 1

N

∑

χ∈Ĝ

χ(A)χ(g−1)

for all g ∈ G, where Ĝ is the group of complex characters of G. Hence if A, B ∈ C[G]
satisfy χ(A) = χ(B) for all χ ∈ Ĝ, then A = B.

Now set G = Z N , a cyclic group of order N with a generator γ . That is, Z N =
{1, γ , . . . , γ N−1}. A circulant matrix M in (1.1) satisfies M M� = w I if and only
if DD(−1) = w, where D is the group ring element in C[Z N ] defined by D =∑N−1

i=0 aiγ
i . Since ai = 0,±1, we can write D = A − B, where A = {γ i | 0 ≤ i ≤

N − 1, ai = 1} and B = {γ i | 0 ≤ i ≤ N − 1, ai = −1}. Thus, a circulant weighing
matrix of order N and weight w is equivalent to a group ring element A − B, where
A and B are disjoint subsets of Z N , such that

(A − B)(A − B)(−1) = w · 1 in C[Z N ].

Next we give a short introduction to association schemes. Let X be a finite set.
A (symmetric) association scheme with d classes on X is a partition of X × X into
subsets R0, R1, . . . , Rd (called associate classes or relations) such that
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(1) R0 = {(x, x) | x ∈ X} (the diagonal relation),
(2) Ri is symmetric for i = 1, 2, . . . , d,
(3) for all i, j, k in {0, 1, 2, . . . , d} there is an integer pk

i j such that, for all (x, y) ∈ Rk ,

|{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ R j }| = pk
i j .

We denote such an association scheme by (X, {Ri }0≤i≤d). For i ∈ {0, 1, . . . , d}, let
Ai be the adjacency matrix of the relation Ri , that is, the rows and columns of Ai are
both indexed by X and

(Ai )xy :=
{
1 if (x, y) ∈ Ri ,

0 if (x, y) /∈ Ri .

The matrices Ai are symmetric (0, 1)-matrices and

A0 = I, A0 + A1 + · · · + Ad = J,

where J is the all-1 matrix of size |X | by |X |.
By the definition of an association scheme, we have Ai A j = ∑d

k=0 pk
i j Ak for

any i, j ∈ {0, 1, . . . , d}, so A0, A1, . . . , Ad form a basis of the commutative algebra
generated by A0, A1, . . . , Ad over the reals, which is called the Bose–Mesner algebra
of the association scheme. Moreover, this algebra has a unique basis E0, E1, . . . , Ed

of primitive idempotents; one of the primitive idempotents is 1
|X | J . We may assume

that E0 = 1
|X | J . Let mi = rank Ei . Then

m0 = 1, m0 + m1 + · · · + md = |X |.

Thenumbersm0, m1, . . . , md are called themultiplicitiesof the scheme. Sincewehave
two bases of the Bose–Mesner algebra, we consider the transition matrices between
them. Define P = (

p j (i)
)
0≤i, j≤d (the first eigenmatrix or character table) and Q =(

q j (i)
)
0≤i, j≤d (the second eigenmatrix) as the (d + 1) × (d + 1) matrices with rows

and columns indexed by 0, 1, 2, . . . , d such that

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P,

and

|X |(E0, E1, . . . , Ed) = (A0, A1, . . . , Ad)Q.

Let k j = p j (0), 0 ≤ j ≤ d. The k j ’s are called valencies of the scheme.
We call an association scheme (X, {Ri }d

i=0), where X is an additively written finite
abelian group, a translation association scheme or a Schur ring if there is a partition
D0 = {0}, D1, . . . , Dd of X such that for each i = 0, 1, . . . , d,

Ri = {(x, x + y)| x ∈ X, y ∈ Di }. (1.2)

Assume that (X, {Ri }0≤i≤d) is a translation association scheme with relations defined
in (1.2). There is an equivalence relation defined on the character group X̂ of X as
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follows: χ ∼ χ ′ if and only if χ(Di ) = χ ′(Di ) for all 0 ≤ i ≤ d. Here χ(D) =∑
g∈D χ(g), for any χ ∈ X̂ and D ⊆ X . Denote by D′

0, D′
1, . . . , D′

d the equivalence
classes, with D′

0 consisting of only the principal character. Define

R′
i = {(χ, χχ ′)| χ ∈ X̂ , χ ′ ∈ D′

i }.

Then, (X̂ , {R′
i }d

i=0) also forms a translation association scheme, called the dual of
(X, {Ri }0≤i≤d). The first eigenmatrix of the dual scheme is equal to the second eigen-
matrix of the original scheme. We refer the reader to [3, p. 68] for more details. A
translation scheme is called self-dual if it is isomorphic to its dual.

As an example of translation association schemes, we mention the cyclotomic
scheme, which we define below. Let q be a prime power, N > 1 be a divisor of
q − 1. Let Ca, 0 ≤ a ≤ N − 1, be the cyclotomic classes of order N of Fq . Assume
that −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq}, and for a ∈ {1, 2, . . . , N }, define
Ra = {(x, y) | x, y ∈ Fq , x − y ∈ Ca−1}. Then (Fq , {Ra}0≤a≤N ) is an association
scheme. This is the so-called cyclotomic association scheme of class N over Fq . The
first eigenmatrix P of the cyclotomic scheme of class N is given by the following
(N + 1) by (N + 1) matrix (with the rows of P arranged in a certain way)

P =

⎛

⎜⎜⎜⎜⎜⎝

1 k k k · · · k
1 ηN−1 η0 η1 · · · ηN−2

1 ηN−2 ηN−1 η0 · · · ηN−3
...

1 η0 η1 η2 · · · ηN−1

⎞

⎟⎟⎟⎟⎟⎠
(1.3)

where k = q−1
N and ηa, 0 ≤ a ≤ N − 1, are the Gauss periods of order N defined

above. For future use, the submatrix P0 = (p j (i))1≤i, j≤N of P will be called the
principal part of P . Note that the cyclotomic scheme (Fq , {Ra}0≤a≤N ) is self-dual.

The rest of the paper is organized as follows. In Sect. 2, we obtain necessary
conditions forGauss periods to take exactly three rational values. Connections between
three-valued Gauss sums and combinatorial structures such as circulant weighing
matrices and three-class association schemes are also developed. In Sect. 3, we show
that in certain cases, the necessary conditions we obtained in Sect. 2 are also sufficient.
Finally in Sect. 4, we provide five infinite classes of examples where the Gauss periods
take exactly three values. Some sporadic examples are also obtained by computer
search. From these examples, we obtain circulant weighing matrices and three-class
self-dual association schemes.

2 Three-valued Gauss periods: necessary conditions

Let q = p f be a prime power and N > 2 be a positive integer such that N | (q −1). Set
k = (q −1)/N . Let Fq be the finite field of order q, γ a fixed primitive element of Fq ,
andC0 = 〈γ N 〉. Suppose that the Gauss periods ηa = ψ(γ aC0), a = 0, 1, . . . , N −1,
take exactly three distinct rational values α1, α2, and α3. We will be working with the
quotient group Z N := F

∗
q/C0, a cyclic group of order N with a generator γ = γ C0.

For 1 ≤ i ≤ 3, define subsets Ii of Z N by Ii = {γ a ∈ Z N | ηa = αi }.
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Lemma 2.1 With the above assumptions and notation, we have

(α1 I1 + α2 I2 + α3 I3)(α1 I (−1)
1 + α2 I (−1)

2 + α3 I (−1)
3 ) = q · 1 − q − 1

N
Z N , (2.1)

in the group ring Q[Z N ].
Proof As above, Z N is the (cyclic) quotient group F∗

q/C0 with a generator γ . Let χ be
a nontrivial multiplicative character of Fq whose restriction to C0 is trivial, so that we
may view χ as a character of the quotient group F

∗
q/C0. Such a character of F∗

q/C0
will again be denoted by χ and we have χ(γ ) = χ(γ ). Note that every nontrivial
character of Z N := F

∗
q/C0 can be obtained in this manner. We have

Gq(χ) =
N−1∑

i=0

∑

x∈Ci

χ(x)ψ(x)

= η0 + χ(γ )η1 + · · · + χ(γ N−1)ηN−1

= α1χ(I1) + α2χ(I2) + α3χ(I3).

Since αi , 1 ≤ i ≤ 3, are rational integers, we have αi = αi for 1 ≤ i ≤ 3. It follows
that

(
3∑

i=1

αiχ(Ii )

) (
3∑

i=1

αiχ(Ii )

)
= Gq(χ)Gq(χ) = q.

If χ is the trivial multiplicative character of Fq , we have α1χ(I1) + α2χ(I2) +
α3χ(I3) = Gq(χ) = −1, and

(
3∑

i=1

αiχ(Ii )

)(
3∑

i=1

αiχ(Ii )

)
= Gq(χ)Gq(χ) = 1.

The claimed group ring equation now follows from the inversion formula stated in
Lemma 1.1. �


Using Lemma 2.1, we can express the sizes of Ii ’s in terms of α1, α2, α3.

Lemma 2.2 Suppose that ηa, 0 ≤ a ≤ N − 1, take three distinct rational values
α1, α2, and α3. With notation as above and k = q−1

N , we have

|I1| = −α2α3(q − 1) + k(q − k + α2 + α3)

k(α1 − α2)(α3 − α1)
,

|I2| = −α1α3(q − 1) + k(q − k + α1 + α3)

k(α1 − α2)(α2 − α3)
,

|I3| = −α1α2(q − 1) + k(q − k + α1 + α2)

k(α2 − α3)(α3 − α1)
.
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Proof First of all, it is clear that |I1|+|I2|+|I3| = N . Next we have α1|I1|+α2|I2|+
α3|I3| = ∑N−1

i=0 ηi = −1. Finally, by comparing the coefficient of the identity element
in the two sides of the group ring equation (2.1), we get α2

1 |I1| + α2
2 |I2| + α2

3 |I3| =
q − k. These three equations now uniquely determine |I1|, |I2|, and |I3|. The proof is
complete. �


Next we derive necessary conditions when the Gauss periods take exactly three
values.

Proposition 2.3 Let q = p f be a prime power and N > 2 be a positive integer such
that N | (q −1). Assume that the Gauss periods ηa, 0 ≤ a ≤ N −1, take exactly three
rational values α1, α2, α3, say, α1 −α2 = −tu < 0 and α3 −α2 = tv > 0 with t > 0
and gcd (u, v) = 1. Then t is a power of p, and there exist two positive integers r, s,
0 < r, s < N, such that

(i) t (−ur + vs) ≡ −1 (mod N );
(ii) (N − 1)q + t2(−ur + vs)2 = Nt2(u2r + v2s).

In particular, t is the largest power of p dividing Gq(χ) for all nontrivial multiplicative
character χ of Fq of order dividing N.

Proof As before, let Z N = F
∗
q/C0 = 〈γ 〉. So Ẑ N = C⊥

0 := {χ | χ ∈ F̂
∗
q , χ |C0 = 1}.

We define a function σ : Z N → C by σ(γ a) = ηa − α2. In order to simplify
notation, we will sometimes write σ(γ a) simply as σ(a). The Fourier transform of σ

is σ̂ : Ẑ N → C, which is defined by

σ̂ (χ) = 1√
N

N−1∑

a=0

σ(γ a)χ(γ a).

Computing the Fourier transform of σ , we have

σ̂ (χ) =
{

1√
N

Gq(χ) if χ is a nontrivial character of Z N ,

− 1√
N

− α2
√

N if χ is trivial.

By assumption ηa , 0 ≤ a ≤ N − 1, take exactly three values, we see that σ(a) ∈
{0,−tu, tv}. Note that if χ ∈ Ẑ N is nontrivial, then

Gq(χ) =
N−1∑

a=0

ηaχ(γ a) =
N−1∑

a=0

(ηa − α2)χ(γ a) = t (−uχ(I1) + vχ(I3)),

where I1 and I3 are defined as before. From the above equation, we see that t | Gq(χ)

for all nontrivial χ ∈ C⊥
0 . It follows that t = pθ for some integer θ .

Let (C⊥
0 )∗ := C⊥

0 \{χ0} with χ0 the trivial character. Since for any a, 0 ≤ a ≤
N − 1,

ηa = 1

N

∑

χ∈C⊥
0

Gq(χ)χ−1(γ a),
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we have

σ(γ a) = 1

N

∑

χ∈(C⊥
0 )∗

Gq(χ)(χ−1(γ a) − χ−1(γ e)), (2.2)

where χ−1 is the inverse of χ ∈ C⊥
0 and α2 is assumed to be equal to ηe for some e.

Let t ′ be the largest power of p dividing all Gq(χ), χ ∈ (C⊥
0 )∗. Then (2.2) implies

that t = t ′ since gcd (N , t ′) = 1.
Moreover, by the definition of σ̂ we have

σ̂ (χ0) = 1√
N

N−1∑

a=0

σ(γ a) = t (−ur + vs)√
N

,

where r = |I1|, s = |I3|, and 0 < r, s < N . Hence − 1√
N

− N√
N

α2 = t (−ur+vs)√
N

. It

follows that t (−ur + vs) ≡ −1 (mod N ).
It is clear from the definition of σ that

∑N−1
a=0 σ(a)σ (a) = t2(u2r + v2s). On the

other hand, we have

∑

χ∈C⊥
0

σ̂ (χ )̂σ (χ) = 1

N

∑

χ∈(C⊥
0 )∗

Gq(χ)Gq(χ) + t2(−ur + vs)2

N

= 1

N
((N − 1)q + t2(−ur + vs)2).

It now follows from Parseval’s identity that

(N − 1)q + t2(−ur + vs)2 = Nt2(u2r + v2s).

The proof is now complete. �

Remark 2.4 (1) As seen from the proof above, t is the largest power of p dividing all

Gq(χ), χ ∈ (C⊥
0 )∗. By the Stickelberger theorem on the prime ideal factorization

of Gauss sums, we have t = pθ = pdθ ′
with θ ′ = 1

p−1min{sp( jk) | 1 ≤ j ≤
N −1} and d = f/ f ′, where f ′ is the order of p modulo N and sp(·) is the p-adic
digit sum function.

(2) In Sect. 4, wewill show that the two simple necessary conditions in Proposition 2.3
are sometimes also sufficient.

2.1 Circulant weighing matrices

Let q = p f be a prime power, γ be a primitive element of Fq , and N > 1 be a
positive integer such that N | q−1

p−1 . In [13], it was shown that if the Gauss periods
ηa = ψ(γ aC0), 0 ≤ a ≤ N − 1, take exactly two values α1 and α2, then each of
the index sets Ii = {a ∈ ZN | ηa = αi }, 1 ≤ i ≤ 2, forms a difference set in ZN ,
which is a subdifference set of the Singer difference set. It is natural to ask: if the
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Gauss periods take exactly three values, what combinatorial structures can we obtain
from the index sets I1, I2 and I3? In this subsection, we will see that under certain
conditions, three-valued Gauss periods lead to circulant weighing matrices.

Lemma 2.5 Let q = p f be a prime power and N > 2 be a positive integer such that
N | (q − 1). Assume that the Gauss periods ηa, 0 ≤ a ≤ N − 1, take exactly three
rational values α1, α2, α3 which form an arithmetic progression, say, α1−α2 = −t <

0 and α3 − α2 = t > 0. Then

|I1| = N (α2
2 + α2t + k) + 2α2 − k + t + 1

2t2
,

|I3| = N (α2
2 − α2t + k) + 2α2 − k − t + 1

2t2
,

|I2| = N (t2 − α2
2 − k) − 1 − 2α2 + k

t2
, |I1| − |I3| = α2N + 1

t
.

Moreover, we have

(I1 − I3)(I1 − I3)
(−1) = q

t2
· 1 + α2

2 N + 2α2 − k

t2
Z N (2.3)

in Q[Z N ]. In particular, t must be a power of p.

Proof The fact that t is a power of p follows from Proposition 2.3. The sizes of I1, I2,
and I3 can be obtained from Lemma 2.2 and the assumptions that α1 = α2 − t and
α3 = α2 + t . Finally by Lemma 2.2 and the assumptions that α1 = α2 − t and
α3 = α2 + t , we have

(α2Z N − t (I1 − I3))(α2Z N − t (I1 − I3))
(−1) = q · 1 − q − 1

N
Z N ,

from which (2.3) follows. This completes the proof. �

We further consider the question of when I1 − I3 generates a circulant weighing

matrix.

Proposition 2.6 Let q = p f be a prime power and N > 2 be a positive integer
such that N | (q − 1). Assume that the Gauss periods ηa, 0 ≤ a ≤ N − 1, take
exactly three rational values α1, α2, α3 which form an arithmetic progression, say,
α1 −α2 = −t < 0 and α3 −α2 = t > 0. Then I1 − I3 generates a circulant weighing
matrix CW(N ,

q
t2

) if and only if α2 = (
√

q − 1)/N and q is a square.

Proof Let q be a square and α2 = (
√

q − 1)/N . Then α2
2 N + 2α2 − k = 0; in this

case (2.3) becomes

(I1 − I3)(I1 − I3)
(−1) = q

t2
· 1,

that is, I1 − I3 generates a circulant weighing matrix of order q and weight q
t2
.
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Conversely, if I1 − I3 generates a circulant weighing matrix CW(N ,
q
t2

), then

α2
2 N + 2α2 − k = 0. It follows that α2 =

√
q−1
N or α2 = − 1+√

q
N . In the latter

case,
√

q ≡ −1 (mod N ), from which we know that the Gauss periods take only two

values [13]. Therefore, we must have α2 =
√

q−1
N . Since α2 is rational, we see that q

is a square. �


2.2 Related association schemes

As we remarked in Sect. 1, when the Gauss periods ηa , 0 ≤ a ≤ N − 1, take exactly
two distinct values, and −1 ∈ C0, then we naturally obtain a strongly regular Cayley
graphs defined on Fq with connection set C0 (which is denoted by Cay(Fq , C0)).
Strongly regular graphs are the same objects as two-class association schemes. We
will see in this section that if the Gauss periods take exactly three values, under certain
conditions, we obtain three-class self-dual association schemes. Before stating our
main theorem, we give some remarks on translation schemes.

Let G = {g1, . . . , gv} be a multiplicative abelian group of order v, with char-
acter group Ĝ. Let ρ : G → GLv(C) be the regular representation of G, namely
(ρ(g))(h1,h2) = 1 if h2 = h1g, and = 0 otherwise. Also, for a character χ ∈ Ĝ,
let vχ := 1√

v
(χ(g1), . . . , χ(gv)) and Eχ := v�

χ · vχ . Then the v�
χ are the common

eigenvectors of ρ(g), g ∈ G, since ρ(g)v�
χ = χ(g)v�

χ . The Eχ ’s are the primitive
idempotents of the algebra A := 〈ρ(g) : g ∈ G〉 ∼= C[G], as can be easily checked
by using the orthogonality relations of characters. Moreover, by using the fact that(
Eχ

)
(g,h)

= 1
v
χ(gh−1), we have

(vEχ ) ◦ (vEχ ′) = (vEχχ ′). (2.4)

Now assume that D0, D1, . . . , Dd form a partition of G which yields a translation
scheme, and its dual scheme is given by the following partition of Ĝ: D′

0, D′
1, . . . , D′

d .
Write Ai = ρ(Di ), 0 ≤ i ≤ d, and let E0, E1, . . . , Ed be the primitive idempotents
of the Bose–Mesner algebra A := 〈A0, A1, . . . , Ad〉 with respect to the matrix mul-
tiplication. We have Ei = ∑

χ∈D′
i

Eχ with respect to a proper ordering of the Ei ’s.

Similarly, if we use ρ′ for the regular representation of Ĝ, and write A′
i = ρ′(D′

i ),
then A′

0, . . . , A′
d span Â, the Bose–Mesner algebra of the dual scheme.

Let � be the linear map from Â to A that maps A′
i to vEi , 0 ≤ i ≤ d. It follows

from (2.4) that � is an algebra isomorphism from (Â,+, ·) to (A,+, ◦). An easy
corollary is that, � maps the idempotents of (Â,+, ·) to those of (A,+, ◦), namely
the Ai ’s.

Theorem 2.7 Let q = p f be a prime power and N > 2 be a positive integer such
that N | (q −1). Assume that −1 ∈ C0 and the Gauss periods ηa, 0 ≤ a ≤ N −1, take
exactly three rational values α1, α2, α3, say, α1−α2 = −tu < 0 and α3−α2 = tv > 0
with t > 0. Let

R0 = {0}, R1 =
⋃

i∈I1

Ci , R2 =
⋃

i∈I2

Ci , R3 =
⋃

i∈I3

Ci ,
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where Ii = {a ∈ ZN | ηa = αi } for i = 1, 2, 3. If |I1| = 1 or |I3| = 1, then
(Fq , {Ri }3i=0) is a self-dual three-class association scheme. (Here for 0 ≤ i ≤ 3,
(x, y) ∈ Ri if and only if x − y ∈ Ri .)

Proof Let A0, A1, . . . , AN and E0, E1, . . . , EN be the first and the second standard
bases of the Bose–Mesner algebra A of the cyclotomic scheme of class N of Fq .
We may assume that the cyclic permutation σ = (1, 2, . . . , N ) is an algebraic auto-
morphism of the association scheme; namely, the linear map that maps Ai �→ Aσ(i),
0 ≤ i ≤ d, is an automorphism of the Bose–Mesner algebra with respect to both
the matrix multiplication and the Schur product. Notice that A consists of symmetric
matrices.

In what follows we use the notation ES = ∑
s∈S Es , AS = ∑

s∈S As for any S ⊆
{1, 2, . . . , N }. Let P = (p j (i)) and Q = (q j (i)) be the first and second eigenmatrix
of the cyclotomic scheme, respectively. With a proper ordering of the Ei ’s, we have
P = Q, and the principal part of P is symmetric. The principal part of P has only
three distinct rational entries, namely α1, α2, α3.

Since the Gauss periods have three values from {α1, α2, α3}, we have

A1 = k E0 + α1EL1 + α2EL2 + α3EL3 ,

where the Li ’s form a partition of {1, 2, . . . , N } (and they come from the Ii ’s in the
statement of the theorem). Since the cyclotomic scheme is self-dual, by the algebra
isomorphism � described right before the statement of this theorem, we have

E1 = q−1(k A0 + α1AM1 + α2AM2 + α3AM3),

where the Mi ’s form a partition of {1, 2, . . . , N }, and |Mi | = |Li |, for all i = 1, 2, 3.
Assume now that |L1| = 1, i.e., L1 = {�} for some � ∈ {1, 2, . . . , N }. We have

α1 = p1(�). Consider the vector space B spanned by A0, A1, E0, E�. Noting that
α2 �= α3, it follows from

A0 = E0 + E� + EL2 + EL3 ,

A1 = k E0 + α1E� + α2EL2 + α3EL3 ,

that B = 〈E0, E�, EL2 , EL3〉. In particular, B is closed with respect to the matrix
multiplication.

Since σ is an algebraic automorphism of A, we have E� = q−1(k A0 + α1AM ′
1
+

α2AM ′
2
+ α3AM ′

3
), where M ′

i = σ�−1(Mi ). It follows from |M ′
i | = |Mi | = |Li | that

M ′
1 = {m} for some m ∈ {1, 2, . . . , N }. So, E� = q−1(k A0 + α1Am + α2AM ′

2
+

α3AM ′
3
). On the other hand, we have

q E� ◦ A1 = q�(1)A1 = α1A1,

It follows that m = 1. Together with E0 = q−1(A0 + A1 + AM ′
2
+ AM ′

3
), we see that

B = 〈A0, A1, AM ′
2
, AM ′

3
〉. In particular, B is closed with respect to the Schur product.
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Since A0, E0 ∈ B andB is symmetric, we conclude that (Fq , {Ri }3i=0) is a self-dual
association scheme with B as its Bose–Mesner algebra. �

Remark 2.8 We comment that the condition |I1| = 1 (or |I3| = 1) in Theorem 2.7
is needed. Below is an example in which the Gauss periods take three values, but the
partition of ZN by I1, I2 and I3 does not yield a three-class association scheme. Let
q = 113, N = 19, I1 = {0, 2, 3, 4, 5, 6, 9, 14, 16, 17}, I2 = {8, 10, 12, 13, 15, 18},
and I3 = {1, 7, 11}. In this case, ψ(γ aC0), a = 0, 1, . . . , N − 1, take the values
−7, 4, and 15 according as a ∈ Ii , 1 ≤ i ≤ 3, but the partition I1, I2, I3 of ZN does
not yield a three-class association scheme.

3 Sufficient conditions for Gauss periods to take exactly three values

In this section, we consider the question when the necessary conditions obtained in
Proposition 2.3 are also sufficient. We pay special attention to the case where either
u = 1 or v = 1. Here we are using the notation of Proposition 2.3. (Many examples
given in Sect. 4 fall into this case.) Furthermore, we show that the partition of ZN by
I1, I2, and I3 yields a three-class association scheme if u = |I3| = 1 or v = |I1| = 1.

3.1 Sufficient conditions for Gauss periods to take three values

In this subsection, we give sufficient conditions for Gauss periods to take exactly three
distinct values. First, we give a general sufficient condition. Below, we useN to denote
the set of positive integers.

Proposition 3.1 Let q = p f be a prime power, N > 2 be an integer such that
N | (q − 1), and C0 = 〈γ N 〉, where γ is a fixed primitive element of Fq . Assume that
there are four positive integers u, v, r, s such that

(i) t (−ur + vs) ≡ −1 (mod N );
(ii) (N − 1)q + t2(−ur + vs)2 = Nt2(u2r + v2s),

where t is the largest power of p dividing all Gq(χ), χ ∈ (C⊥
0 )∗ = (C0)

⊥\{χ0}. If
all nonnegative solutions (tx )x∈Z\{0} to the following system of equations

{∑
x∈N x(x − 1)tx + ∑

x∈N x(x + 1)t−x = u(u + 1)r + v(v − 1)s∑
x∈N x(x + 1)tx + ∑

x∈N x(x − 1)t−x = u(u − 1)r + v(v + 1)s

satisfy tx �= 0 if x = i1 or i2, tx = 0 for all x �= i1, i2, and ti1 + ti2 < N, where i1, i2
are two distinct integers, then the Gauss periods ηa = ψ(γ aC0), 0 ≤ a ≤ N − 1,
take exactly three distinct values.

Proof Let y = −t (−ur+vs)−1
N . Define a map τ : ZN → C by

τ(a) = ψ(γ aC0) − y

t
.
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Since

ψ(γ aC0) + 1

N
= 1

N

∑

χ∈(C⊥
0 )∗

Gq(χ)χ−1(γ a),

by t | Gq(χ) and assumption (i), we see that τ(a) ∈ Z, that is, τ is integer valued.
Computing the Fourier transform of τ , we have

τ̂ (χ) = 1√
N

∑

a∈ZN

τ(a)χ(γ a) =
{

1
t
√

N
Gq(χ) if χ is nontrivial,

−ur+vs√
N

if χ is trivial.

It follows from Parseval’s identity that

∑

a∈ZN

τ(a)2 =
∑

χ∈C⊥
0

τ̂ (χ )̂τ (χ) = (N − 1)
q

Nt2
+ (−ur + vs)2

N
.

By assumption (ii), we have

∑

a∈ZN

τ(a)2 = u2r + v2s. (3.1)

On the other hand, we have

∑

a∈ZN

τ(a) = −ur + vs. (3.2)

Equations (3.1) and (3.2) can be rewritten as

∑

x∈N
x2tx +

∑

x∈N
x2t−x = u2r + v2s and

∑

x∈N
xtx −

∑

x∈N
xt−x = −ur + vs,

where tx = |{a ∈ ZN | τ(a) = x}|, x ∈ N. It follows that

∑

x∈N
x(x − 1)tx +

∑

x∈N
x(x + 1)t−x = u(u + 1)r + v(v − 1)s (3.3)

and ∑

x∈N
x(x + 1)tx +

∑

x∈N
x(x − 1)t−x = u(u − 1)r + v(v + 1)s. (3.4)

By assumption, the nonnegative solutions (tx )x∈Z\{0} to the above system of equations
all satisfy tx �= 0 when x = i1 or i2 and tx = 0 for all x �= i1, i2. This implies that
τ(a) ∈ {0, i1, i2} for all a ∈ ZN . Consequently, ηa = ψ(γ aC0), 0 ≤ a ≤ N − 1, take
exactly three distinct values since ti1 + ti2 < N . The proof is complete. �
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As an immediate corollary, we have the following.

Corollary 3.2 Let q = p f be a prime power, N > 2 be an integer such that N | (q−1),
and C0 = 〈γ N 〉, where γ is a fixed primitive element of Fq . Assume that there are
four positive integers u, v, r, s satisfying

(i) t (−ur + vs) ≡ −1 (mod N );
(ii) (N − 1)q + t2(−ur + vs)2 = Nt2(u2r + v2s),

where t is the largest power of p dividing all Gq(χ), χ ∈ (C⊥
0 )∗ = (C0)

⊥\{χ0}.
If u = v = r = 1 and s + 1 < N, or u = v = s = 1 and r + 1 < N, then
ηa = ψ(γ aC0), 0 ≤ a ≤ N − 1, take exactly three distinct values; in this case, the
three values taken by ηa form an arithmetic progression.

Proof We assume that u = v = s = 1. (The case where u = v = r = 1 is similar.)
In this case, (3.4) is reduced to

∑

x∈N
x(x + 1)tx +

∑

x∈N\{1}
x(x − 1)t−x = 2.

The nonnegative solutions (tx )x∈Z\{0} to the system of equations

{∑
x∈N\{1} x(x − 1)tx + ∑

x∈N x(x + 1)t−x = 2r
∑

x∈N x(x + 1)tx + ∑
x∈N\{1} x(x − 1)t−x = 2

must satisfy t1 = 1, t−1 = r and tx = 0 for all other x , or t−2 = 1, t−1 = r − 3
and tx = 0 for all other x . It follows that τ(a) ∈ {0,−1, 1} or τ(a) ∈ {0,−1,−2}
for all a ∈ ZN . Consequently, ηa , a ∈ ZN , take exactly three distinct values since
s + 1 < N . The proof of the corollary is complete. �


The conditions u = v = r = 1 and s + 1 < N in the above corollary are quite
restrictive. Below, we consider more general situations where we can still guarantee
that the Gauss periods take only three values. We start with the following lemma.

Lemma 3.3 Let q = p f be a prime power, N > 1 be an integer such that N | (q −1),
and C0 = 〈γ N 〉, where γ is a fixed primitive element of Fq . Assume that ηa =
ψ(γ aC0), 0 ≤ a ≤ N −1, take exactly � distinct values, say, α1, α2, . . . , α�. Let Ii =
{a ∈ ZN | ηa = αi } for 1 ≤ i ≤ �. Then each Ii is invariant under the multiplication
by p. Moreover, assume that m := gcd{ordn(p) | n > 1 and n dividesN } ≥ 2. Then
there exists a unique i0, 1 ≤ i0 ≤ �, such that |Ii0 | ≡ 1 (mod m) and |Ii | ≡ 0 (mod m)

for all i �= i0.

Proof Since Trq/p(x p) = Trq/p(x) for x ∈ Fq , we have ηpa = ηa for all a ∈ ZN .
It follows that each Ii is invariant under the multiplication by p. Note that under the
multiplication by p (i.e., under the map x �→ px , x ∈ ZN ), 0 forms a singleton orbit,
and all other orbits have sizes divisible by m. The second conclusion of the lemma
follows. This completes the proof of the lemma. �
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Theorem 3.4 Let q = p f be a prime power, N > 2 be an integer such that N | (q−1),
and C0 = 〈γ N 〉, where γ is a fixed primitive element of Fq . Assume that there are
four positive integers u, v, r, s such that

(i) t (−ur + vs) ≡ −1 (mod N );
(ii) (N − 1)q + t2(−ur + vs)2 = Nt2(u2r + v2s),

where t is the largest power of p dividing all Gq(χ), χ ∈ (C⊥
0 )∗ = (C0)

⊥\{χ0}. Let
m = gcd{ordn(p) | n > 1, and n divides N } and assume that m ≥ 2. If one of the
following conditions holds,

(1) u = s = 1, v(v + 1) < 2m, and r + 1 < N;
(2) u = s = 1, v(v + 1) = 2m, and r + v2 < N;
(3) v = r = 1, u(u + 1) < 2m, and s + 1 < N;
(4) v = r = 1, u(u + 1) = 2m, and s + u2 < N;
(5) u = v = 1, s = m, and r + m < N;
(6) u = v = 1, r = m, and s + m < N,

then ηa = ψ(γ aC0), 0 ≤ a ≤ N − 1, take exactly three values.

Proof First we note that by Lemma 3.3, the tx , x ∈ Z\{0}, in Eqs. (3.3) and (3.4)
satisfy that tx ≡ 1 (mod m) for at most one x and m | tx for all other x .

We consider Cases (1) and (2) where u = s = 1. (For Cases (3) and (4), the claims
can be proved in a similar way. We omit the proof.) In these cases, (3.4) is reduced to

∑

x∈N
x(x + 1)tx +

∑

x∈N\{1}
x(x − 1)t−x = v(v + 1). (3.5)

(1) If v(v + 1) < 2m, noting the divisibility conditions on the tx ’s, we see that the
nonnegative solutions (tx )x∈Z\{0} to the following system

{∑
x∈N\{1} x(x − 1)tx + ∑

x∈N x(x + 1)t−x = 2r + v(v − 1)
∑

x∈N x(x + 1)tx + ∑
x∈N\{1} x(x − 1)t−x = v(v + 1)

must satisfy tv = 1, t−1 = r and tx = 0 for all other x , or t−(v+1) = 1, t−1 = r−2v−1,
and tx = 0 for all other x . It follows that τ(a) ∈ {0,−1, v} or τ(a) ∈ {0,−1,−v −1}
for all a ∈ ZN . Therefore ηa , a ∈ ZN , take exactly three values since r + 1 < N .

(2) If v(v + 1) = 2m, the above system has further nonnegative solutions t1 = m,
t−1 = r + m − v and tx = 0 for all other x , or t−2 = m, t−1 = r −2m − v, and tx = 0
for all other x . So τ(a) ∈ {0,−1, 1} or τ(a) ∈ {0,−1,−2} for all a ∈ ZN . It follows
that ηa , a ∈ ZN , take exactly three values since r + v2 < N .

Next, we consider the case where u = v = 1 and s = m or r = m.
(3) We assume that s = m. (The case where r = m can be handled similarly). In

this case, (3.4) is reduced to

∑

x∈N
x(x + 1)tx +

∑

x∈N\{1}
x(x − 1)t−x = 2m.
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If 2m �= �(� + 1) for all � ∈ Z, then the nonnegative solutions (tx )x∈Z\{0} to the
following system

{∑
x∈N\{1} x(x − 1)tx + ∑

x∈N x(x + 1)t−x = 2r
∑

x∈N x(x + 1)tx + ∑
x∈N\{1} x(x − 1)t−x = 2m

must satisfy t1 = m, t−1 = r , and tx = 0 for all other x , or t−2 = m, t−1 = r − 3m,
and tx = 0 for all other x . It follows that τ(a) ∈ {0, 1,−1} or τ(a) ∈ {0,−1,−2} for
a ∈ ZN . Therefore ηa , a ∈ ZN , take exactly three values.

If 2m can be written as 2m = �(� + 1) for some positive integer �, then the above
system has further nonnegative solutions t� = 1, t−1 = r − �(� − 1)/2, and tx = 0
for other x , or t−�−1 = 1, t−1 = r − (� + 1)(� + 2)/2, and tx = 0 for other x . Again
we have τ(a) ∈ {0, �,−1} or τ(a) ∈ {0,−1,−� − 1} for a ∈ ZN . �


4 Examples of three-valued Gauss periods and related weighing
matrices and association schemes

In this section, we give examples of three-valued Gauss periods. These examples often
lead to interesting combinatorial structures such as circulant weighing matrices and
association schemes.

As a preparation,we consider a group ring version of theHasse–Davenport theorem.

Theorem 4.1 ([2, Theorem 11.5.2]) Let χ be a nonprincipal multiplicative character
of Fq = Fp f and let χ ′ be the lifted character of χ to the extension field Fq ′ = Fp f e ,
that is, χ ′(α) := χ(Normq ′/q(α)) for any α ∈ F

∗
q ′ . Then, it holds that

Gq ′(χ ′) = (−1)e−1(Gq(χ))e.

Let χ be a multiplicative character of Fq of order N > 1, γ a primitive element of
Fq , and C0 = 〈γ N 〉. As we saw in the proof of Lemma 2.1, we have

Gq(χ) = η0 + η1χ(γ ) + · · · + ηN−1χ(γ )N−1,

where ηa = ψ(C (N ,q)
a ) for 0 ≤ a ≤ N − 1. This motivated us to define the following

group ring element

gF,N =
∑

a∈ZN

ηa[a] ∈ C[ZN ],

where F = Fq . (See [5].) Let E be the finite field with qe elements, e > 1 a positive
integer. Then it follows from Theorem 4.1 that

gE,N = (−1)e−1ge
F,N . (4.1)
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The advantage of this group ring version of the Hasse–Davenport theorem is that
starting with a pair of small (q, N ) with N |(q −1) we are able to determine the Gauss
periods corresponding to the subgroup of index N of F∗

qe efficiently.

4.1 Examples from a conic

Let p be a prime, f a positive integer, F = Fp3 f , and E = Fp3 f e with e > 1. Let γ

and ω be primitive elements of F and E , respectively, such that γ = NormE/F (ω).

Let N = p3 f −1
p f −1

. Then C (N ,F)
0 = F

∗
p f < F∗ = F

∗
p3 f , and the Gauss periods ηa =

ψ(γ aC (N ,F)
0 ) = p f −1 if TrF/L(γ a) = 0 and−1 otherwise, where L = Fp f . Denote

by

S :=
{

i ∈ ZN : TrF/L(γ i ) = 0
}

.

Then |S| = p f + 1, and gF,N = p f S − ZN . As in [8], we identify the points of
the projective plane PG(2, p f ) with the elements of ZN . Then S represents a line of
PG(2, p f ), and is the well-known Singer difference set in ZN ; see [12] for instance.

Now set e = 2. Then by (4.1), we have

gE,N = −(p f S − ZN )2 = −p2 f S2 + (p2 f + p f − 1)ZN .

Note that here gE,N = ∑
a∈ZN

ψ ′(ωaC (N ,E)
0 )[a] ∈ C[ZN ], ψ ′ is the canoni-

cal additive character of E . In order to know how many values the Gauss periods
ψ ′(ωaC (N ,E)

0 ), 0 ≤ a ≤ N − 1, take, it suffices to compute S2 in the group ring
C[ZN ]. For any a ∈ ZN , the coefficient of [a] in S2 is equal to the size of

{
i ∈ ZN : TrF/L(γ −i ) = 0,TrF/L(γ i+a) = 0

}
= Q ∩ (S − a),

where Q = {i ∈ ZN : TrF/L(γ −i ) = 0} and S − a = {x − a | x ∈ S}. Since
Q is a conic in PG(2, p f ) (cf. [10]) and S − a is a line of PG(2, p f ), we have
|Q∩(S−a)| = 0, 1 or 2, according as S−a is passant, tangent or secant. It follows that
theGauss periodsψ(ωaC (N ,E)

0 ), 0 ≤ a ≤ N −1, take three values α1 = p2 f + p f −1,
α2 = p f − 1, and α3 = −p2 f + p f − 1, which form an arithmetic progression with

common difference t = p2 f . Here |E | = q6 f and α2 = p f − 1 =
√

p6 f −1
N . So

by Proposition 2.6 we obtain a CW(p2 f +p f +1, p2 f ). We remark that the circulant
weighing matrix CW(p2 f +p f +1, p2 f ) obtained here is not new (cf. [14]), but the
connection with three-valued Gauss periods is new.

Note that with the same notation as above, in the special case where p = 2, the
authors of [8] already showed that the Cayley graph Cay(Fq , C (N ,q)

0 ), with q = 26 f

and N = (23 f − 1)/(2 f − 1), has three restricted eigenvalues −22 f + 2 f − 1, 2 f −
1, 22 f + 2 f − 1, and {(x, y) ∈ Fq ×Fq | x − y ∈ C (N ,q)

0 } is a relation in a three-class
association scheme, see [8, p. 1210].
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4.2 More examples from two-valued Gauss periods

Let p be a prime, f ≥ 1 and e > 1 be integers, and F = Fp f , E = Fp f e . Assume that
k|(p f −1). Then certainly k|(p f e −1). Let N = (p f −1)/k and N ′ = (p f e −1)/k.

Then C (N ,F)
0 = C (N ′,E)

0 . This can be seen as follows. Let ω and γ be primitive

elements of E and F , respectively, such that γ = ω
p f e−1
p f −1 . Then C (N ,F)

0 = 〈γ N 〉 =
〈ω

(p f e−1)N
p f −1 〉 = 〈ωN ′ 〉 = C (N ′,E)

0 .

Assume that the Gauss periods ηa = ψ(γ aC (N ,F)
0 ), 0 ≤ a ≤ N − 1, take exactly

two distinct values α1 and α2 according as a ∈ S or not for some S ⊆ ZN . Let ψ ′ be
the canonical additive character of E . Then, we have

ψ ′(ωaC (N ′,E)
0 ) =

∑

x∈C(N ,p f )
0

ξ
Trp f /p(x ·(TrE/F (ωa)))

p = ψ(TrE/F (ωa)C (N ,p f )
0 )

=
⎧
⎨

⎩

k if TrE/F (ωa) = 0,
α1 if TrE/F (ωa) = γ b and b ∈ S,

α2 if TrE/F (ωa) = γ b and b ∈ ZN \S.

That is, the Gauss periods ψ ′(ωaC (N ′,E)
0 ), 0 ≤ a ≤ N ′ − 1, take three distinct values

k, α1 and α2. Furthermore, it is routine to check that C (N ,F)
0 , F∗ \ C (N ,F)

0 , E∗\F∗
give a three-class association scheme.

4.3 Examples from union of 1-dimensional subspaces

Let q ≡ 1 (mod 3) and γ an element of order k = 3(q −1) in Fq3 , and set N = q3−1
k .

Then the degree of the minimal polynomial of γ over Fq is equal to ordk(q). Assume
that ordk(q) = 3. Then 1, γ, γ 2 are linearly independent over Fq , and it follows that

C (N ,q3)
0 = 〈γ N 〉 = {λ · 1 | λ ∈ F

∗
q} ∪ {λ · γ | λ ∈ F

∗
q} ∪ {λ · γ 2 | λ ∈ F

∗
q}. For any

nontrivial additive character ψ ′ of Fq3 , we have

ψ ′(C (N ,q3)
0 ) =

⎧
⎨

⎩

−3 if ψ ′|Fq , ψ
′|Fqγ , ψ ′|Fqγ 2 are all nontrivial,

−3 + q if exactly one of ψ ′|Fq , ψ
′|Fqγ , ψ ′|Fqγ 2 is trivial,

−3 + 2q if exactly two ofψ ′|Fq , ψ
′|Fqγ , ψ ′|Fqγ 2 are trivial.

Therefore the Gauss periods ηa , 0 ≤ a ≤ N − 1, of Fq3 take three values α1 =
−3, α2 = −3+q, α3 = −3+2q, which form an arithmetic progression with common
difference t = q. By Lemma 2.5, we have

|I1| = (q − 1)2

3
, |I2| = q − 1, |I3| = 1.
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Since |I3| = 1, by Theorem 2.7, the subsets ∪i∈I j C
(N ,q3)
i , j = 1, 2, 3, give a three-

class self-dual association scheme. Note that with assumptions as above, α2
2 N +2α2−

k = 0 if and only if (q, N ) = (4, 7). Therefore, we obtain aCW(7, 4) in the case when
(q, N ) = (4, 7), and we do not obtain circulant weighing matrices in other cases.

4.4 Examples from products of subfields

Let e, f be two positive integers such that e/ gcd (e, f ) = 3 and let q = plcm(e, f ) =
p3 f . Let C (N ,q)

0 be the subgroup of F∗
q generated by F

∗
pe and F

∗
p f . Then

|C (N ,q)
0 | = (pe − 1)(p f − 1)/(p� − 1),

where � = gcd (e, f ) and N = (p3 f −1)(p�−1)
(pe−1)(p f −1)

. Let γ be a primitive element of Fq . We

compute the Gauss periods ψ(γ aC (N ,q)
0 ), 0 ≤ a ≤ N − 1, as follows.

ψ(γ aC (N ,q)
0 ) = 1

p� − 1

∑

x∈F∗
pe

∑

y∈F∗
p f

ξ
Trp f (yTrp3 f /p f (xγ a))

p

= 1

p� − 1

∑

x∈F∗
pe

(p f δTrp3 f /p f (xγ a) − 1),

where

δTrp3 f /p f (xγ a) =
{
1 if Trp3 f /p f (xγ a) = 0,
0 otherwise.

Define

Wa := {
x ∈ Fpe |Trp3 f /p f (xγ a) = 0

}
,

and set sa = |Wa |. Then we have

ψ(γ aC (N ,q)
0 ) = p f (sa − 1) − (pe − 1)

p� − 1
= p f sa − p f − pe + 1

p� − 1
.

Since Wa is an Fp� -subspace of Fpe , we have sa = 1, p�, p2�, p3� = pe. Since a basis
of Fpe over Fp� is also a basis of Fp3 f over Fp f , and γ a �= 0, it is impossible to have

Wa = Fpe . Therefore, the Gauss periods ψ(γ aC (N ,q)
0 ), 0 ≤ a ≤ N − 1, take exactly

three values

α1 = 1 − pe

p� − 1
, α2 = p f + 1 − pe

p� − 1
, α3 = p f (p� + 1) + 1 − pe

p� − 1
.
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By Lemma 2.2, it is routine to compute that

|I1| = p3� + p2 f − p2�+ f − p�+ f

1 + p� + p2�
, |I2| = p f − p�, |I3| = 1.

Since |I3| = 1, by Theorem 2.7, the subsets
⋃

i∈I j
C (N ,q)

i , j = 1, 2, 3, give a three-
class association scheme.

4.5 Examples from index 2 Gauss sums

Let q = p f , where p is a prime and f a positive integer. Let N > 1 be a divisor of
q − 1. We now focus on the index 2 case, that is, [Z∗

N : 〈p〉] = 2, or equivalently,
ordN (p) = φ(N )/2, where φ is Euler’s phi function. In this case, the Gauss sums
Gq(χ), where χ has order N , have been evaluated (cf. [15]). In [6], the authors
used these Gauss sums to construct several new families of strongly regular graphs. In
particular, they evaluated the Gauss periods in the index 2 case. The following theorem
is a specialized version of Theorem 4.1 and Theorem 5.1 from [6].

Theorem 4.2 (i) ([6, Theorem 4.1]) Let N = p1 ≡ 3 (mod 4) be a prime with
p1 > 3, and let p be a prime such that gcd (p, N ) = 1 and ordN (p) = (N −1)/2.
Let q = p f , where f = (p1 − 1)/2. Then the Gauss periods ψ(γ aC (N ,q)

0 ),
a = 0, 1, . . . , N − 1, take at most three values

α1 = −2 + p
f −h
2 b(p1 − 1)

2p1
, α2 = −2 + p

f −h
2 cp1 − p

f −h
2 b

2p1
,

α3 = −2 − p
f −h
2 cp1 − p

f −h
2 b

2p1
, (4.2)

where h is the class number of Q(
√−p1), and b and c are integers determined

by b, c �≡ 0 (mod p), 4ph = b2 + p1c2, and bp
f −h
2 ≡ −2 (mod p1).

(ii) ([6, Theorem 5.1]) Let N = p1 p2, where p1 and p2 such that p1 ≡ 1(mod 4) and
p2 ≡ 3(mod 4). Let p be a prime such that ordp1(p) = p1−1,ordp2(p) = p2−1,
ordp1 p2(p) = (p1 − 1)(p2 − 1)/2. Let q = p f , where f = (p1 − 1)(p2 − 1)/2.

Then the Gauss periods ψ(γ aC (N ,q)
0 ), a = 0, 1, . . . , N − 1, take at most five

values

α1 = −1 + 1
2 p

f −h
2 (b + cp1 p2)

N
, α2 =

−1 + p
f
2

(
− 1

2bp
−h
2 (−1 + p1) + p1

)

N
,

α3 = −1 + 1
2 p

f −h
2 (b − cp1 p2)

N
, α4 =

−1 + p
f
2

(
− 1

2bp
−h
2 (−1 + p2) − p2

)

N
,

α5 =
−1 + p

f
2

(
p1 + 1

2bp
−h
2 (−1 + p1)(−1 + p2) − p2

)

N
,
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where h is the class number of Q(
√−p1 p2), and b and c are integers determined

by b, c �≡ 0 (mod p), 4ph = b2 + p1 p2c2, and bp
f −h
2 ≡ 2 (mod p1 p2).

From this theorem, we immediately have the following proposition.

Proposition 4.3 (i) With assumptions and notation the same as in Theorem 4.2 (i),
the Gauss periods ψ(γ aC (N ,q)

0 ), a = 0, 1, . . . , N − 1, take exactly three val-
ues which form an arithmetic progression if and only if p1 + 9 = 4ph and
±3p( f −h)/2 ≡ −2 (mod p1).

(ii) With assumptions and notation the same as in Theorem 4.2 (ii), the Gauss peri-

ods ψ(γ aC (N ,q)
0 ), a = 0, 1, . . . , N − 1, take at most three values if 4p

h
2 ≡ 0

(mod p1 + p2) and 2p
f
2 (p1 − p2)/(p1 + p2) ≡ 2 (mod p1 p2). In particular,

they take exactly three values forming an arithmetic progression if and only if
p1 p2 + 9 = 4ph and ±3p( f −h)/2 ≡ 2 (mod p1 p2).

Proof (i) First we remark that from the explicit computations of the Gauss periods
ψ(γ aC (N ,q)

0 ) in the proof of Theorem 4.1 in [6], we know that if α1, α2 and α3 are
distinct, then the Gauss periods take exactly three values, and α1 is taken precisely
once.

It is clear that α1, α2, α3 form an arithmetic progression if and only if b = ±3c.
Since b, c �≡ 0 (mod p), we have b = ±3c if and only if c ∈ {−1, 1} and b = ±3.
It follows that the Gauss periods take exactly three values in arithmetic progression if

and only if p1 + 9 = 4ph and ±3p
f −h
2 ≡ −2 (mod p1).

(ii) Assume that 4p
h
2 ≡ 0 (mod p1 + p2) and 2p

f
2 (p1 − p2)/(p1 + p2) ≡ 2

(mod p1 p2). We set

b = 2p
h
2 (p1 − p2)

p1 + p2
and c = ± 4p

h
2

p1 + p2
.

Both b and c are integers, and they satisfy 4ph = b2 + p1 p2c2 and bp
f −h
2 ≡ 2

(mod p1 p2). Note that the above b, c are all the integer solutions to 4ph = b2+p1 p2c2

and bp
f −h
2 ≡ 2 (mod p1 p2). If b = 2p

h
2 (p1−p2)
p1+p2

and c = 4p
h
2

p1+p2
, then α1 = α2 and

α3 = α4. On the other hand, if b = 2p
h
2 (p1−p2)
p1+p2

and c = − 4p
h
2

p1+p2
, then α1 = α4 and

α2 = α3. In both cases, the Gauss periods ψ(γ aC (N ,q)
0 ), a = 0, 1, . . . , N − 1, take

at most three values α1, α3, α5 (also, from the computations in the proof of Theorem
5.1 in [6], α5 occurs precisely once); in particular, these α1, α3, α5 form an arithmetic
progression if and only if p1 − p2 = ±6 (i.e., b = ±3c). Since b, c �≡ 0 (mod p),
we have b = ±3c if and only if c ∈ {−1, 1} and b = ±3. It follows that n this case the
Gauss periods take three values in arithmetic progression if and only if p1 p2+9 = 4ph

and ±3p
f −h
2 ≡ 2 (mod p1 p2). �


Example 4.4 There are only five examples satisfying the index 2 condition, and p1 +
9 = 4ph and ±3p( f −h)/2 ≡ −2 (mod p1) stated in Proposition 4.3 (i) for p1 ≤
20000:
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(p1, p, h) = (11, 5, 1), (23, 2, 3), (43, 13, 1), (67, 19, 1), (163, 43, 1).

There are only two examples satisfying the index 2 condition, and p1 p2 + 9 = 4ph

and ±3p( f −h)/2 ≡ 2 (mod p1 p2) stated in Proposition 4.3 (ii) for p1 p2 ≤ 20000:

(p1, p2, p, h) = (5, 11, 2, 4), (17, 11, 7, 2).

These results are obtained by a computer search.

Remark 4.5 Let q be a power of a prime p, γ be a primitive element of Fq , and N > 1
be a divisor ofq−1. In the semi-primitive case, i.e., the casewhere−1 ∈ 〈p〉 (mod N ),
it is well known that the Gauss periods ψ(γ aC (N ,q)

0 ), 0 ≤ a ≤ N − 1, take exactly
two values. Note that the condition −1 ∈ 〈p〉 (mod N ) does not involve the extension
degree of Fq over Zp. Therefore, for any e > 1, the Gauss periods corresponding to
the subgroup of index N of F∗

qe also take exactly two values. One is thus led to the
following question: are there examples of (q, N ), where N |(q − 1) and N > 1, such
that the Gauss periods ψ(γ aC (N ,q)

0 ), 0 ≤ a ≤ N − 1, take exactly three values, and
for any e > 1, the Gauss periods corresponding to the subgroup of index N of F∗

qe

also take exactly three values? The index 2 case with N = p1 gives a positive answer
to this question. The reason is given below. Note that since Trq/p(x) = Trq/p(x p) for
any x ∈ Fq , each index set Ii is invariant under the multiplication by p; in the index 2
case, it follows that each Ii is a union of {0}, 〈p〉,−〈p〉. It is clear that this conclusion
holds, irrelevant of the extension degree of Fq over Zp. Therefore, in this case, if the

Gauss periods ψ(γ aC (N ,q)
0 ), 0 ≤ a ≤ N − 1, take exactly three values, then for any

e > 1, the Gauss periods corresponding to the subgroup of index N of F∗
qe also take

exactly three values. Here, we should remark that the index 2 case sometimes gives
two-valued Gauss periods; all such possibilities are determined under the generalized
Riemann hypothesis in [13]. Except for those examples of two-valued Gauss periods
determined in [13], the index 2 case with N = p1 provides a positive answer to the
question above.

4.6 Computer search

We conducted a computer search for examples of three-valued Gauss periods with the

following restrictions: p < 300, p f < 225, 3 < N < 1001, (p − 1)|k = p f −1
N . The

output is listed in Table 1. Note that in Tabel 1 we have removed the known examples
given in the four subsections above because otherwise the table would take too much
space. Themultiplicities of the Gauss periods are given by the exponents; for example,
in the first row of Table 1, −710 means that the Gauss periods ηa , 0 ≤ a ≤ 18, take
the value −7 ten times. The AP column indicates whether the Gauss periods are in
arithmetic progression or not, with “◦” meaning YES and “×” meaning No. The AS
column indicates whether the index sets I j , j = 1, 2, 3, yield a three-class association
scheme or not.
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Table 1 Computer search results for p < 300, p f < 225, 6 < N < 1001, N | p f −1
p−1 except for the known

examples given in Sects. 4.1, 4.2, 4.3, 4.4 and 4.5

p f N Gauss periods AP AS p f N Gauss periods AP AS

11 3 19 −710, 46, 153 ◦ × 53 3 409 −7358, 4648, 993 ◦ ×
7 7 29 −414, −7121, 2727 ◦ ◦ 139 3 499 −39378, 100102, 23919 ◦ ×
29 3 67 −1343, 1618, 456 ◦ × 137 3 511 −37391, 100102, 23718 ◦ ×
37 3 67 −2139, 1618, 5310 ◦ × 109 3 571 −21471, 8890, 19710 ◦ ×
23 3 79 −758, 1618, 393 ◦ × 67 3 651 −7586, 6062, 1273 ◦ ×
2 11 89 −911, −156, 722 ◦ ◦ 11 6 703 −21591, 100102, 22110 ◦ ×
5 6 93 −770, 1820, 433 ◦ × 149 3 721 −31586, 118120, 26715 ◦ ×
37 3 201 −7166, 3032, 673 ◦ × 11 6 777 −19661, 102113, 3433 × ×
67 3 217 −21159, 4648, 11310 ◦ × 5 9 829 −19712, 106108, 2319 ◦ ×
2 18 219 −19163, 4547, 1099 ◦ × 107 3 889 −13787, 9496, 2016 ◦ ×
61 3 291 −13235, 4850, 1096 ◦ × 79 3 903 −7826, 7274, 1513 ◦ ×
79 3 301 −21231, 5860, 13710 ◦ × 17 6 921 −91676, 198200, 48745 ◦ ×
83 3 367 −19292, 6466, 1479 ◦ × 3 12 949 −7870, 7476, 1553 ◦ ×
11 6 399 −37295, 8486, 20518 ◦ × 113 3 991 −13883, 100102, 2136 ◦ ×

Furthermore, Corollary 3.2 makes it possible to search for (p, f, N ) such that the
Gauss periods corresponding to the subgroup of index N of F∗

q , q = p f , take exactly
three values.

We will run the following algorithm to search for triples (p, f, N ) satisfying the
conditions in Corollary 3.2: (i) t (vs − ur)+ 1 ≡ 0 (mod N ), (ii) (N − 1)q + t2(vs −
ur)2 = (u2r + v2s)t2N , and (iii) u = v = 1 and r = 1 or s = 1. Put g = s − r and
h = r + s. In this case, we have h = |g| + 2. The algorithm goes as follows:

(1) For any positive integers N and h with 1 < h < N , compute (Nh − (h −
2)2)/(N − 1) in order to know q/t2.

(2) If this value is a prime power, say pw, then compute the order of p modulo N ,
call it f ′, and the largest positive integer pθ ′

dividing G p f ′ (χ) for all nontrivial
characters χ of exponent N of F∗

p f ′ .

(3) Check whether f ′ − 2θ ′ divides w. Set d = w/( f ′ − 2θ ′) and t = pθ = pdθ ′
.

Then, check whether (h − 2)t + 1 ≡ 0 (mod N ) or −(h − 2)t + 1 ≡ 0 (mod N )

holds.

We run the above algorithm for all N < 5000 using a computer. Note that p is
determined as the unique prime factor of (Nh − (h − 2)2)/(N − 1) in steps (1) and
(2), and f is determined as f = d f ′ in the steps (2) and (3). We find three quadruples
(for convenience we give the value of θ also) satisfying the conditions of Corollary 3.2:

(p, f, N , θ) = (7, 7, 29, 3), (13, 13, 53, 6), (2, 36, 247, 15). (4.3)
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Table 2 Known examples of three-valued Gauss periods

parameters AP AS CW ref

p = 2, q = p6 f , N = p3 f −1
p f −1

◦ ◦ ◦ Sect. 4.1

p odd, q = p6 f , N = p3 f −1
p f −1

◦ × ◦ Sect. 4.1

q = p3 f ,N = p3 f −1
p f −1

, ord3(p f −1)(p f ) = 3 ◦ ◦ × Sect. 4.3

q = p f e , p f e−1
N | p f − 1, (p f −1)N

p f e−1
| p f −1

p−1 ,

Cay(Fq , C
(
(p f −1)N

p f e−1
,p f )

0 ) is an SRG

� ◦ × Sect. 4.2

q = plcm(e, f ) = p3 f , e/ gcd (e, f ) = 3,

C(N ,q)
0 = F

∗
pe · F∗

p f

× ◦ × Sect. 4.4

N = p1, [Z∗
N , 〈p〉] = 2, f = e(N − 1)/2 for any e ∈ N � ◦ × Sect. 4.5

N = p1 p2, [Z∗
N : 〈p〉] = 2, f = φ(N )/2 � ◦ × Sect. 4.5

By Theorem 2.7, we obtain three new self-dual three-class association schemes from
the three quadruples above. These self-dual three-class association schemes are dif-
ferent from the examples obtained in Sects. 4.3 and 4.5.

As a counterpart of Conjecture 4.4 in [13], we have the following conjecture.

Conjecture 4.6 Let q be a power of a prime p, γ be a primitive element of Fq , and

N > 1 be a divisor of q − 1. The Gauss periods ψ(γ aC (N ,q)
0 ), a = 0, 1, . . . , N − 1,

take exactly three rational values in arithmetic progression, and one of the three
values occurs exactly once, if and only if the Gauss periods arise from the examples
in Sect. 4.3, or from Example 4.4, or from one of the sporadic cases listed in (4.3).

5 Concluding remarks

In this paper, we study the problem of when the Gauss periods take exactly three
rational values. Also, we give constructions of related combinatorial structures such
as circulant weighing matrices and association schemes.

We have found five infinite classes of three-valued Gauss periods listed in Table 2.
(The meaning of “AP,” “AS” are the same as in Table 1. Here “CW” indicates whether
I1 − I3 gives a circulant weighing matrix or not. The symbols “�” means that the class
includes some examples satisfying the condition.) Furthermore, we obtained several
sporadic examples of three-valued Gauss periods as given in Sect. 4.6.

We conclude the paper by listing some problems for future work.

• Classify all triples (p, f, N ) which lead to three-valued Gauss periods. A less
challenging task is to find other infinite classes of three-valued Gauss periods not
listed in Table 2.
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• Determine when three-valued Gauss periods take three values in arithmetic pro-
gression. (Then, by Proposition 2.6 one will be able to characterize when I1 − I3
forms a circulant weighing matrix.)

• Determine when the index sets I1, I2, I3 yield a three-class association scheme if
the Gauss periods take exactly three values.

Acknowledgments The authors would like to thank both reviewers for their comments and constructive
suggestions. In particular, we thank one of the reviewers who gave a short proof of Theorem 2.7, which is
the proof presented here in this paper.
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