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We show the existence of a four-class association scheme defined on the unor-
dered pairs of distinct points from PG(1, q2), for q�4 a power of 2, thereby
proving a conjecture of D. de Caen and E. van Dam (Fissioned triangular schemes
via the cross-ratio, European J. Combin. 22 (2001), 297�301). This is a fusion of
certain relations in the fission scheme FT(q2+1) obtained from the triangular
association scheme. Combining three relations in the above four-class association
scheme yields a strongly regular graph, which we show is isomorphic to one con-
structed by Brouwer and Wilbrink using hyperbolic solid sections of the parabolic
quadric in PG(4, q). � 2001 Academic Press
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1. INTRODUCTION

In [2], a putative association scheme is presented using unordered pairs
of distinct points from PG(1, q2), where q�4 is a power of 2, as the under-
lying set with relations defined in terms of cross-ratios. In this paper, we
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show that these relations may be redefined in terms of configurations in a
(classical) inversive plane, and then use this model to verify that the struc-
ture is indeed a four-class association scheme. In fact, we show that a more
general structure is an association scheme (see Theorem 3.7). We are also
able to compute the first eigenmatrix of this scheme, thereby proving the
truth of both parts of the conjecture made in [2].

It turns out that one obtains a strongly regular graph on the same set
of elements (vertices) by merging three relations in the above four-class
association scheme. This strongly regular graph has the parameters

v=q2 (q2+1)�2, k=(q+1)(q2&1),
(1.1)

*=(q&1)(3q+2), +=2q(q+1),

where q�4 is a power of 2. Strongly regular graphs with these parameters
were constructed before by Brouwer and Wilbrink [1]. We will show that
the two graphs are isomorphic when q�4.

2. CIRCLE GEOMETRY AND OVOIDS

Let n�2 be an integer. Any 3&(n2+1, n+1, 1) design is called an
inversive plane of order n, and the blocks of this design are often referred
to as its circles. All known finite inversive planes are ``egglike'' in the
following sense. An ovoid O of PG(3, q), where q>2 is a prime power, is
any set of q2+1 points with no three collinear. The classical example of an
ovoid in PG(3, q) is an elliptic quadric. At each point P of O there is an
unique tangent plane. All other planes in PG(3, q) meet O in an oval; that
is, all such planes meet O in a set of q+1 points, no three collinear. In the
classical case where O is an elliptic quadric, these ovals are conics. If one
takes as varieties the points of an ovoid O, takes as blocks the nontangent
planar intersections of O, and defines incidence by inclusion, the resulting
structure I(O) is easily seen to be an inversive plane of order q. When O is
an elliptic quadric in PG(3, q), I(O) is the Miquelian (or classical ) inversive
plane M(q). When q�8 is an odd power of 2 and O is the Tits ovoid of
PG(3, q), I(O) is the Suzuki�Tits inversive plane S(q). These are the only
known finite inversive planes (see Chapter 6 of [3] for a general discussion
of inversive planes).

It should be noted that there are many other models of the Miquelian
inversive plane M(q). In particular, the points of the projective line
PG(1, q2) together with its Baer sublines (isomorphic copies of PG(1, q)) as
``circles'' forms a model for M(q). Thus one frequently identifies the points
of M(q) with Fq2 _ [�], using parametric coordinates for PG(1, q2). In
this model one particular circle is represented by Fq _ [�], and all other

181A FOUR-CLASS ASSOCIATION SCHEME



circles are obtained as images of this base circle under the linear fractional
mappings x [ ax+b

cx+d , where a, b, c, d # Fq2 with ad&bc{0, and the usual
conventions on the symbol � are taken. Using this model we see that
P1L(2, q2) acts on M(q) as an automorphism group.

For each circle C in M(q) there is a unique automorphism ,C of M(q)
which has order 2 and whose fixed points are precisely the points of C
(see [3]). This involution is called inversion with respect to C, and distinct
points P and Q in M(q) are called conjugate with respect to C if ,C(P)=Q.
Given any two distinct points P and Q of M(q), the remaining q2&1
points may be partitioned into q&1 mutually disjoint circles in exactly one
way (see [7] for q even and [6] for q odd). These q&1 circles are precisely
the circles in M(q) for which P and Q form a conjugate pair. It is interest-
ing to note that not every circle of the Suzuki�Tits inversive plane S(q) has
an associated inversion.

Primarily, we will be using the egglike model I(O) for our inversive
planes, and thus we close this section by gathering for future use a few well-
known facts concerning ovoids in PG(3, q). Proofs of all these facts may be
found in Chapters 15 and 16 of [4]. Through each point P on an ovoid O,
the q+1 lines through P in the tangent plane ?P to O at P are the only
tangent lines to O through P. Any point Q not on O also has exactly q+1
tangent lines passing through it. These q+1 lines through Q are coplanar
if and only if q is even. That is, for even q, the plane through Q containing
these q+1 tangent lines meets O in an oval, and Q is the nucleus of that
oval. Moreover, for even q, if one associates each tangent plane with its
point of contact and associates every other plane with the nucleus of the
oval obtained by intersecting the plane with O, this correspondence deter-
mines a null polarity of PG(3, q). In this case the tangent lines to O are self-
polar, while the secant lines and exterior lines to O get interchanged by the
(null) polarity. More precisely, the polar line of a secant line l is the inter-
section of the tangent planes at the two points of l & O.

Recall that there is a one-to-one correspondence between the lines of
PG(3, q) and the points of the Klein (hyperbolic) quadric K in PG(5, q).
This correspondence is given by the Plu� cker coordinates of a line in
3-space (see [4, pp. 29�31]). Two distinct lines of PG(3, q) meet if and only
if the corresponding points on K are orthogonal; that is, if and only if the
corresponding points on K determine a ruling line of K. If P is a point
of K, the tangent (or polar) hyperplane to K at P meets K in a cone with
vertex P and base a 3-dimensional hyperbolic quadric. Every other hyper-
plane in PG(5, q) meets K in a 4-dimensional parabolic quadric. Using
Plu� cker coordinates, one sees that the (q2+1)(q+1) tangent lines to an
ovoid O in PG(3, q), q even, correspond to a nontangent hyperplane sec-
tion of the Klein quadric K; that is, the tangent lines to O correspond to
a 4-dimensional parabolic quadric P(4, q) when q is even.
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3. A FOUR-CLASS ASSOCIATION SCHEME

Consider the set X of all 2-subsets [a, b] of the projective line PG(1, q2),
where q�4 is a power of 2. As in [2], we define the following relations for
two distinct elements [a, b], [c, d ] in X.

v S1 : |[a, b] & [c, d ]|=1.

v S2 : [a, b] & [c, d ]=<, and the cross-ratio \=\(a, b; c, d ) satisfies
\q&1=1.

v S3 : [a, b] & [c, d ]=<, and the cross-ratio \=\(a, b; c, d ) satisfies
\q+1=1.

v S4 : all other possibilities.

De Caen and Van Dam [2] conjectured the above four relations
together with the diagonal relation S0 form a four-class association scheme
on X. They arrived at this conjecture by merging relations in a fission
scheme FT(q2+1) of the triangular association scheme (cf. [2]).

To show that the above four relations do indeed yield an association
scheme, we redefine the relations in terms of the Miquelian inversive plane
M(q), where the q2+1 points of M(q) are identified with the points of
PG(1, q2), using the second model for M(q) discussed above. Throughout
this section q�4 will be a power of 2.

Proposition 3.1. Two unordered pairs [a, b] and [c, d ] of distinct
points of M(q) are in relation S2 if and only if the four points a, b, c, d are
distinct and concircular.

Proof. We will use the model for M(q) arising from PG(1, q2). In par-
ticular, we identify the points of M(q) with Fq2 _ [�]. Assume that [a, b]
and [c, d ] are in relation S2 . Then a, b, c, d are four distinct points of
M(q). Since Aut(M(q))$P1L(2, q2) contains PGL(2, q2), which is triply
transitive on the points of M(q) and preserves cross-ratio, we may assume
a=0, b=�, and c=1. Thus \=\(a, b; c, d )=1�d, which according to
relation S2 implies that d # Fq*. However, the unique circle in M(q) containing
0, 1 and � is Fq _ [�], and thus a, b, c, d are four distinct concircular points.

Conversely, suppose a, b, c, d are four distinct concircular points of
M(q). Again we may assume without loss of generality that a=0, b=�,
and c=1. Then as above, necessarily, d # Fq* and thus \q&1=1. That is,
[a, b] and [c, d ] are in relation S2 . K

Proposition 3.2. Two unordered pairs [a, b] and [c, d ] of distinct
points of M(q) are in relation S3 if and only if there is a circle containing
[c, d ] whose inversion has [a, b] as a conjugate pair of points.
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Proof. Assume first that [a, b] and [c, d ] are in relation S3 . Then, as
in the proof of the previous proposition, we may assume that a=0, b=�,
and c=1. Hence \=\(a, b; c, d )=1�d # Fq2 "[0, 1], with d q+1=1. One
easily checks that the mapping ,: z [ 1�zq is an inversion interchanging a
and b whose circle of fixed points contains c and d.

Conversely, assume that C is some circle containing c and d such that
,C(a)=b. In particular, a, b, c and d are four distinct points. Without loss
of generality, we may assume a=0, b=�, c=1 and \=\(a, b; c, d )=
1�d # Fq

2"[0, 1]. Using the transitive action of PGL(2, q2) on the circles of
M(q), we see that the unique circle through 1 whose inversion interchanges
0 and � is C=[x # Fq2 : xq+1=1]. Since d # C, this implies that d q+1=1,
and therefore [a, b] and [c, d ] are in relation S3 . K

Remark. Since there is a circle containing [c, d ] with [a, b] as a con-
jugate pair if and only if there is a circle containing [a, b] with [c, d ] as
a conjugate pair, it is clear that S3 is indeed a symmetric relation.

It is now a relatively easy matter to show that the above four relations
S1 , S2 , S3 and S4 form an association scheme and to compute the intersec-
tion parameters. We do this by switching models and now representing
M(q) as the egglike inversive plane I(O), where O is an elliptic quadric in
PG(3, q). Thus an unordered pair [a, b] of distinct points in M(q) gets
identified with the secant line to O passing through a and b. Four points
a, b, c and d of M(q) being concircular is equivalent to these four points of
O being coplanar. If = denotes the null polarity of PG(3, q) determined by
O, the q&1 (mutually disjoint) circles for which [a, b] is a conjugate pair
are obtained by intersecting O with the nontangent planes through l=,
where l is the secant line meeting O in [a, b]. We thus reformulate the
relations S1 , S2 , S3 and S4 as relations on distinct secant lines l and m of O.

v S1 : l meets m in a point of O.

v S2 : l meets m in a point of PG(3, q)"O.

v S3 : l= & m{< (or, equivalently, l & m={<).

v S4 : all other possibilities.

It should be noted that these relations are symmetric and partition the
unordered pairs [l, m] of distinct secant lines to any ovoid O in PG(3, q),
q even, whether or not O is an elliptic quadric. For instance, to show that
l= & m{< and l & m{< together are inconsistent, let ? denote the
plane determined by the intersecting lines l= and m. Then ? & O is some
oval 0, as m is secant to O, and ?= is the nucleus N of this oval 0. But
l=/? and thus N # l, implying l & ?=N. If l & m{<, then necessarily
l & m=N, and the nucleus N lies on the secant line m to the oval 0, a
contradiction.
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Thus we no longer assume that O is an elliptic quadric, but only assume
that O is an ovoid of PG(3, q), q even. If we can show the above relations
determine an association scheme, we not only prove the conjectures made
in [2] are true, but also obtain another association scheme (with the same
parameters) from the Tits ovoid when q�8 is an odd power of 2. That is,
we do not need circle inversions to prove that we have an association
scheme. Throughout the remainder of the paper, = will denote the null
polarity of PG(3, q) obtained from the ovoid O.

Proposition 3.3. Let l be a secant line of O. Then the number ni of
secant lines m for which l and m are related by Si , i=1, 2, 3, 4, is given as
follows:

(1) n1=2(q2&1),

(2) n2=(q2&1)(q&2)�2,

(3) n3=(q2&1) q�2,

(4) n4=(q2&1)(q&2) q�2.

Proof. Let l & O=[a, b], and say that m & O=[c, d ]. To compute n1 ,
one must choose one point from [c, d ] to be either a or b, and then the
other point to be any one of the q2&1 points of O"[a, b]. Thus
n1=2(q2&1). This is clearly independent of the given secant line l.
Similarly, there are q+1 planes ? passing through l, and one can choose
( q&1

2 ) pairs of distinct points from (? & O)"[a, b]. Each such pair deter-
mines a secant line m meeting l in some point not on O, and there are no
other choices for such secant lines. As any two distinct planes through l

meet only in l, we have n2=(q2&1)(q&2)�2. As l= & O=<, there are
two tangent planes and q&1 oval planes passing through the line l=. For
any such oval plane _, one can choose ( q+1

2 ) pairs of distinct points on
_ & O. Each such pair determines a secant line m meeting l=, and there are
no other choices for such secant lines. Thus n3=(q2&1) q�2. The
parameter n4 is thus uniquely determined, independent of the choice of l,
as there are a total of ( q2+1

2 ) secant lines to O. K

Proposition 3.4. The intersection parameter p3
23 is well-defined, and its

value is equal to (2q&1)(q&2)
2 .

Proof. Let l and m be secant lines to O such that l= & m{<, and
hence l & m={< as well. We must count the number of secant lines n
such that n meets l in a point not on O and n & m={<. Let X=l & m=.
Since m= & O=<, X � O and thus X lies on 1

2 (q2&q) secant lines to O, one
of which is l. Any such secant, other than l, is a valid choice for n. All
other choices for n must meet l in a point which does not equal X and
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which does not lie on O. Let R be any one of the q&2 such points of l,
and consider the plane ?=(R, m=) =(l, m=). Since R lies on the secant
line l to the oval 0=? & O, R is not the nucleus of 0 and thus R lies on
1
2q secants to 0, one of which is l. As each such secant must necessarily
meet m=, we get 1

2q&1 choices for n for each such R. Allowing R to vary
and observing that there is no double counting, we see that p3

23=
1
2 (q2&q&2)+ 1

2 (q&2)2= 1
2 (2q&1)(q&2). Clearly p3

23 is independent of
the choice of l and m. K

Proposition 3.5. The intersection parameter p2
33 is well-defined, and it is

equal to q(2q&1)
2 .

Proof. Let l and m be distinct secant lines of O meeting in a point
P � O. We must count the number of secant lines n with n= & l{< and
n= & m{<. Since a line n is secant if and only if n= is exterior, we must
count the number of exterior lines to O meeting both l and m. Since
l & m=P � O, there are 1

2 (q2+q) exterior lines through P, and each of
these lines is a valid choice for n=. Any other exterior line meeting l and
m must lie in the plane ?=(l, m). Since ? & O is an oval 0, we start by
choosing a point R on l which is not equal to P and does not lie on 0.
There are q&2 choices for R. Since any such point R lies on the secant line
l to 0, R is not the nucleus of 0 and hence lies on 1

2q exterior lines to 0,
all of which meet m and are necessarily exterior to O. Thus we see
that p2

33= 1
2q(q&2)+ 1

2 (q2+q)= 1
2q(2q&1), independent of the choice of l

and m. K

Proposition 3.6. The intersection parameter p4
22 is well-defined, and it is

equal to q2&5q+8
2 .

Proof. Let l and m be distinct secant lines of O such that l & m=<
and l= & m=<, thereby also implying that l & m==<. We count the
number of secant lines n to O which meet each of l and m in a point not
on O. Any such line n must lie in a plane through m and pass through the
intersection of that plane with l. Let m & O=[X, Y, ], A=Y= & l, and
B=X= & l. Since X= & Y==XY=m and m & l=<, necessarily A{B.
First consider the plane ?1=(A, m). If 01 denotes the oval ?1 & O, then
the nucleus of 01 is ?=

1 =m= & ?1 . Hence, since m= & l=<, A is not the
nucleus of 01 , and thus A lies on a unique tangent line of 01 . Since
A # Y=, AY is tangent to O and hence must be the unique tangent line to
01 through A. Therefore the 1

2q secant lines to 01 through A include AX
but not AY. That is, we obtain exactly 1

2q&1 choices for n in ?1 , as our
secant line n must meet m in a point not on O. We similarly obtain
precisely 1

2q&1 choices for n in the plane ?2=(B, m) .
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All remaining choices for n lie in planes of the form (R, m) , where R is
a point of l"O other than A or B. Let ?=(R, m) be any one of these q&3
planes. For the same reason as above, R is not the nucleus of the oval
? & O. Since RX and RY are distinct secant lines to this oval, there are
1
2q&2 secants to ? & O through R which meet m in a point not on O,
and these are precisely the choices for n in this plane. Therefore
p4

22=2( 1
2q&1)+(q&3)( 1

2 q&2)= 1
2 (q2&5q+8), independent of the choice

of l and m. K

Similar computations allow us to directly compute the intersection
parameters pk

ij for 1 � k � 4 and 1 � i, j � 3. We then compute n i& pk
i1&

pk
i2& pk

i3= pk
i4= pk

4i , thereby showing pk
i4 is well-defined, and finally deter-

mine the constant pk
44=n4& pk

14& pk
24& pk

34 , showing it also is well-defined.
These computations verify the conjectures made in [2].

Theorem 3.7. The modified relations S1 , S2 , S3 , S4 together with the
diagonal relation S0 define an association scheme on the set of secant lines
to any ovoid O in PG(3, q), where q=2 f with f �2. The first eigenmatrix of
this scheme is

1 2(q2&1) (q�2&1)(q2&1) q(q2&1)�2 q(q�2&1)(q2&1)
1 q2&3 2&q &q &q(q&2)

P=\1 &2 1&q 0 q + .
1 &2 (q�2&1)(q&1) q(q&1)�2 &q(q&2)
1 &2 q(q&1)�2+1 &q(q+1)�2 q

Proof. The first eigenmatrix can be easily computed from the intersec-
tion matrices P0 , P1 , P2 , P3 , and P4 , where the ( j, k)-entry of Pi is the
intersection parameter pk

ij . Of course P0 is the identity matrix. Computa-
tions as in the proofs of the above propositions show that

0 1 0 0 0
n1 q2&1 4 4 4

P1=\ 0 q&2 2(q&3) 2(q&2) 2(q&2)+ ,
0 q 2q 2(q&1) 2q
0 q(q&2) 2q(q&2) 2q(q&2) 2r

0 0 1 0 0
0 q&2 2(q&3) 2(q&2) 2(q&2)

P2=\n2 (q�2&1)(q&3) (q2&9q�2+6) (q�2&1)(q&4) (q2&5q+8)�2+ ,
0 q(q�2&1) q(q�2&2) (q�2&1)(2q&1) q(q&3)�2
0 q(q&2)2�2 q(q2&5q+8)�2 q(q�2&1)(q&3) (q�2&1) r
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0 0 0 1 0
0 q 2q 2(q&1) 2q

P3=\ 0 q(q�2&1) q(q�2&2) (q�2&1)(2q&1) q(q&3)�2+ ,
n3 q(q&1)�2 q(2q&1)�2 q(q�2&1) q(q&1)�2
0 q2 (q�2&1) q2 (q&3)�2 q(q&1)(q�2&1) qr�2

0 0 0 0 1
0 q(q&2) 2q(q&2) 2q(q&2) 2r

P4=\ 0 q(q&2)2�2 q(q2&5q+8)�2 q(q�2&1)(q&3) (q�2&1) r + ,
0 q2 (q�2&1) q2 (q&3)�2 q(q&1)(q�2&1) qr�2
n4 qr(q�2&1) qr(q�2&1) qr(q�2&1) q(q3&4q2+q+8)�2

where n1=2(q2&1), n2=(q2&1)(q&2)�2, n3=q(q2&1)�2, n4=(q2&1) }
(q&2) q�2 and r=q2&2q&1. K

Corollary 3.8. The original relations S1 , S2 , S3 , S4 together with the
diagonal relation S0 define an association scheme on X, the set of 2-subsets
of PG(1, q2), where q=2 f with f �2. The first eigenmatrix of this scheme is
the same as that given in Theorem 3.7.

Proof. Take O to be an elliptic quadric in Theorem 3.7. K

Remark. When f �3 is odd and O is the Tits ovoid, the association
scheme obtained from Theorem 3.7 is different from the one obtained in
Corollary 3.8. To see that these schemes really are different, note that the
subgroup of the automorphism group of the scheme fixing class S1 is essen-
tially the stabilizer of O in P1L(4, q), which is not the same for the Tits
ovoid as for an elliptic quadric (the former is the Suzuki group Sz(q), hav-
ing size (q2+1) q2 (q&1), the latter is the orthogonal group PGO& (4, q),
having size 2(q2+1) q2 (q2&1)).

4. STRONGLY REGULAR GRAPHS

From the first eigenmatrix P of a four-class scheme constructed as in
Section 3, it is easy to see that one gets a strongly regular graph by merg-
ing S1 , S2 and S3 in the association scheme in Theorem 3.7. We will denote
this strongly regular graph by G(O). (Here O refers to the ovoid in
Theorem 3.7.) In this graph, the vertices are the secant lines of O, two dis-
tinct secant lines are adjacent in this graph if and only if they are related
by S1 or S2 or S3 . This was pointed out in [2], modulo their conjectures.
The parameters of such a strongly regular graph are
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v=q2 (q2+1)�2, k=(q+1)(q2&1),

*=(q&1)(3q+2), +=2q(q+1),

and r=q2&2q&1, s=&q&1, where q=2 f, f�2. Here, as usual, r is the
nontrivial positive eigenvalue, and s is the negative one.

Brouwer and Wilbrink [1, Sect. 7B] also constructed strongly regular
graphs with these parameters. Their construction goes as follows. Let Q be
a nonsingular quadric in PG(4, q). Let V be the set of hyperplanes meeting
Q in a hyperbolic quadric. If x, y # V, then xty iff the corresponding
hyperbolic sections are tangent (i.e., iff x & y & Q consists of two intersecting
lines). This defines a strongly regular graph with parameters

v=q2 (q2+1)�2, k=(q+1)(q2&1),

*=(q&1)(3q+2), +=2q(q+1),

where q is an arbitrary prime power. For convenience, we will call this
graph the Brouwer�Wilbrink graph, or the BW graph in short.

In this section, we will show that the strongly regular graph G(O)
obtained by merging classes S1 , S2 , and S3 as discussed above is isomorphic
to the BW graph whenever q�4 is a power of 2. This is true independent
of the ovoid O used in the construction of the association scheme. Hence
we do not get any new strongly regular graphs.

As mentioned in Section 2, the tangent lines to O are represented via
Plu� cker coordinates on the Klein quadric K by a nontangent hyperplane
section, which is necessarily a 4-dimensional parabolic quadric Q=P(4, q).
We use this particular quadric Q as the underlying quadric for the BW
graph. If l is any secant line to O, the corresponding point Pl on the Klein
quadric will not lie on Q, and the tangent hyperplane to K at Pl will meet
Q in a 3-dimensional hyperbolic quadric. If - denotes the null polarity
associated with the Klein quadric K, then as l varies over all the secant
lines to O, Pl

- & Q varies over all the hyperbolic solid sections of
Q=P(4, q). Hence the mapping l [ Pl

- & Q is a bijection between the ver-
tices of the strongly regular graph G(O) and the vertices of the BW graph.
Note that under the Klein correspondence Pl

- & Q corresponds to the
tangent lines of O meeting l.

Theorem 4.1. For any ovoid O in PG(3, q), q=2 f with f�2, the
strongly regular graph G(O) is isomorphic to the BW graph.

Proof. Since the graphs have the same parameters, it suffices to show
that adjacent vertices l and m of G(O) are mapped to adjacent vertices
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Pl
- & Q and P-

m & Q of the BW graph. That is, we must show that
Pl

- & P-
m & Q is a degenerate 2-dimensional quadric consisting of two inter-

secting lines. Using the Klein correspondence, this is equivalent to showing
that the tangent lines to O meeting both l and m form two planar pencils,
sharing one common line. There are three cases to consider.

Suppose first that l and m meet in a point A not on O. Let ? denote the
plane determined by l and m, and consider the oval 0=? & O. The
tangent lines to O meeting l and m are precisely the q+1 tangent lines to
0 in ?, concurrent in the nucleus of 0, and the q+1 tangent lines to O in
A=, one of which lies in ?. Hence we obtain two planar pencils sharing one
line, as desired. The argument for l and m meeting in a point A of O is
essentially the same, the only difference being that A= is now a tangent
plane to O rather than an oval plane.

Finally, consider the case when l= meets m in some point X. The
plane ?=(m, l=) meets O in an oval 0, whose nucleus is ?==l & ?=
l & m=. In this case the tangent lines to O meeting l and m are precisely
the q+1 lines in ? through ?= and (by symmetry) the q+1 lines in
X==(X, l) through the nucleus X of the oval O & X=. Once again, we
obtain two planar pencils, sharing one common line. This completes the
proof. K

Remark 4.2. As a side remark, we note that it is easy to compute the
clique number of G(O). Namely, let ? be any nontangent plane to O, so
that ?= is the nucleus of the oval ? & O. There are 1

2 (q2&q) secant lines to
O through ?= and 1

2 (q2+q) secant lines to O in ?. It is straightforward to
check that any two of these q2 secant lines are in relation S1 , S2 or S3 , and
thus we have a clique of size q2 in G(O). By the Hoffman bound [1, p. 91],
the size of a clique C in a (v, k, *, +, r, s) strongly regular graph is bounded
by 1+k�(&s), where r denotes the nontrivial positive eigenvalue, and s the
negative one. Applying this bound to the graph G(O), we see that the maxi-
mum size of a clique in this graph is q2. Hence we conclude that the clique
number of G(O) is q2 and the Hoffman bound is achieved.
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