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a b s t r a c t

Let Uβ be the special Buekenhout-Metz unital in PG(2, q2), formed by a union of q conics,
where q = pe is an odd prime power. It can be shown that the dimension of the binary code
of the corresponding unital designUβ is less than or equal to q3 + 1− q. Baker andWantz
conjectured that equality holds. We prove that the aforementioned dimension is greater
than or equal to q3(1− 1

p )+
q2

p .
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A unital is a 2-(m3 + 1,m + 1, 1) design, where m ≥ 2. All known unitals with parameters (m3 + 1,m + 1, 1) have m
equal to a prime power, except for one example with m = 6 constructed by Mathon [9], and independently by Bagchi and
Bagchi [3]. In this note, we will only consider unitals embedded in PG(2, q2), i.e., unitals coming from a set of q3 + 1 points
of PG(2, q2)whichmeets every line of PG(2, q2) in either 1 or q+1 points. (Sometimes, a point set of size q3+1 of PG(2, q2)
with the above line intersection properties is called a unital, too.) A classical example of such unitals is the Hermitian unital
U = (P ,B), whereP andB are the set of absolute points and the set of non-absolute lines of a unitary polarity of PG(2, q2),
respectively.
The Hermitian unital is a special example of a large class of unitals embedded in PG(2, q2), called the Buekenhout-Metz

unitals. We refer the reader to [5] for a survey of results on these unitals. A subclass of the Buekenhout-Metz unitals which
received some attention can be defined as follows.
Let q = pe be an odd prime power, where e ≥ 1, let β be a primitive element of Fq2 , and for r ∈ Fq let Cr =

{(1, y, βy2 + r) | y ∈ Fq2} ∪ {(0, 0, 1)}. We define

Uβ = ∪
r∈Fq
Cr .

Note that each Cr is a conic in PG(2, q2), and any two distinct Cr have only the point P∞ = (0, 0, 1) in common. Hence
|Uβ | = q3 + 1. It can be shown that every line of PG(2, q2)meets Uβ in either 1 or q+ 1 points (see [1,7]). One immediately
obtains a unital (design)Uβ from Uβ : The points ofUβ are the points of Uβ , and the blocks ofUβ are the intersections of the
secant lines with Uβ . In this note, we are interested in the binary code C2(Uβ) of this design, i.e., the F2-subspace spanned
by the characteristic vectors of the blocks ofUβ in F

Uβ
2 .
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The following proposition and its proof are due to Baker and Wantz [6,10]. To state the proposition, we use vS to denote
the characteristic vector of a subset S in Uβ .

Proposition 1.1 (Baker and Wantz). The vectors vCr , r ∈ Fq, form a linearly independent set of vectors in C2(Uβ)
⊥.

Proof. Abinary vector v lies inC2(Uβ)
⊥, if and only if, each block of the designUβ meets the support of v in an even number

of points. If a block ofUβ goes through P∞, then it meets every Cr in two points; if a block ofUβ does not go through P∞,
then it meets every Cr in either 0 or 2 points. Hence vCr ∈ C2(Uβ)

⊥, for every r ∈ Fq. The q conics Cr have only the point
P∞ in common. Thus, vCr , r ∈ Fq, are linearly independent. The proof is complete. �

An immediate corollary of Proposition 1.1 is that dimC2(Uβ)
⊥
≥ q. Hence dimC2(Uβ) ≤ q3 + 1− q. Baker and Wantz

[6,10] made the following conjecture.

Conjecture 1.2 (Baker and Wantz). The 2-rank of Uβ is q3 + 1− q. That is, dimC2(Uβ) = q3 + 1− q.

Wantz [10] verified Conjecture 1.2 in the cases where q = 3, 5, 7, and 9 by using a computer and MAGMA [4]. Gary
Ebert [6] popularized the above conjecture of Baker andWantz in a talk inOberwolfach in 2001. See also [11] for a description
of the above conjecture. Of course, the conjecture is equivalent to saying that dimC2(Uβ)

⊥
= q. So it suffices to show that

{vCr | r ∈ Fq} spans C2(Uβ)
⊥. That is, we need to show that if S ⊂ Uβ and S meets every block ofUβ in an even number of

points, then S is a union of some Cr ’s, or a union of some Cr ’s with P∞ deleted.We have not been able to prove this equivalent
version of the conjecture. What we could prove is a lower bound on dimC2(Uβ) as stated in the abstract. The main idea in
our proofs is to realize a shortened code of C2(Uβ) as an ideal in a certain group algebra of the elementary abelian p-group
of order q3. We hope that the current note will stimulate further research on this conjecture.

2. A lower bound on the dimension of C2(Uβ)

We first consider the automorphisms ofUβ . Let

G = {θ ∈ PGL(3, q2) | θ(Uβ) = Uβ}

be the linear collineation group of PG(2, q2) fixing Uβ as a set. It was shown by Baker and Ebert [2] that

G = T o Z2(q−1),

where T is an elementary abelian group of order q3, and Z2(q−1) is a cyclic group of order 2(q− 1). The group G certainly is
also an automorphism group of the designUβ since any element of Gmaps a secant line of Uβ to a secant line of Uβ . In fact,
the group T above acts regularly on Uβ \ {P∞}. Explicitly,

T =


1 t βt2

0 1 2βt
0 0 1

 · (1 0 r
0 1 0
0 0 1

)∣∣∣∣∣∣ t ∈ Fq2 , r ∈ Fq

 ∼= (Fq2 ,+)× (Fq,+).
In the rest of the paper, we will use T (t, r), t ∈ Fq2 , r ∈ Fq, to denote the element1 t βt2

0 1 2βt
0 0 1

 · (1 0 r
0 1 0
0 0 1

)
of T .
The coordinates of the code C2(Uβ) are labeled by the points in Uβ . Deleting the coordinate labeled by P∞ from all

codewords of C2(Uβ), we get a shortened (or punctured) code C2(Uβ)
′, which has the same dimension over F2 as C2(Uβ)

since v{P∞} 6∈ C2(Uβ). Since T acts regularly on Uβ \ {P∞}, we may identify the coordinates of C2(Uβ)
′ with the elements

of T . Under this identification, the point (1, t, βt2 + r) of Uβ correspond to the group element T (t, r) since

(1, 0, 0) · T (t, r) = (1, t, βt2 + r).

After the above identification, the codeC2(Uβ)
′ becomes an ideal of the group algebra F2[T ]. Nowwe can use the characters

of T to help compute the dimension of C2(Uβ)
′.

First of all, we need to extend the field over which the code C2(Uβ) is defined. Let K = F2m , where m = ordp(2) is the
order of 2 modulo p (i.e.,m is the smallest positive integer such that 2m ≡ 1 (mod p)). So K contains a primitive pth root of
unity ξp. We consider the code CK (Uβ) and puncture it at P∞ to get CK (Uβ)

′, which will be denoted byM for simplicity of
notation. The codeM is an ideal of the group algebra K [T ], and

dimK (M) = dimF2(C2(Uβ)
′).
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Therefore, Conjecture 1.2 is equivalent to the statement that

dimK (M) = q3 + 1− q.

SinceM is an ideal of K [T ], and T is abelian, it is well known [8, p. 277] that

dimK (M) = |{χ ∈ T̂ | Meχ 6= 0}|,

where T̂ is the group of characters χ : T → K ∗ of T , and

eχ =
1
|T |

∑
g∈T

χ(g−1)g

are primitive idempotents of K [T ]. We also mention that for any h ∈ T and any χ ∈ T̂ ,

h · eχ = χ(h)eχ . (2.1)

Since T ∼= (Fq2 ,+)× (Fq,+), every character χ of T can be written as (ψa, λb) : T → K ∗, where a ∈ Fq2 , b ∈ Fq,

ψa : x 7→ ξ
Trq2/p(ax)
p , x ∈ Fq2 ,

and

λb : y 7→ ξ
Trq/p(by)
p , y ∈ Fq.

Here Trq2/p (resp. Trq/p) is the trace from Fq2 (resp. Fq) to Fp. (We note in passing that Trq2/p(a/2) = Trq/p(a) for all a ∈ Fq,
a fact which will be used in the proof of Theorem 2.4.) Hence we need to count the number of pairs (a, b) ∈ Fq2 × Fq such
that

Me(ψa,λb) 6= 0.

To this end, we need to write down the blocks of the unital designUβ more explicitly.
We first recall some properties of Uβ , which will be used to describe the blocks ofUβ . The proofs of these properties can

be found in [1,2,7].

• Among the q2 + 1 lines through P∞, q2 of them are secant to Uβ , and one is tangent to Uβ . The secant lines through P∞
are [t, 1, 0], where t ∈ Fq2 , and the unique tangent line through P∞ is [1, 0, 0].
• A secant line to Uβ , not through P∞ must pass through (0, 1, α) for some α ∈ Fq2 . Moreover, for every α ∈ Fq2 , there are
q2 − q secant line through (0, 1, α).
• The line [t,−α, 1], t, α ∈ Fq2 , through (0, 1, α) is secant to Uβ if and only if t 6∈ Fq + α2

4β . (This can be seen as follows:
The line [t,−α, 1] is tangent to Uβ if and only if it is tangent to some conic Cr , r ∈ Fq, which in turn is equivalent to
α2 − 4β(t + r) = 0. The last condition is simply saying that t ∈ Fq + α2

4β .)

The unital designUβ has a total of q2(q2− q+1) blocks, which fall into two types. The type I blocks are the intersections
of the q2 secant lines through P∞ with Uβ . These are

Uβ ∩ [t, 1, 0] = {(1,−t, βt2 + r) | r ∈ Fq} ∪ {P∞},

where t ∈ Fq2 . We may identify (Uβ ∩ [t, 1, 0]) \ {P∞}with the group ring element

Bt,∞ :=
∑
r∈Fq

T (−t, r) ∈ K [T ]. (2.2)

The type II blocks are the intersections of the secant lines through (0, 1, α) with Uβ , with q2 − q of them for each α ∈ Fq2 .
These blocks are

Uβ ∩ [t,−α, 1] = {(1, y, βy2 + r) | r ∈ Fq, y ∈ Fq2 , t − αy+ βy
2
+ r = 0},

where α ∈ Fq2 and t ∈ Fq2 \ (Fq +
α2

4β ). We may identify the above block with the group ring element

Bt,α :=
∑

y∈Fq2 ,r=−t+αy−βy
2∈Fq

T (y, r) ∈ K [T ]. (2.3)

Therefore we have a complete description of the blocks of the unital designUβ .

Lemma 2.1. With the above notation, Me(ψa,λ0) 6= 0, for all a ∈ Fq2 .
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Proof. Wewill show that Bt,∞ · e(ψa,λ0) 6= 0, where Bt,∞ is defined in (2.2). By (2.1), we have h · eχ = χ(h)eχ for any h ∈ T
and any χ ∈ T̂ . So we need to show that (ψa, λ0)(Bt,∞) 6= 0.

(ψa, λ0)(Bt,∞) =
∑
r∈Fq

ψa(−t)λ0(r)

=

∑
r∈Fq

ψa(−t)

= q · ψa(−t).

Since q is odd, and ψa(−t) is a root of unity in K , we see that (ψa, λ0)(Bt,∞) 6= 0. The proof is complete. �

Lemma 2.2. With the above notation, Me(ψ0,λb) = 0, for all nonzero b ∈ Fq.

Proof. The idealM is generated by two types of elements Bt,∞ and Bt,α , which correspond to the two types of blocks ofUβ .
We will show that the character (ψ0, λb), b 6= 0, is zero on both types of generating elements.
For any type I element Bt,∞, t ∈ Fq2 , in (2.2), we have

(ψ0, λb)(Bt,∞) =
∑
r∈Fq

ψ0(−t)λb(r)

=

∑
r∈Fq

λb(r)

= 0,

since b is nonzero.
For any type II element Bt,α in (2.3), we have

(ψ0, λb)(Bt,α) =
∑

r∈Fq,y∈Fq2 ,r=−(βy
2−αy+t)

ψ0(y)λb(r)

=

∑
r∈Fq,y∈Fq2 ,r=−(βy

2−αy+t)

λb(r)

= 0,

since two distinct y ∈ Fq2 give rise to the same r ∈ Fq. The proof is complete. �

By the above two lemmas, we see that Conjecture 1.2 is equivalent to

Conjecture 2.3. For nonzero a ∈ Fq2 and nonzero b ∈ Fq, one has

Me(ψa,λb) 6= 0.

Up to now we have only been able to prove some partial results on this latter conjecture.

Theorem 2.4. Let a ∈ F∗
q2
and b ∈ F∗q . If Trq2/p(

a2
2bβ ) 6= 0, then Me(ψa,λb) 6= 0.

Proof. Let t, α ∈ Fq2 with∆ := t −
α2

4β 6∈ Fq. Then [t,−α, 1] is a secant line to Uβ , and

Uβ ∩ [t,−α, 1] = {(1, y, βy2 + r) | y ∈ Fq2 , r = −t + αy− βy
2
∈ Fq}.

This set can be identified with the group ring element

Bt,α =
∑
y∈At,α

T (y,−t + αy− βy2) ∈ K [T ],

where At,α = {y ∈ Fq2 | t − αy+ βy2 ∈ Fq}.

Now let µ ∈ F∗
q2
such that µ2 ∈ F∗q (explicitly, µ ∈ 〈β

q+1
2 〉, the subgroup of order 2(q − 1) of F∗

q2
). Then [tµ2,−αµ, 1]

is also a secant line to Uβ , and

Uβ ∩ [tµ2,−αµ, 1] = {(1, z, βz2 + r) | z ∈ Fq2 , r = −tµ
2
+ αµz − βz2 ∈ Fq}.

This set can be identified with the group ring element

Btµ2,αµ =
∑
y∈At,α

T (µy,−µ2(t − αy+ βy2)) ∈ K [T ].
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Since∆ 6∈ Fq, the set (Fq −∆) contains q+12 nonsquares of Fq2 , say n1, n2, . . . , n q+12
(see Lemma 5.2 in [7]). Now we can

write down the elements of At,α explicitly. Note that t − αy+ βy2 ∈ Fq, if and only if, β(y− α
2β )

2
∈ Fq −∆, which in turn

is equivalent to β(y− α
2β )

2
= ni for some i, 1 ≤ i ≤ (q+ 1)/2. Therefore, we have y ∈ At,α if and only if y = α

2β ±
√
β−1ni,

1 ≤ i ≤ (q+ 1)/2. It follows that

Btµ2,αµ =

q+1
2∑
i=1

T
(
αµ

2β
±

√
β−1niµ2,−µ2(ni +∆)

)
.

Now

(ψa, λb)(Btµ2,αµ) =

q+1
2∑
i=1

(
ξ
Trq2/p(

aαµ
2β +a
√
β−1niµ2)

p + ξ
Trq2/p(

aαµ
2β −a
√
β−1niµ2)

p

)
ξ
Trq/p(−bµ2(ni+∆))
p

= ξ
Trq2/p(

aαµ
2β −

b∆µ2
2 )

p

q+1
2∑
i=1

(
ξ
Trq2/p(a

√
β−1niµ2)

p + ξ
Trq2/p(−a

√
β−1niµ2)

p

)
ξ
Trq2/p(−

bniµ
2

2 )

p .

Define

Stµ2,−αµ :=

q+1
2∑
i=1

(
ξ
Trq2/p(a

√
β−1niµ2)

p + ξ
Trq2/p(−a

√
β−1niµ2)

p

)
ξ
Trq2/p(−

bniµ
2

2 )

p .

Let R be a complete set of coset representatives of the subgroup {1,−1} in 〈β
q+1
2 〉 (so |R| = (q− 1)). We will show that∑

µ∈R

Stµ2,−αµ 6= 0. (2.4)

From (2.3), we immediately see that there exists some µ ∈ R such that (ψa, λb)(Btµ2,αµ) 6= 0, which proves the conclusion
of the theorem.
First we claim that as µ runs through R and i runs through 1, 2, . . . , q+12 , niµ

2 run through the set N of nonsquares of
F∗q2 . The claim can be proved as follows. Clearly, each niµ

2 is a nonsquare of F∗
q2
. It suffices to show that niµ2, 1 ≤ i ≤

q+1
2

and µ ∈ R, are all distinct. Assume that niµ2 = njλ2, for some 1 ≤ i, j ≤
q+1
2 , and some µ, λ ∈ R. Since ni, nj ∈ Fq −∆, we

set ni = x−∆ and nj = y−∆, where x, y ∈ Fq. We have

µ2x− µ2∆ = λ2y− λ2∆.

Noting that µ2, λ2 ∈ Fq and ∆ 6∈ Fq, we see that µ2 = λ2. Since µ, λ ∈ R, we must have µ = λ, from which we deduce
ni = nj. The claim is proved.
For convenience, we will use S to denote the set of nonzero squares of Fq2 . So we have∑

µ∈R

Stµ2,−αµ =
∑
x∈N

(
ξ
Trq2/p(a

√
β−1x)

p + ξ
Trq2/p(−a

√
β−1x)

p

)
ξ
Trq2/p(−

bx
2 )

p

=

∑
y∈S

(
ξ
Trq2/p(a

√
y)

p + ξ
Trq2/p(−a

√
y)

p

)
ξ
Trq2/p(

−bβy
2 )

p

=

∑
z∈F∗

q2

ξ
Trq2/p(az−

bβz2
2 )

p

=

∑
z∈Fq2

ξ
Trq2/p(az−

bβz2
2 )

p − 1

= ξ
Trq2/p(

a2
2bβ )

p

∑
x∈Fq2

ξ
Trq2/p(−

bβ
2 x
2)

p − 1.

Note that p is odd and Trq2/p(−
bβ
2 x
2) = Trq2/p(−

bβ
2 (−x)

2) for any x ∈ Fq2 . As ξp ∈ K and K has characteristic 2, we have∑
x∈Fq2

ξ
Trq2/p(−

bβ
2 x
2)

p = 1.
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Hence∑
µ∈R

Stµ2,−αµ = ξ
Trq2/p(

a2
2bβ )

p − 1.

Therefore, if Trq2/p(
a2
2bβ ) 6= 0, then

∑
µ∈R Stµ2,−αµ 6= 0. The proof is complete. �

An immediate corollary is the following.

Corollary 2.5. dim C2(Uβ) ≥ q3(1− 1
p )+

q2

p .

Proof. By Lemma 2.1, we have q2 characters (ψa, λ0), a ∈ Fq2 , of T such thatMe(ψa,λ0) 6= 0.

Next, for each b ∈ F∗q , the number of a’s such that Trq2/p(
a2
2bβ ) 6= 0 is (q

2
−p2e−1) = (q2−q2/p). So Theorem 2.4 produces

(q− 1)(q2 − q2/p) characters (ψa, λb) of T , such thatMe(ψa,λb) 6= 0.

Therefore, dim C2(Uβ) ≥ q2 + (q− 1)(q2 − q2/p) = q3(1− 1
p )+

q2

p . The proof is complete. �
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