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1. Introduction

In this paper, we survey some recent results in algebraic design theory. By algebraic
design theory we mean the theory of studying combinatorial designs by using algebraic
and number theoretic methods. A representative list of topics in algebraic design theory
can be found in Lander’s book [76]. Among the topics of algebraic design theory,
difference sets are of central importance. Therefore we will devote a large part of
this paper to difference sets. There exist several recent surveys on difference sets, for
example, see [63,66,67,12, Chapter 6]. So it is natural for us to concentrate on results
obtained after [12, Chapter 6] was written. Besides difference sets, we will also survey
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recent results onp-ranks and Smith normal forms of certain incidence matrices. In
particular, we describe the results on the Smith normal forms of the incidences of
points and subspaces of PG(m, q) and AG(m, q) in [20]. This work involves heavy
use of representations of the general linear groups andp-adic number theory, and has
led to interesting applications to problems in finite geometry [19].

The paper is organized as follows. In Section 2, we define 2-(v, k, �) designs, dif-
ference sets, Smith normal forms of designs, etc., and recall some basic results. In
Sections 3 through 9, we discuss recent results on difference sets. Roughly speak-
ing, the theory of difference sets has four aspects. These are nonexistence proofs of
difference sets, constructions of difference sets, inequivalence of difference sets, and
connections of difference sets to other areas of combinatorics. We report recent results
on all four of these aspects. The highlights are the proof of Lander’s conjecture for
abelian difference sets of prime power orders by Leung et al. [78] (Section 3), the
construction of cyclic difference sets with classical parameters by Dillon and Dob-
bertin [34] (Section 5), the surprising construction of new skew Hadamard difference
sets in(F3m,+) by Ding and Yuan [35] (Section 6), and the construction of Bush-type
Hadamard matrices using reversible Hadamard difference sets by Muzychuk and Xi-
ang [95] (Section 7). In Section 4, we collect recent results on multipliers of abelian
difference sets, and in Section 8, we discuss nonabelian difference sets. Section 9 is
concerned withp-ranks and Smith normal forms of difference sets. We show how to
use Smith normal forms to prove inequivalence of difference sets whenp-ranks are
not sufficient for this purpose. In Section 10, we describe Wilson’s results [113–115]
on diagonal forms of certain set-inclusion matrices. In Section 11, we explain in de-
tail the work of Chandler et al. [20] on the Smith normal forms of the incidences of
points and subspaces of PG(m, q) and AG(m, q). Finally in Section 12, we describe
two important recent results closely related to algebraic design theory; one is the
surprisingly elementary proof of the prime power conjecture for projective planes
of order n with an abelian collineation group of ordern2 by Blokhuis et al. [13],
the other is the construction of a Hadamard matrix of order 428 by Kharaghani and
Tayeh-Rezaie [72].

It is impractical to mention all recent work in algebraic design theory in this paper.
Some topics had to be omitted. An apparent omission is the work on Hadamard dif-
ference sets in elementary abelian 2-groups (i.e., bent functions). However, we hope
that this survey will show that algebraic design theory in general, and the theory of
difference sets in particular are alive and vital.

2. Definitions and basic results

We first give the definition of a 2-design.

Definition 2.1. A 2-(v, k, �) design is a pair (P,B) that satisfies the following
properties:

(1) P is a set ofv elements (calledpoints).
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(2) B is a family of b subsets ofP (called blocks), each of sizek.
(3) Every 2-subset ofP is contained in exactly� blocks.

We will require v > k to avoid triviality. Simple counting arguments show that
b = �v(v−1)

k(k−1) , and the number of blocks containing each point ofP is �(v−1)
k−1 , which

will be denoted byr (called thereplication numberof the design). Theorder of the
2-design, denoted byn, is defined to ber−�. A 2-(v, k, �) design(P,B) is said to be
simple if it does not have repeated blocks (i.e.,B is a set). The most basic necessary
condition for the existence of 2-designs is Fisher’s inequality which states thatb�v if
a 2-(v, k, �) design withb blocks exists. A simple 2-(v, k, �) design(P,B) with b = v

is called asymmetric design. We note that for a(v, k, �) symmetric design, the order
is n = k − �.

Given two 2-(v, k, �) designsD1 = (P1,B1) and D2 = (P2,B2), we say thatD1
and D2 are isomorphic if there exists a bijection� : P1 → P2 such that�(B1) = B2
and for all p ∈ P1 and B ∈ B1, p ∈ B if and only if �(p) ∈ �(B). An auto-
morphismof a 2-design is an isomorphism of the design with itself. The set of all
automorphisms of a 2-design forms a group,the (full) automorphism groupof the de-
sign. An automorphism groupof a 2-design is any subgroup of the full automorphism
group.

Isomorphism of designs can also be defined by using incidence matrices of de-
signs, which we define now. LetD = (P,B) be a 2-(v, k, �) design and label
the points asp1, p2, . . . , pv and the blocks asB1, B2, . . . , Bb. An incidence matrix
of (P,B) is the matrix A = (aij ) whose rows are indexed by the blocksBi and
whose columns are indexed by the pointspj , where the entryaij is 1 if pj ∈ Bi ,
and 0 otherwise. From the definition of 2-designs, we see that the matrixA
satisfies

A�A = (r − �)I + �J, AJ = kJ, (2.1)

where I is the identity matrix, andJ is the all-one matrix. Now letD1 = (P1,B1) and
D2 = (P2,B2) be two 2-(v, k, �) designs, and letA1 and A2 be incidence matrices
of D1 and D2, respectively. ThenD1 and D2 are isomorphic if and only if there are
permutation matricesP andQ such that

PA1Q = A2, (2.2)

that is, the matricesA1 andA2 are permutation equivalent.
Next we define codes,p-ranks, and Smith normal forms of 2-designs. LetD be a

2-(v, k, �) design with incidence matrixA. The p-rank of D is defined as the rank
of A over a field F of characteristicp, and it will be denoted by rankp(D). The
F-vector space spanned by the rows ofA is called the (block) code of D over F,
which is denoted byCF (D). If F = Fq , where q is a power ofp, then we de-
note the code ofD over Fq by Cq(D). We proceed to define the Smith normal form
of D. Let R be a principal ideal domain. ViewingA as a matrix with entries inR,
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we can find (see for example,[25]) two invertible matricesU andV overR such that

UAV =




d1 0 0 · · · 0
0 d2 0

0
. . .

...
... dv−1 0
0 · · · 0 dv
0 · · · 0
...

. . .
...

0 · · · 0




(2.3)

with d1|d2|d3| · · ·. The di are unique up to units inR. When R = Z, the di are
integers, and they are called theinvariant factors of A; the matrix on the right-hand
side of (2.3) (now with integer entries) is called theSmith normal form(SNF) of A. If
on the right-hand side of (2.3) we do not require the divisibility conditiond1|d2|d3| · · ·,
then that matrix is said to be adiagonal form of A. We define theSmith normal
form of D to be that ofA. Smith normal forms andp-ranks of 2-designs can help
distinguish nonisomorphic 2-designs with the same parameters: letD1 = (P1,B1)

and D2 = (P2,B2) be two 2-(v, k, �) designs with incidence matricesA1 and A2
respectively. From (2.2) we see that ifD1 and D2 are isomorphic, thenA1 and A2
have the same Smith normal form overZ; henceD1 and D2 have the same Smith
normal form, in particular, rankp(D1) = rankp(D2) for any primep. The usefulness of
Smith normal forms of designs goes well beyond isomorphism testing. For example,
the Smith normal forms of symmetric designs were used by Lander [76] to construct a
sequence ofp-ary codes which were then used to give a (partial) coding theoretic proof
of the Bruck–Ryser–Chowla theorem. We will see some other applications of SNF of
incidence matrices in Sections 10 and 11.

We now define difference sets. LetD = (P,B) be a 2-(v, k, �) symmetric design
with a sharply transitive automorphism groupG. Then we can identify the elements of
P with the elements ofG. After this identification, each block ofD is now ak-subset
of G. SinceG acts sharply transitively onB, we may choose a base blockD ⊂ G. All
other blocks inB are simply “translates”gD = {gx|x ∈ D} of D, whereg ∈ G and
g = 1. ThatD is a symmetric design implies

|D ∩ gD| = �

for all nonidentity elementsg ∈ G. That is, every nonidentity elementg ∈ G can be
written asxy−1, x, y ∈ D, in � ways. This leads to the definition of difference sets.

Definition 2.2. Let G be a finite (multiplicative) group of orderv. A k-element subsetD
of G is called a(v, k, �) difference setin G if the list of “differences”xy−1, x, y ∈ D,
x = y, represents each nonidentity element inG exactly � times. If the groupG is
cyclic (resp. abelian), thenD is called a cyclic (reps. abelian) difference set.
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Note that any groupG containstrivial difference sets, namely,∅, G, {g}, G \ {g},
whereg is an arbitrary element ofG. We will use the term “difference set” to mean a
non-trivial difference set. In the above, we see that sharply transitive symmetric designs
give rise to difference sets. In the other direction, ifD is a (v, k, �)-difference set in
a groupG, then we can use the elements ofG as points, and use the “translates”gD
of D, g ∈ G, as blocks, and we obtain a symmetric design(G, {gD|g ∈ G}) with a
sharply transitive automorphism groupG. (This design is usually calledthe symmetric
design developed from D, and will be denoted by dev(D).) Hence difference sets and
sharply transitive symmetric designs are the same objects.

Let D1 andD2 be two (v, k, �)-difference sets in an abelian groupG. We say that
D1 and D2 are equivalent if there exists an automorphism� of G and an element
g ∈ G such that�(D1) = D2g. Note that ifD1 andD2 are equivalent, then dev(D1)

and dev(D2) are isomorphic. Therefore, one way to distinguish inequivalent difference
sets is to show that the symmetric designs developed from them are nonisomorphic.

We end this section by giving some classical examples of 2-designs and difference
sets. Let PG(m, q) be them-dimensional projective space over the finite fieldFq , where
q is a prime power, let AG(m, q) be them-dimensional affine space overFq , and let[
m

i

]
q

denote the number ofi-dimensional subspaces of anm-dimensional vector space

over Fq . We have the following classical examples of 2-designs:

Example 2.3. Let m�2 andm�d�2 be integers. The points of PG(m, q) and the
(d − 1)-dimensional subspaces of PG(m, q) form a 2-design with parameters

v =
[
m+ 1

1

]
q

= (qm+1− 1)/(q − 1), k =
[
d

1

]
q

= (qd − 1)/(q − 1),

r =
[

m

d − 1

]
q

, � =
[
m− 1
d − 2

]
q

, and b =
[
m+ 1
d

]
q

.

In particular, whend = m, we obtain the classical symmetric design of points and
hyperplanes in PG(m, q) which can be developed from a (cyclic) Singer difference set.

Example 2.4. Let m�2 andm − 1�d�1 be integers. The points of AG(m, q) and

the d-flats of AG(m, q) form a 2-design with parametersv = qm, k = qd , r =
[
m

d

]
q

,

� =
[
m− 1
d − 1

]
q

, and b = qm−d
[
m

d

]
q

. Here thed-flats of AG(m, q) are the cosets of

d-dimensional subspaces of the underlyingm-dimensional vector space overFq .

Example 2.5. Let q = 4n − 1 be a prime power. Then the setD of nonzero squares
in Fq forms a(4n− 1,2n− 1, n− 1) difference set in(Fq,+). This will be called the
Paley difference set.
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3. Nonexistence results on difference sets

The existence theory of abelian difference sets is well developed. The theory seems
naturally to bifurcate into two parts: one part deals with(v, k, �) abelian difference
sets with gcd(k− �, v) = 1, and the other deals with those with gcd(k− �, v) > 1. For
(v, k, �) abelian difference sets with gcd(k − �, v) = 1, multipliers are very useful for
nonexistence proofs. In contrast for(v, k, �) abelian difference sets with gcd(k−�, v) >
1, the character theoretic approach introduced by Turyn[107] proved to be fruitful.

While most (v, k, �) abelian difference sets with gcd(k − �, v) = 1 prefer to live in
high exponent abelian groups (for example, all known abelian difference sets with the
same parameters as those of Singer difference sets live in cyclic groups), all(v, k, �)
abelian difference sets with gcd(k − �, v) > 1 seem to prefer to live in low exponent
abelian groups. The Ryser conjecture from 1963 and the Lander conjecture from 1983
convey this feeling.

Conjecture 3.1 (Ryser[102]). There does not exist a(v, k, �) difference set with
gcd(k − �, v) > 1 in a cyclic group.

Conjecture 3.2 (Lander [76] ). Let G be an abelian group of orderv containing a
(v, k, �) difference set. If p is a prime dividinggcd(k−�, v), then the Sylow p-subgroup
of G cannot be cyclic.

We also mention the following important special case of Ryser’s conjecture.
A Hadamard matrixof order v is a v by v matrix H with entries±1, such that

HH� = vIv,

whereIv is the identity matrix of orderv. A circulant Hadamard matrixof order v is
a Hadamard matrix of the following form




a1 a2 a3 · · · av
av a1 a2 · · · av−1
· · · · · · · · · · · · · · ·
a2 a3 a4 · · · a1


 . (3.1)

The circulant Hadamard matrix conjecture is the following:

Conjecture 3.3. There does not exist any circulant Hadamard matrix of orderv > 4.

Since the existence of a circulant Hadamard matrix of orderv implies the existence
of a cyclic (4u2,2u2−u, u2−u) difference set wherev = 4u2, u odd (see[12, Chapter
6]), we see that the Ryser conjecture implies the circulant Hadamard matrix conjecture.

Recently, Leung et al. [78] proved the following conclusive general result on Lander’s
conjecture.
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Theorem 3.4. Lander’s conjecture and thus Ryser’s conjecture is true for(v, k, �)
abelian difference sets withk − � a power of a prime> 3.

This is a major advance in the existence theory of abelian difference sets. Previous
results on Lander’s conjecture are either proved under extra conditions (such as the
self-conjugacy condition), or much less conclusive than Theorem3.4. The main idea
in the proof of Theorem 3.4 is to use the character theoretic approach to show that a
(v, k, �) abelian difference set withk−� = pr a prime power,p|v, decomposes into two
parts: a “subfield part” and a “kernel part”. We remark that similar decompositions were
previously used by Jia [59] to obtain some partial results on Lander’s conjecture. A more
general decomposition result for group ring elements is proved by Leung and Schmidt
[81]. Applications of this decomposition result include the nonexistence of circulant
Hadamard matrices of orderv with 4 < v < 548,964,900 and the nonexistence of
Barker sequences of length& with 13< & < 1022. For more details, we refer the reader
to [81].

Next we consider nonexistence results on abelian difference sets whose parameters
are from special infinite families. In this regard, the best known result is the following
theorem:

Theorem 3.5 (Davis [29] , Kraemer[75] ). Let G be an abelian group of order22m+2.
Then G contains a(22m+2,22m+1 − 2m,22m − 2m) difference set if and only if the
exponent of G is�2m+2.

In another case, the McFarland parameters for difference sets are

v = qm+1
(

1+ qm+1− 1

q − 1

)
, k = qm(qm+1− 1)

q − 1
, � = qm(qm − 1)

q − 1
, (3.2)

whereq = pt is a prime power andm is a positive integer. McFarland[91] constructed
difference sets with parameters (3.2) in abelian groupsG = E×K of order qm+1(1+
qm+1−1
q−1 ), whereE is an elementary abelianp-group of orderqm+1. The problem here

is to decide which abelian groups contain a difference set with McFarland parameters.
We refer the reader to [66, Section 2.3] for a detailed account of results on this
problem obtained before 1997. Recently, Arasu et al. [2] proved the following interesting
theorem on abelian difference sets with parameters (3.2), whereq�8 is a power of 2
andm = 1.

Theorem 3.6. Let G be an abelian group of order22t+1(2t−1+ 1) with t�3. Then G
contains a(22t+1(2t−1+ 1),2t (2t + 1),2t ) difference set if and only if G contains an
elementary abelian subgroup of order22t .

Theorem3.6 in particular shows that there does exist a(640,72,8) difference set in
G1 = Z2

4 × Z3
2 × Z5 or G2 = Z3

4 × Z2 × Z5. We explain the history of this problem
below. In 1995, Arasu and Sehgal [5] constructed a(96,20,4) difference set (i.e., with
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q = 4 andm = 1 in (3.2)) in the groupZ2
4 × Z2 × Z3. This sparked a search for a

similar difference set with largerq in (3.2). The most likely candidate was generally
thought at that time to be a(640,72,8) difference set (i.e., withq = 8 andm = 1
in (3.2)) in G1 or G2 as given above. Indeed, the search for difference sets in these
two groups led Davis and Jedwab to construct a family of difference sets with brand
new parameters (see [30, p. 16]); but the existence of a(640,72,8) difference set in
G1 and G2 was not settled in [30]. Theorem 3.6 now settles this problem and says
much more.

Finally, we mention that Baumert and Gordon [10] proved nonexistence of several
cyclic difference sets with small parameters, and showed that there do not exist cyclic
projective planes of nonprime power order�2 ·109. They also looked at the existence
of cyclic (v, k, �) difference sets withk�300, and cyclic(v, v−1

2 , v−3
4 ) difference sets

with v�10,000.

4. Multipliers

Let D be a difference set inG. An automorphism� of G is called amultiplier of
D if it induces an automorphism of the symmetric design dev(D) developed fromD;
furthermore ifG is abelian and� : G → G is given by x �→ xt , gcd(t, |G|) = 1,
we call �, or simply the integert, a numerical multiplierof D. Multipliers were first
discovered by Hall [47]. They are one of the earliest tools for constructing difference
sets and proving nonexistence results on difference sets. One of the major open problems
concerning multipliers of difference sets is Hall’s multiplier conjecture.

Conjecture 4.1. Let D be a (v, k, �) difference set in an abelian group of orderv,
and let p be any prime divisor ofn = k−� with gcd(p, v) = 1. Then p is a multiplier
of D.

The multiplier conjecture can be proved rather easily in the casen = p�, wherep
is a prime not dividing the order of the group. So it is natural to consider the cases
n = 2p� and n = 3p�. Muzychuk [94] finished completely the casen = 2p�, p an
odd prime, and obtained partial results in the case wheren = 3p�. Recently, Qiu [101]
finished the casen = 3p� completely. We summarize their results in the following
theorem.

Theorem 4.2 (Muzychuk[94] , Qiu [101]). Let D be a (v, k, �) difference set in an
abelian group of orderv, and letn = k− �. If n = 2p�, where p is an odd prime not
dividing v, or n = 3p�, where p is a prime not dividingv, then p is a multiplier of D.

One of the reasons that we seem not to make much headway on the multiplier
conjecture is the scarcity of examples of(v, k, �) difference sets in abelian groups of
exponent greater than 3 with the properties that gcd(v, k − �) = 1 and k − � is not
a prime power. (Note that whenk − � is a prime power, the multiplier conjecture
for (v, k, �) difference sets is true.) It is a quite challenging problem to construct
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new difference sets satisfying the above constraints. Also of interest is the following
problem.

Problem 4.3. Does there exist a difference set with only the trivial numerical multiplier
in an abelian group of exponent greater than3?

Note that difference sets in elementary abelian 2-groups certainly have only the trivial
numerical multiplier. Also the Paley–Hadamard difference set in(F3m,+) has only the
trivial numerical multiplier. That is the reason we require the abelian group involved
in Problem4.3 to have exponent greater than 3.

In the rest of this section, we discuss difference sets with multiplier−1. If D is an
abelian difference set with multiplier−1, then by a theorem of McFarland and Rice
[93], we may assume thatD is fixed by −1, that is,D(−1) = D, where D(−1) =
{d−1|d ∈ D}. A difference set fixed by−1 is sometimes called areversible difference
set. The parameters of a reversible abelian difference set are severely restricted. See [63,
Section 13] for a list of restrictions. In fact, McFarland made the following conjecture.

Conjecture 4.4. Let D be a(v, k, �) abelian difference set with−1 multiplier (w.l.o.g.
assumek < v/2 by complementation). Then either(v, k, �) = (4000,775,150) or
(v, k, �) = (4u2,2u2− u, u2− u) for some positive integer u.

Making use of sub-difference sets of reversible difference sets, Ma[87] proved that
the truth of the following conjecture on the solutions of two diophantine equations
would imply the truth of Conjecture 4.4.

Conjecture 4.5. Let p be an odd prime, a�0 and b, t, r�1. Then

(1) Y = 22a+2p2t − 22a+2pt+r + 1 is a square if and only ift = r (i.e., Y = 1).
(2) Z = 22b+2p2t − 2b+2pt+r + 1 is a square if and only ifp = 5, b = 3, t = 1, and

r = 2 (i.e., Z = 2401).

Le and Xiang[77] could verify part (1) of Conjecture 4.5. At one time, Z.F. Cao
claimed that he had a proof of part (2) of Conjecture 4.5 (see [66, Section 4.1]). But
this is not substantiated. Recently, Luca and Stˇanicǎ [86] proved the following result
concerning part (2) of Conjecture 4.5.

Theorem 4.6. Let p be any fixed odd prime. Then the diophantine equation

x2 = 22b+2p2t − 2b+2pt+r + 1

in positive integer unknownsx, b, t, r�1 has at most230,000 solutions.

In summary, it seems that we still do not have a complete proof of Conjecture4.5.
Thus Conjecture 4.4 is not completely settled either.

Turning to nonabelian reversible difference sets, we remark that the parameters of
such difference sets are not as restricted as in the abelian case. There exist examples of
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nonabelian reversible difference sets whose parameters are not as specified in Conjecture
4.4, see [88,14]. For example, many nonabelian(96,20,4) reversible difference sets
were constructed in [14]. Finally we comment that ifD is a reversible difference set
in a groupG, then the Cayley graph Cay(G,D) is a strongly regular graph. Therefore
reversible difference sets are closely related to Schur rings, strongly regular graphs and
association schemes. We will see such connections in use in Section 7.

5. Difference sets with classical parameters

The Singer difference sets arise from the classical designs of points and hyperplanes
in projective space PG(m− 1, q); they are cyclic difference sets with parameters

v = qm − 1

q − 1
, k = qm−1− 1

q − 1
, � = qm−2− 1

q − 1
, (5.1)

wherem�3 and q is a prime power. The parameters in (5.1) or the complementary
parameters of (5.1) are calledclassical parameters. It is known that there exist many
infinite families of cyclic difference sets with classical parameters which are inequivalent
to the Singer difference sets; early examples of such difference sets are the GMW
difference sets constructed in 1962 (see [42]). Initiated by [90,98,97], there has been
a surge of activity in this sub-area of the theory of difference sets. For a survey of
results up to 1999, we refer the reader to [118]. After [118] was written, more cyclic
difference sets with classical parameters were constructed; several tough conjectures in
this area were proved. The most significant result is the following theorem of Dillon
and Dobbertin [34].

Theorem 5.1. Let L = F2m and for each k satisfying1�k < m/2 and gcd(k,m) = 1
let �k(X) = (X + 1)d + Xd + 1, whered = 4k − 2k + 1. ThenBk := L \ �k(L) is a
difference set with classical parameters inL∗. Moreover, for each fixed m, the�(m)/2
difference setsBk are pairwise inequivalent.

The proof of Theorem5.1 uses techniques from Fourier analysis on the additive group
of F2m and the theory of quadratic forms in characteristic 2. Note that Theorem 5.1
states thatBk is a difference set in themultiplicativegroup of F2m , but the proof uses
Fourier analysis on theadditive group of F2m . Such ideas of using additive characters
to prove that a subset inF2m is a difference set inF∗2m appeared earlier in [117,33].

The paper [34] contains proofs of all five conjectures in [98], and the complete proof
of the No–Chung–Yun conjecture in [97]. Besides these, [34] also contains a wealth of
information on cyclic(2m−1,2m−1−1,2m−2−1) difference sets, Dickson and Müller–
Cohen–Matthews polynomials, bent functions, and quadratic forms in characteristic 2.
It follows from the results in [34] that every known(2m−1,2m−1−1,2m−2−1) cyclic
difference set belongs to a series given by a constructive theorem. (For references on
exhaustive searches for(2m − 1,2m−1− 1,2m−2− 1) cyclic difference sets with small
m, we refer the reader to [118].) This naturally raises the following problem.
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Problem 5.2. Does there exist a(2m − 1,2m−1 − 1,2m−2 − 1) cyclic difference set
inequivalent to the known ones?

Based on[52], it seems very likely that the difference setsBk in Theorem 5.1
are related to the maximal arcC(2k) = {(1, x, x2k , x2k+1)|x ∈ F2m} ∪ {(0,0,0,1)},
where gcd(k,m) = 1, in PG(3,2m). Note that Maschietti’s construction [90] is based
on hyperovals, which are maximal arcs of degree 2 in PG(2,2m). It is of interest to
explore the geometry behind the difference setsBk. To this end, we ask the following
question:

Problem 5.3. Is there a geometric proof of Theorem5.1 using maximal arcs in
PG(3,2m)?

Next we consider difference sets with parameters (5.1) satisfyingq > 2. At the end
of the survey [118], we commented that there is not much known about difference
sets with classical parameters (5.1), with the additional conditions thatq > 2 andm
is prime. (Note that whenm is prime, the GMW construction [42] does not apply.) In
particular, we asked for explanations of the three(121,40,13) non-Singer difference
sets listed in the survey paper [48] by Hall. There are now several families of((3m −
1)/2, (3m−1 − 1)/2, (3m−2 − 1)/2) cyclic difference sets inequivalent to the Singer
difference sets. To describe these new difference sets, we need some notation. As
usual we useF∗qm to denote the multiplicative group ofFqm . Also we use Trqm/q
to denote the trace fromFqm to Fq , and � : F∗qm → F∗qm/F∗q to denote the natural
epimorphism.

Theorem 5.4 (Arasu and Player[4] ). Letm > 1 be an odd integer. Let� : F3m → F3m

be the map defined by�(x) = x + x6 for all x ∈ F3m . Then

D = 1

3
(�(�(F3m) \ {0})−G),

whereG = F∗3m/F∗3, is a difference set in G with classical parameters.

Theorem 5.5 (Helleseth et al.[51] , Chandler and Xiang[21] , and No [96] ). Let
q=3e, e�1, let m = 3k, k a positive integer, d = q2k − qk + 1, and set

R = {x ∈ Fqm |Trqm/q(x + xd) = 1}. (5.2)

Then�(R) is a ((qm − 1)/(q − 1), qm−1, qm−2(q − 1)) difference set inF∗qm/F∗q .

Theorem5.5 was first proved by using the language of sequences with ideal 2-level
autocorrelation in [51] in the caseq = 3. See [21,96] for a complete proof of this
theorem (the paper [21] also showed thatR is a relative difference set). For future use,
we will call this difference set�(R) the HKM difference set.
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Theorem 5.6. Let m�3 be an odd integer, let d = 2 · 3(m−1)/2+ 1, and set

R = {x ∈ F3m |Tr3m/3(x + xd) = 1}. (5.3)

Then�(R) is a ((3m − 1)/2,3m−1,2 · 3m−2) difference set inF∗3m/F∗3.

Theorem5.6 was conjectured by Lin [84], and recently proved by Arasu et al. [1].
For future use, we will call this difference set�(R) the Lin difference set.

There are more constructions of cyclic difference sets with parameters (5.1) and
with q not necessarily equal to 2. No [96] usedd-homogeneous functions onF∗qm over
Fq with difference-balanced property to construct cyclic difference sets with classical
parameters. Also Arasu [1] promised to give many more constructions of such difference
sets by using Stickelberger’s theorem on Gauss sums.

There is no doubt that more cyclic difference sets with parameters (5.1) and with
q > 2 will be discovered. It seems to be more interesting to construct difference sets
with classical parameters with a view to Hamada’s conjecture (see Section 9).

6. Skew Hadamard difference sets

In this section, we consider skew Hadamard difference sets. A difference setD in a
finite groupG is calledskew Hadamardif G is the disjoint union ofD, D(−1), and{1},
whereD(−1) = {d−1|d ∈ D}. A classical example of skew Hadamard difference sets is
the Paley difference set defined in Example 2.5. LetD be a (v, k, �) skew Hadamard
difference set in an abelian groupG. Then we have

1 /∈ D, k = v − 1

2
, and� = v − 3

4
.

If we employ group ring notation, then inZ[G], we have

DD(−1) = v + 1

4
+ v − 3

4
G,

D +D(−1) = G− 1.

Applying any nonprincipal character� of G to the above two equations, one has

�(D) = −1±√−v
2

.

This is an important property of skew Hadamard abelian difference sets which places
severe restrictions on these difference sets. Skew Hadamard difference sets were studied
by Johnsen[60], Camion and Mann [16], Jungnickel [62], and Chen et al. [24]. The
results in [60,16,24] can be summarized as follows:
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Theorem 6.1. Let D be a(v, k, �) skew Hadamard difference set in an abelian group G.
Thenv is equal to a prime powerpm ≡ 3 (mod 4), and the quadratic residues modulo
v are multipliers of D. Moreover, if G has exponentps with s�2, then s�(m+ 1)/4.
In particular, if v = p3 or p5, then G must be elementary abelian.

It was conjectured that if an abelian groupG contains a skew Hadamard difference
set, thenG has to be elementary abelian. This is still open in general. Theorem6.1
contains all known results on this conjecture. It was further conjectured some time ago
that the Paley difference set in Example 2.5 is the only example of skew Hadamard
difference sets in abelian groups. This conjecture is now disproved by Ding and Yuan
[35], who constructed new skew Hadamard difference sets in(F3m,+) by using certain
Dickson polynomials.

Let a ∈ Fq and let n be a positive integer. We define theDickson polynomial
Dn(X, a) over Fq by

Dn(X, a) =
�n/2�∑
j=0

n

n− j

(
n− j

j

)
(−a)jXn−2j ,

where�n/2� is the largest integer�n/2. It is well known that the Dickson polynomial
Dn(X, a), a ∈ F∗q , is a permutation polynomial ofFq if and only if gcd(n, q2−1) = 1
(see[82, p. 356]). Letm be a positive odd integer. For anyu ∈ F∗3m , define

gu(X) = D5(X
2,−u) = X10− uX6− u2X2.

SinceD5(X,−u) is a permutation polynomial ofF3m , we see that the mapgu : F3m →
F3m induced bygu(X) is two-to-one fromF∗3m to F∗3m . In particular,

|Im(gu) \ {0}| = (3m − 1)/2.

The following is the main theorem in[35].

Theorem 6.2. Let m be a positive odd integer, and let u ∈ F∗3m . Then Im(gu) \ {0} is
a skew Hadamard difference set in(F3m,+). Moreover, Im(gu) \ {0} is inequivalent to
the Paley difference set formed by the nonzero squares ofF3m if m > 3.

The key observation used in the proof of Theorem6.2 is the fact that for any nonzero
u ∈ F3m , gu(X) induces a planar function fromF3m to itself, wherem is odd. In the
special case whereu = −1, this fact was first observed by Coulter and Matthews [26].
Since the exponent of each monomial ingu(X) can be written as 3i + 3j , for somei
and j, gu(X) is a so-called Dembowski–Ostrom polynomial. It is well known [32] that
any Dembowski–Ostrom polynomial overFq inducing a planar function fromFq to
itself will produce a translation plane (in fact, a semifield plane). Thus the polynomials
gu(X) not only give rise to skew Hadamard difference sets, but also produce semifield
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planes. Coulter and Henderson[27] showed thatg−1(X) over F3m gives rise to new
semifield planes ifm > 3 is odd. To completely sort out the isomorphism of affine
planes produced bygu(X), they showed in [28] that it suffices to consider the cases
u = 1 andu = −1 only, and proved the following theorem:

Theorem 6.3. Let g1(X) = X10−X6−X2 and m be odd, so thatg1(X) is a planar
Dembowski–Ostrom polynomial overF3m . If m�4, then the affine plane produced by
g1(X) via the standard procedure in[32] is not isomorphic to any known affine plane.

7. Bush-type Hadamard matrices

In this section, we describe the recent construction of symmetric Bush-type Hadamard
matrices in [95]. A Hadamard matrixH = (Hij ) of order 4n2, whereHij are 2n× 2n
block matrices, is said to be ofBush-typeif

Hii = J2n, andHijJ2n = J2nHij = 0 (7.1)

for i = j , 1� i, j�2n. Here J2n denotes the all-one matrix of order 2n. Bush [15]
proved that the existence of a projective plane of order 2n implies the existence of a
symmetric Bush-type Hadamard matrix of order 4n2. So if one can prove the nonexis-
tence of symmetric Bush-type Hadamard matrices of order 4n2, wheren is odd, then
the nonexistence of a projective plane of order 2n, n odd, will follow. This was Bush’s
original motivation for introducing Bush-type Hadamard matrices. (We will see that
this approach to proving nonexistence of projective planes of order 2n, n odd, fails
almost completely.) Kharaghani and his coauthors [70,56–58,65] rekindled the interest
in Bush-type Hadamard matrices by showing that these matrices are very useful for
constructions of symmetric designs and strongly regular graphs. We refer the reader to
the recent survey [65] by Jungnickel and Kharaghani for known results on Bush-type
matrices before [95] was written. Kharaghani [70] conjectured that Bush-type Hadamard
matrices of order 4n2 exist for all n. While it is relatively easy to construct Bush-type
Hadamard matrices of order 4n2 for all evenn for which a Hadamard matrix of or-
der 2n exists (see [69]), it is not easy to decide whether such matrices of order 4n2

exist if n > 1 is an odd integer. In [65], Jungnickel and Kharaghani wrote “Bush-
type Hadamard matrices of order 4n2, wheren is odd, seem pretty hard to construct.
Examples are known forn = 3, n = 5, andn = 9 (see [56–58], respectively); all other
cases are open”. Very recently the following theorem is proved in [95].

Theorem 7.1. There exists a symmetric Bush-type Hadamard matrix of order4m4 for
every odd m.

The proof of Theorem7.1 is based on the construction of(4p4,2p4 − p2, p4 −
p2) Hadamard difference sets in [116] and Turyn’s compositiontheorem in [109].
It is well known that the existence of a symmetric Bush-type Hadamard matrix
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of order 4n2 is equivalent to the existence of a strongly regular graph with
parameters

v = 4n2, k = 2n2− n, � = � = n2− n

and with the additional property that the vertex set of the graph can be partitioned
into 2n disjoint cocliques of size 2n. The latter object is in turn equivalent to an
amorphic three-class association scheme by a result of Haemers and Tonchev[46].
So in order to construct symmetric Bush-type matrices, we simply construct the spe-
cial three-class association schemes. This was done in two steps in [95]. First, we
observe that the construction in [116] (together with the necessary two-intersection
sets constructed in [23]) not only produces a reversible(4p4,2p4 − p2, p4 − p2)

Hadamard difference set inG = Z2
2 × Z4

p, p an odd prime, but also a partition
of G into the disjoint union of two reversible(4p4,2p4 − p2, p4 − p2) Hadamard
difference sets and a subgroup of order 2p2. Hence we obtain a three-class amor-
phic association scheme on 4p4 vertices. Second, we show that Turyn’s composition
theorem “respects” the aforementioned partitions. Putting these together, Theorem 7.1 is
proved.

Kharaghani [70,71] showed how to use Bush-type Hadamard matrices to simplify
Ionin’s method [54] for constructing symmetric designs. Based on his constructions in
[70,71], symmetric designs with new parameters are obtained from Theorem 7.1.

Theorem 7.2 (Muzychuk and Xiang[95] ). Let m be an odd integer. Ifq = (2m2−1)2

is a prime power, then there exists twin symmetric designs with parameters

v = 4m4 (q
&+1− 1)

q − 1
, k = q&(2m4−m2), � = q&(m4−m2) (7.2)

for every positive integer&.

Theorem 7.3 (Muzychuk and Xiang[95] ). Let m be an odd integer. Ifq = (2m2+1)2

is a prime power, then there exists Siamese twin symmetric designs with parameters

v = 4m4 (q
&+1− 1)

q − 1
, k = q&(2m4+m2), � = q&(m4+m2)

for every positive integer&.

Theorem7.2 can be viewed as further evidence in support of the following conjecture
of Ionin and Kharaghani [55].
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Conjecture 7.4. For any integersh = 0 and &�0, if q = (2h− 1)2 is a prime power,
then there exists a symmetric design with the following parameters:

v = 4h2 (q
&+1− 1)

q − 1
, k = q&(2h2− h), � = q&(h2− h).

In relation to Theorem7.2, we also ask the following question.

Problem 7.5. Does there exist a difference set with the parameters in(7.2)?

8. Nonabelian difference sets

While we have a well developed theory of abelian difference sets, our knowledge
of nonabelian difference sets is fragmentary. For a survey of the status of nonabelian
difference sets up to 1999, we refer the reader to [83]. Most of the recent papers on
nonabelian difference sets are concerned with difference sets with specific parameters
or difference sets in specific groups. We collect several recent results on nonabelian
difference sets in this section.

The first result concerns difference sets in dihedral groups. It is a well-known con-
jecture that there exists no nontrivial difference set in any dihedral group. Leung et al.
[79] made considerable progress towards this conjecture. In particular, they proved that
the parameters of a difference set in a dihedral group (in short, a dihedral difference
set) are quite restrictive. (We note that the order of a dihedral difference set must be a
square since the order of a dihedral group is even.) More recently, Leung and Schmidt
[80] proved the following asymptotic nonexistence result on dihedral difference sets.

Theorem 8.1. Let p1, p2, . . . , pr be distinct primes. There are only finitely many u’s
of the form

∏r
i=1p

�i
i for which a dihedral difference set of orderu2 can exist.

More detailed nonexistence results on dihedral difference sets can be found in[80].
For example, it is proved in [80] that with the possible exception ofu = 735 there is
no difference set of orderu2�106 in any dihedral group.

Next we consider nonabelian Hadamard difference sets with parameters(4p2,2p2−
p, p2−p), wherep is a prime. McFarland in his celebrated paper [92] proved that if a
(4p2,2p2−p, p2−p) abelian difference set exists, wherep is a prime, thenp = 2 or
3. Smith [106] could construct a difference set in a nonabelian group of order 100, and
he called such a difference set genuinely nonabelian since an abelian counterpart does
not exist by McFarland’s result. Iiam [53] studied nonabelian(4p2,2p2 − p, p2 − p)

difference sets systematically, and could rule out a little bit more than one half of the
groups of order 4p2, p�5 a prime, from having a(4p2,2p2− p, p2− p) Hadamard
difference set. While there are more constructions of nonabelian difference sets in
groups of order 100 [41,110,61], no nonabelian(4p2,2p2 − p, p2 − p) difference set
with p > 5 a prime has been found so far.
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Becker[11] recently undertook a systematic study of nonabelian difference sets with
parameters(120,35,10). Abelian difference sets with these parameters were shown not
to exist by Turyn [107]. Thus if a nonabelian(120,35,10) difference set exists, it will
be genuinely nonabelian. The main result of Becker [11] is the following theorem:

Theorem 8.2. If a solvable group contains a(120,35,10) difference set, then it is one
of the following groups:

G1 = 〈x, y, z|y3 = x5 = z8 = zxz−1x−1 = zyz−1y = xyx−1y−1 = 1〉,

G3 = 〈x, y, z|y3 = x5 = z8 = zyz−1y = zxz−1x = yxy−1x−1 = 1〉,

G7 = 〈x, y, z|y3 = x5 = z8 = zyz−1y = yxy−1x−1 = zxz−1x−2 = 1〉.

The existence of a(120,35,10) difference set inG1 (respectively, inG3 and G7)
is not settled.

We end this section by mentioning the following problem related to the material
discussed in Section6. It is well known and easy to prove that any group of orderp2,
p a prime, is abelian. Thus it is natural to ask

Problem 8.3. (1) Let p > 3 be a prime. Does there exist a difference set in a non-
abelian group of orderp3?

(2) Letp > 3 be a prime congruent to3 modulo4.Does there exist a skew Hadamard
difference set in a nonabelian group of orderp3?

For difference sets in nonabelian groups of order 27, we refer the reader to
Kibler [74].

9. The p-ranks and SNF of difference sets with classical parameters

In the study of difference sets with classical parameters, one often faces the following
question. After constructing a family of difference sets with classical parameters, how
can one tell whether the difference sets constructed are equivalent to the known ones
or not? This question was usually answered by comparison ofp-ranks of the difference
sets involved. For example, in [36], we computed the 2-ranks of the cyclic difference
sets from hyperovals and showed that these difference sets are inequivalent to previously
known cyclic difference sets with the same parameters. Indeed, testing inequivalence of
difference sets provided much motivation for recent work onp-ranks of difference sets.
But we should not forget that another motivation for studyingp-ranks of difference
sets with classical parameters comes from Hamada’s conjecture.

Conjecture 9.1 (Hamada[49] ). Let D be a symmetric design with the classical
parameters

((qm − 1)/(q − 1), (qm−1− 1)/(q − 1), (qm−2− 1)/(q − 1)),
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whereq = pt , p a prime. Then one has

rankpD�
(
p +m− 2

m− 1

)t

+ 1,

with equality if and only ifD is the development of a classical Singer difference set.

Hamada’s conjecture was proved to be true in the caseq = 2 by Hamada and
Ohmori [50]. There is little progress towards Conjecture 9.1 after [50]. Even though
there is some doubt that Conjecture 9.1 is true for an arbitrary symmetric designD
with classical parameters (see [63, p. 311]), it is very likely that the conjecture is true
in the special case whereD is developed from a cyclic difference set. Therefore, it is
of interest to ask the following question.

Problem 9.2. Is it possible to give a proof of Hamada’s conjecture under the extra
assumption thatD is developed from a cyclic difference set?

Turning to computations ofp-ranks of difference sets from specific families, we
report that thep-ranks of the classical GMW difference sets are computed in[3]. This
solves an open problem mentioned in [100, p. 84; 12, p. 461]. However, we should
mention that due to the involved product construction, thep-rank formulae in [3] are
not very explicit. A related problem is to decide whether inequivalent classical GMW
difference sets give rise to nonisomorphic symmetric designs. This problem is now
settled by Kantor [68] who showed that isomorphism implies equivalence.

We mention morep-rank results. The 3-ranks of the difference sets in Theorem 5.4
are computed in [4], and the 3-ranks of the HKM difference sets are determined
in [21,99]. The paper [99] also contains the computations of the 3-ranks of the Lin
difference sets. The techniques for computingp-ranks in [3,21,4] are similar to that in
[36]; the use of Gauss and Jacobi sums and Stickelberger’s theorem on Gauss sums is
becoming standard for this purpose.

From the computations of 3-ranks in [21,99], we know that in the caseq = 3,
m = 3k, k > 1, the 3-rank of the HKM difference set is 2m2−2m. The Lin difference
set also has 3-rank 2m2 − 2m, wherem > 3 is odd, see [99]. Therefore whenm is
an odd multiple of 3, these two difference sets have the same 3-rank. Hence they can
not be distinguished by 3-ranks. It is therefore natural to consider using the Smith
normal form (SNF) of these two families of difference sets to distinguish them. The
following lemma is very useful for determining the SNF of(v, k, �) difference sets
with gcd(v, k − �) = 1.

Lemma 9.3 (Chandler and Xiang[22] ). Let G be an abelian group of orderv, let p
be a prime not dividingv, and letP be a prime ideal inZ[	v] lying above p, where
	v is a complex primitivevth root of unity. Let D be a(v, k, �) difference set in G,
and let � be a positive integer. Then the number of invariant factors of D which are
not divisible byp� is equal to the number of complex characters� of G such that
�(D) /≡ 0 (modP�).
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Setting� = 1 in Lemma9.3, we see that thep-rank of D is equal to the number of
complex characters� such that�(D) ≡ 0 (modP), which was proved by MacWilliams
and Mann [89]. Using Lemma 9.3, Fourier transforms, and Stickelberger’s congruence
on Gauss sums, we [22] computed the number of 3’s in the SNF of the Lin and HKM
difference sets.

Theorem 9.4. Let m > 9. Then the number of3’s in the Smith normal form of the
HKM difference sets with parameters((3m − 1)/2,3m−1,2 · 3m−2) is

2

3
m4− 4m3− 28

3
m2+ 62m+ 
(m) ·m.

The number of3’s in the Smith normal form of the Lin difference sets when
m > 7 is

2

3
m4− 4m3− 14

3
m2+ 39m+ �(m) ·m.

The values of
(m) and �(m) are 0 or 1.

Since the two “almost” polynomial functions in Theorem9.4 are never equal when
m > 9, and since the Smith normal forms of the Lin and HKM difference sets are also
different whenm = 9 (by direct computations), the following conclusion is reached.

Theorem 9.5. Let m be an odd multiple of3. The Lin and HKM difference sets with
parameters(3m−1

2 ,3m−1,2 · 3m−2) are inequivalent whenm > 3, and the associated
symmetric designs are nonisomorphic whenm > 3.

The work in [22] motivated us to ask whether it is true that two symmetric designs
with the same parameters and having the same SNF are necessarily isomorphic. The
answer to this question is negative. It is known [6] that the Smith normal form of a
projective plane of orderp2, p prime, is

1rp(p4+p2−2r+2)(p2)(r−2)((p2+ 1)p2)1,

where the exponents indicate the multiplicities of the invariant factors andr is the
p-rank of the plane. That is, thep-rank of the plane completely determines the Smith
normal form of the plane. There are four projective planes of order 9. The desargue-
sian one has 3-rank 37, while the other three all have 3-rank 41 (cf.[103]), so the
three non-desarguesian projective planes have the same Smith normal form, yet they
are nonisomorphic. However, the answer to the following more restricted question is
not known.

Problem 9.6. If two cyclic difference sets with classical parameters have the same
Smith normal form, are the associated designs necessarily isomorphic?
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10. The diagonal forms of some set-inclusion matrices

Let X be a finite set withv elements, and lett and k be two integers such that
0 < t�k < v. Let Wtk be the

(
v
t

)
by

(
v
k

)
matrix with rows indexed by thet-subsets of

X and columns indexed by thek-subsets ofX and with the(T ,K)-entry 1 if T ⊆ K

and 0 otherwise. These higher incidence matrices proved to be very useful in many
combinatorial investigations, e.g., in the study oft-designs and extremal set theory (see
[73,7]). (In fact, the authors of [73] used the term algebraic design theory to mean the
study of these higher incidence matrices, and its applications to design theory problems.
We certainly have enlarged the scope of algebraic design theory here.)

Gottlieb [43] probably was the first to study these matricesWtk. However, it was
Graver and Jurkat [45] and Wilson [112] who first used these matrices to study (signed)
t-designs. Later, Foody and Hedayat [37], and Graham et al. [44] further developed the
theory of null designs (or trades), and used it to study designs. We refer the reader to
[73] for a survey of some results on these higher incidence matrices. We mention that
in recent papers [17,105], Singhi and his coauthor defined tags on subsets, and used
them to study the matricesWtk and certain general(t, k) existence problems. In the
following, we collect some results onp-ranks and diagonal forms ofWtk. These are
mainly the results of Wilson in [113–115].

In [113], Wilson found thep-rank and a diagonal form ofWtk. We state his theorems
as follows:

Theorem 10.1.For t� min{k, v − k}, the rank ofWtk modulo a prime p is

∑ (
v

i

)
−

(
v

i − 1

)
,

where the sum is extended over those indices i such that p does not divide the binomial
coefficient

(
k−i
t−i

)
.

Theorem 10.2. If t� min{k, v − k}, thenWtk has as a diagonal form the
(
v
t

) × (
v
k

)
diagonal matrix with diagonal entries

(
k−i
t−i

)
with multiplicity

(
v
i

)− (
v

i−1

)
.

Frumkin and Yakir [38] gave a different proof for Theorems 10.1, 10.2 by
using representations of the symmetric groupSv. They also considered similar
problems for theq-analogues ofWtk but only obtained partial results in that case
(see Section 11).

Wilson [114] considered certain integral matrices which are useful for his theory of
signed hypergraph designs, and found diagonal forms for those matrices.

Theorem 10.3(Wilson [114]). Let X be av-set. Let M be an integral matrix whose(
v
t

)
rows are indexed by the t-subsets of X and which has the property that the set of

column vectors of M is invariant under the action of the symmetric groupSv acting
on the t-subsets of X. Letdi be the greatest common divisor of all entries ofWitM,
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i = 0,1, . . . , t . Then a diagonal form for M is given by the diagonal entriesdi with
multiplicity

(
v
i

)− (
v

i−1

)
, i = 0,1, . . . , t .

More recently, Wilson[115] considered incidence matrices oft-subsets and hyper-
graphs. He showed nice applications of these matrices to a zero-sum Ramsey-type
problem modulo 2 and to inequalities concerningt-wise balanced designs. For details,
we refer the reader to [115].

11. The SNF of the incidence matrices of points and subspaces in PG(m, q) and
AG(m, q)

In this section, we describe the recent work in [20] on the SNF of the incidence
matrices of the 2-designs in Examples 2.3 and 2.4. Note that these incidence matrices
are special cases of theq-analogues of the matricesWtk discussed in Section 10. We
will concentrate on the design coming from projective geometry. The SNF of the design
coming from AG(m, q) follows from the results in the projective case.

Let PG(m, q) be them-dimensional projective space overFq and letV be the un-
derlying (m + 1)-dimensional vector space overFq , where q = pt , p a prime. For
any d, 1�d�m, we will refer to d-dimensional subspaces ofV as d-subspaces and
denote the set of these subspaces inV as Ld . The set of projective points is thenL1.
The pair(L1,Ld), whered > 1, with incidence being set inclusion, is the 2-design in
Example 2.3. LetA be an incidence matrix of the 2-design(L1,Ld). SoA is a b × v

(0,1)-matrix, whereb =
[
m+ 1
d

]
q

andv =
[
m+ 1

1

]
q

. We will determine the Smith

normal form ofA. There is a somewhat long history of this problem. We refer the
reader to [20] for a detailed account.

The following theorem shows that all but one invariant factor ofA are p powers.

Theorem 11.1.Let A be the matrix defined as above. The invariant factors of A are
all p-powers except for thevth invariant, which is a p-power times(qd − 1)/(q − 1).

This has been known at least since[104], and it essentially follows from the fact
thatA is the incidence matrix of a 2-design. For a detailed proof, see [20]. In view of
Theorem 11.1, to determine the SNF ofA, it suffices to determine the multiplicity of
pi appearing as an invariant factor ofA. It will be convenient to viewA as a matrix
with entries from ap-adic local ringR (some extension ring ofZp, the ring ofp-adic
integers). We will define this ringR and introduce two sequences ofR-modules and
two sequences ofq-ary codes in the following subsection:

11.1. R-modules and q-ary codes

Let q = pt and letK = Qp(	q−1) be the unique unramified extension of degreet
over Qp, the field ofp-adic numbers, where	q−1 is a primitive (q−1)th root of unity
in K. Let R = Zp[	q−1] be the ring of integers inK and letp be the unique maximal
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ideal in R (in fact, p = pR). ThenR is a principal ideal domain, and the reduction of
R (modp) is Fq . Define x̄ to be x (modp) for x ∈ R.

We now view the above matrixA as a matrix with entries fromR. Define

Mi = {x ∈ RL1|Ax� ∈ piRLd }, i = 0,1, . . . .

Here we are thinking of elements ofRL1 as row vectors of lengthv. Then we have a
sequence of nestedR-modules

RL1 = M0 ⊇ M1 ⊇ · · · .

Define Mi = {(x̄1, x̄2, . . . , x̄v) ∈ FL1
q |(x1, x2, . . . , xv) ∈ Mi} for i = 0,1,2, . . . . For

example,

M1 =



(x̄1, x̄2, . . . , x̄v) ∈ FL1

q |A




x1
x2
...

xv


 ∈ pRLd



. (11.1)

That is,M1 is the dual code of theq-ary (block) code of the 2-design(L1,Ld). We
have a sequence of nestedq-ary codes

FL1
q = M0 ⊇ M1 ⊇ · · · .

This is similar to what Lander did for symmetric designs; see[76,85, p. 399]. Note
that if i > �p(dv), where�p is the p-adic valuation anddv is the vth invariant factor
of A, thenMi = {0}. It follows that there exists a smallest index& such thatM& = {0}.
So we have a finite filtration

FL1
q = M0 ⊇ M1 ⊇ · · · ⊇ M& = {0}.

For completeness, we also define

Ni = {x ∈ RL1|pi−1x ∈ R-span of the rows ofA}, i = 0,1, . . . .

For example,N1 is simply theR-span of the rows ofA. We have another sequence of
nestedR-modules associated withA:

{0} = N0 ⊆ N1 ⊆ · · · .
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Similarly, we have a sequence ofq-ary codes

{0} = N0 ⊆ N1 ⊆ · · · ⊆ FL1
q .

We have the following easy but important lemma. See[20] for its proof.

Lemma 11.2. For 0� i�&− 1, pi is an invariant factor of A with multiplicity
dimFq

(Mi/Mi+1).

In what follows, we will determine dimFq
(Mi), for each i�0. In fact, we will

construct anFq -basis for eachMi . To this end, we construct a basis ofFL1
q first.

11.2. Monomial basis ofFLl
q and types of basis monomials

Let V = Fm+1
q . Then every functionf : V → Fq can be written in the form

f (x) =
∑

0� bi � q−1
0� i �m

�b0,b1,...,bm

∏m

i=0
x
bi
i (11.2)

for unique �b0,b1,...,bm ∈ Fq . Since the characteristic function of{0} in V is∏m
i=0(1− x

q−1
i ), we obtain a basis forFV \{0}

q by excludingxq−1
0 x

q−1
1 · · · xq−1

m (some
authors prefer to excludex0

0x
0
1 · · · x0

m, see[39]).
The functions onV \ {0} which descend toL1 are exactly those which are invariant

under scalar multiplication byF∗q . Therefore, we obtain a basisM of FL1
q as follows.

M =
{

m∏
i=0

x
bi
i |0�bi �q − 1,

∑
i

bi ≡ 0 (modq − 1), (b0, b1, . . . , bm)

= (q − 1, q − 1, . . . , q − 1)

}
.

This basisM will be called themonomial basisof FL1
q , and its elements are called

basis monomials.
Next we define the type of a nonconstant basis monomial. LetH denote the set of

t-tuples (s0, s1, . . . , st−1) of integers satisfying (for 0�j� t − 1) the following:

(1) 1�sj �m,

(2) 0�psj+1− sj �(p − 1)(m+ 1),
(11.3)

with the subscripts read (modt). The setH was introduced in[49], and used in [9]
to describe the module structure ofFL1

q under the natural action of GL(m+ 1, q).
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For a nonconstant basis monomial

f (x0, x1, . . . , xm) = x
b0
0 · · · xbmm ,

in M, we expand the exponents

bi = ai,0 + pai,1+ · · · + pt−1ai,t−1 0�ai,j �p − 1

and let

�j = a0,j + · · · + am,j . (11.4)

Because the total degree
∑m

i=0 bi is divisible by q − 1, there is a uniquely defined
t-tuple (s0, . . . , st−1) ∈ H [9] such that

�j = psj+1− sj .

One way of interpreting the numberssj is that the total degree off pi
is st−i (q − 1),

when the exponent of each coordinatexi is reduced to be no more thanq − 1 by the
substitutionxqi = xi . We will say thatf is of type (s0, s1, . . . , st−1).

Let ci be the coefficient ofxi in the expansion of(
∑p−1

k=0 xk)m+1. Explicitly,

ci =
�i/p�∑
j=0

(−1)j
(
m+ 1

j

)(
m+ i − jp

m

)
.

Lemma 11.3. Let ci and �j be defined as above. The number of basis monomials in
M of type (s0, s1, . . . , st−1) is

∏t−1
j=0 c�j .

The proof of this lemma is straightforward, see[20]. For (s0, s1, . . . , st−1) ∈ H,
we will use c(s0,s1,...,st−1) to denote the number of basis monomials inM. The above
lemma gives a formula forc(s0,s1,...,st−1).

11.3. Modules of the general linear group, Hamada’s formula and the SNF of A

Let G = GL(m + 1, q). Then G acts onL1 and Ld , and G is an automorphism
group of the design(L1,Ld). Hence eachMi is an RG-submodule ofRL1 and each
Mi is an FqG-submodule ofFL1

q . In [9], the submodule lattice ofFL1
q is completely

determined, and it is described via a partial order onH. We will need the following
result which follows easily from the results in [9]. To simplify the statement of the
theorem, we say that a basis monomialx

b0
0 x

b1
1 · · · xbmm appearsin a functionf ∈ FL1

q

if when we write f as the linear combination of basis monomials, the coefficient of
x
b0
0 x

b1
1 · · · xbmm is nonzero.
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Theorem 11.4.(1) Every FqG-submodule ofFL1
q has a basis consisting of all basis

monomials in the submodule.
(2) Let M be anyFqG-submodule ofFL1

q and letf ∈ FL1
q . Thenf ∈ M if and only

if each monomial appearing in f is in M.

For the proof of (1), see[20]. Part (2) follows from part (1) easily. The follow-
ing is the main theorem onM1. It was proved by Delsarte [31] in 1970, and later
in [39,9].

Theorem 11.5.Let M1 be defined as above, i.e., M1 is the dual code of the q-ary
(block) code of the2-design(L1,Ld).

(1) For any f ∈ FL1
q , we havef ∈ M1 if and only if every basis monomial appearing

in f is in M1.
(2) Let xb0

0 x
b1
1 · · · xbmm be a basis monomial of type(s0, s1, . . . , st−1). Thenx

b0
0 x

b1
1 · · ·

x
bm
m ∈ M1 if and only if there exists some j, 0�j� t − 1, such thatsj < d.

This is what Glynn and Hirschfeld[39] called “the main theorem of geometric
codes”. As a corollary, we have

Corollary 11.6. (1) The dimension ofM1 is

dimFq
M1 =

∑
(s0,s1,...,st−1)∈H

∃j,sj <d

c(s0,s1,...,st−1).

(2) The p-rank of A is

rankp(A) = 1+
∑

(s0,s1,...,st−1)∈H
∀j,sj � d

c(s0,s1,...,st−1).

The rank formula in part (2) of the above corollary is the so-called Hamada’s
formula.

Generalizing Theorem11.5, we proved the following theorem in [20]:

Theorem 11.7.Let ��1 be an integer, and letM� be defined as above.

(1) For any f ∈ FL1
q , we havef ∈ M� if and only if every basis monomial appearing

in f is in M�.
(2) Let xb0

0 x
b1
1 · · · xbmm be a basis monomial of type(s0, s1, . . . , st−1). Thenx

b0
0 x

b1
1 · · ·

x
bm
m ∈ M� if and only if

∑t−1
j=0 max{0, d − sj }��
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An immediate corollary is

Corollary 11.8. Let 0���(d − 1)t , and let h(�,m, d + 1) be the multiplicity ofp�

appearing as an invariant factor of A. Then

h(�,m, d + 1) = �(0, �)+
∑

(s0,s1,...,st−1)∈H∑
j max{0,d−sj }=�

c(s0,s1,...,st−1),

where

�(0, �) =
{

1 if � = 0,
0 otherwise.

We give some indication on how Theorem11.7 was proved in [20]. Of course
Part (1) of Theorem 11.7 follows from the more general result in Theorem 11.4. About
Part (2) of the theorem, if

∑t−1
j=0 max{0, d − sj }��, we need to show that there exists

a lifting of the monomialxb0
0 x

b1
1 · · · xbmm to RL1 that is in M�. It turns out that the

Teichmüller lifting T (x
b0
0 x

b1
1 · · · xbmm ) of xb0

0 x
b1
1 · · · xbmm will suit our purpose. Indeed to

show thatT (xb0
0 x

b1
1 · · · xbmm ) ∈ M�, we used a theorem of Wan [111] which gives a

lower bound on thep-adic valuation of certain multiplicative character sums. The other
direction of Part (2) of Theorem 11.7 is much more difficult to prove. We need to
prove that if

∑t−1
j=0 max{0, d − sj } < �, then no lifting of xb0

0 x
b1
1 · · · xbmm to RL1 is

in M�. We need to use the action ofG on M�, a special but very useful group ring
element inRG involving transvections inG, Jacobi sums, and Stickelberger’s theorem
on Gauss sums to achieve this. For details, we refer the reader to [20].

We also state the counterpart of Theorem 11.7 for theq-ary codesN�.

Theorem 11.9.Let ��1 be an integer, and letN� be defined as above.

(1) For any f ∈ FL1
q , we havef ∈ N� if and only if every basis monomial appearing

in f is in N�.
(2) Let xb0

0 x
b1
1 · · · xbmm be a basis monomial of type(s0, s1, . . . , st−1). Thenx

b0
0 x

b1
1 · · ·

x
bm
m ∈ N� if and only if

∑t−1
j=0 max{0, d − (m+ 1)+ sj } < �

We mention that thep-adic ideas here and the results in Theorem11.7 have already
found applications in problems in finite geometry, namely in controlling the intersection
sizes of unitals in PG(2, q2). These are contained in the recent paper of Chandler [19]

11.4. The SNF of the 2-design in Example 2.4

Let AG(m, q) be them-dimensional affine space overFq , where q = pt , p is a
prime. Let D be the design in Example 2.4, i.e., the design of the points andd-flats
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of AG(m, q). Let A′ be an incidence matrix ofD. By viewing AG(m, q) as obtained
from PG(m, q) by deleting a hyperplane, we prove the following theorem in[20].

Theorem 11.10.The invariant factors ofA′ arep�, 0���dt , with multiplicity h(�,m,

d + 1)− h(�,m− 1, d + 1), whereh(�, ·, ·) is defined in Corollary11.8.

In closing this section, we mention the following open problem. Adopting the notation
introduced at the beginning of this section, we letAd,e be a (0,1)-matrix with rows
indexed by elementsY of Ld and columns indexed by elementsZ of Le, and with the
(Y, Z) entry equal to 1 if and only ifZ ⊂ Y . Note thatAd,1 = A, an incidence matrix
of the 2-design(L1,Ld). We are interested in finding the Smith normal form ofAd,e

when e > 1.

Problem 11.11.Let e > 1. What is the p-rank ofAd,e? And what is the SNF ofAd,e?

The first question in Problem11.11 appeared in [40], and later in [8]. The&-rank
of Ad,e, where & is a prime different fromp, is known from [38]. Furthermore, the
Smith normal form ofAd,e over the&-adic integers,& is a prime different fromp, is
recently obtained in [18].

12. Miscellanea

In this final section, we collect two important recent results, which are closely related
to the material in previous sections. We begin by describing the result of Blokhuis et
al. [13] on projective planes with a large abelian collineation group.

The prime power conjecture for projective planes asserts that the order of a finite
projective plane is a prime power. This conjecture is far from being proved. Most
work on this conjecture was done under some extra assumptions on the collineation
group of the projective plane. The following theorem of Blokhuis et al. [13] and
Jungnickel and de Resmini [64] is one of the strongest results in recent years in this
direction.

Theorem 12.1(Blokhuis et al.[13] , Jungnickel and de Resmini[64] ). (1). Let G be
an abelian collineation group of ordern2 of a projective plane of order n. Then n is
a prime power, sayn = pb, p a prime. Ifp > 2, then the p-rank of the abelian group
G is at leastb + 1.

(2). Let G be an abelian collineation group of ordern(n− 1) of a projective plane
of order n. Then n must be a power of a prime p and the p-part of G is elementary
abelian.

Concerning the proof of Part (1) of Theorem12.1, we remark that if� is a projective
plane of ordern with an abelian collineation groupG of ordern2, then results of André
and Dembowski and Piper imply that either� is a translation plane or its dual (hence
n is a prime power), or� can be described by a certain relative difference set (and



Q. Xiang /Finite Fields and Their Applications 11 (2005) 622–653 649

the plane is called type (b)). Using elementary and elegant group ring techniques, the
authors of[13] proved that the order of a plane of type (b) is also a prime power. The
proof of the second part is similar.

Next we mention some recent results of Kharaghani and Tayfeh-Rezaie [72] on
Hadamard matrices. A well-known conjecture in combinatorics is that there exists a
Hadamard matrix of order 4n for all positive integersn. This conjecture has been
studied extensively. Prior to 2004, the smallest order for which no Hadamard matrix
was known is 428. Then in June 2004, Kharaghani and Tayfeh-Rezaie announced the
discovery of a Hadamard of order 428. Currently, the smallest order of Hadamard
matrices not known to exist is 668. We remark that one of the ideas in the construction
in [72] of a Hadamard matrix of order 428 goes back to a paper by Turyn [108]. (Note
that Turyn’s composition theorem [109] also played an important role in the construction
of symmetric Bush-type Hadamard matrices. See Section 7.) In [72], Kharaghani and
Tayfeh-Rezaie implemented a fast algorithm on a cluster of 16 PCs to search for Turyn-
type sequences and found Turyn-type(1,−1) sequencesX, Y, Z, W of lengths 36, 36,
36, 35. By a theorem of Turyn [108], these sequences give rise to a T-sequence of
length 107, which in turn yields a Hadamard matrix of order 428. For the definition of
Turyn type sequences and T-sequences, and other Hadamard matrices constructed by
this method, we refer the reader to [72] for details.
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