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We revisit the old idea of constructing difference sets from
cyclotomic classes. Two constructions of skew Hadamard difference
sets are given in the additive groups of finite fields by using union
of cyclotomic classes of Fq of order N = 2pm

1 , where p1 is a prime
and m a positive integer. Our main tools are index 2 Gauss sums,
instead of cyclotomic numbers.
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1. Introduction

We assume that the reader is familiar with the basic theory of difference sets as can be found in
[18] and Chapter 6 of [5]. For a survey of recent progress in this area we refer the reader to [29].

A difference set D in a finite group G is called skew Hadamard if G is the disjoint union of D ,
D(−1) , and {1}, where D(−1) = {d−1 | d ∈ D}. The primary example (and for many years, the only
known example in abelian groups) of skew Hadamard difference sets is the classical Paley difference
set in (Fq,+) consisting of the nonzero squares of Fq , where Fq is the finite field of order q, and q
is a prime power congruent to 3 modulo 4. Skew Hadamard difference sets are currently under in-
tensive study, see [10,11,13,24,27,28]. There were two major conjectures in this area: (1) If an abelian
group G contains a skew Hadamard difference set, then G is necessarily elementary abelian. (2) Up to
equivalence the Paley difference sets mentioned above are the only skew Hadamard difference sets in
abelian groups. The first conjecture is still open in general. We refer the reader to [6] for the known
results on this conjecture. The second conjecture failed spectacularly: Ding and Yuan [10] constructed
a family of skew Hadamard difference sets in (F3m ,+), where m � 3 is odd, and showed that the
2nd and the 3rd examples in the family are inequivalent to the Paley difference sets. Very recently,
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Muzychuk [24] constructed exponentially many inequivalent skew Hadamard difference sets over an
elementary abelian group of order q3.

We give a short survey of the known constructions of skew Hadamard difference sets. Shortly
after the appearance of the Ding–Yuan construction [10], by using certain permutation polynomials
arising from the Ree–Tits slice symplectic spreads, Ding, Wang and Xiang [11] constructed a class of
skew Hadamard difference sets in (F3m ,+), where m is odd. Next the classical Paley construction was
generalized from finite fields to commutative semifields in [28]. As a consequence, every finite com-
mutative semifield of order congruent to 3 modulo 4 gives rise to a skew Hadamard difference set.
The first author [13] then constructed a family of skew Hadamard difference sets in the nonabelian
group of order p3 and exponent p, where p is an odd prime. Prior to [13], only two nonabelian
skew Hadamard difference sets were known [17]; both are in nonabelian groups of order 27. Mo-
tivated by [13], Muzychuk [24] has now given a prolific construction of skew Hadamard difference
sets in elementary abelian groups of order q3, where q is a prime power. We also mention that the
construction in [13] was recently generalized in [7] and [8].

Let q = p f , where p is a prime and f a positive integer. Let γ be a fixed primitive element of
Fq and N|(q − 1) with N > 1. Let C0 = 〈γ N 〉, and Ci = γ i C0 for 1 � i � N − 1. The Ci are called
the cyclotomic classes of order N of Fq . In this paper, we give two constructions of skew Hadamard
difference sets in the additive groups of finite fields by using unions of cyclotomic classes.

The idea of constructing difference sets (and strongly regular Cayley graphs) from cyclotomic
classes of course goes back to Paley [25]. In the mid-20th century, Baumert, Chowla, Hall, Lehmer,
Storer, Whiteman, Yamamoto, etc. pursued this line of research vigorously. Storer’s book [26] con-
tains a summary of results in this direction up to 1967. See also Chapter 5 of [1] for a summary.
This method for constructing difference sets, however, has had only very limited success. Let Ci be as
above. It is known [5, pp. 123–124] that a single cyclotomic class can form a difference set in (Fq,+)

if N = 2,4, or 8 and q satisfies certain conditions. (Note that in order to obtain difference sets this
way, the conditions on q are quite restrictive when N = 4 or 8.) It is conjectured that the converse is
also true. Namely, if C0 is a difference set in (Fq,+), then N is necessarily 2, 4, or 8. This conjecture
has been verified [12] up to N = 20. If one uses a union of cyclotomic classes, instead of just one
single class, the only new family of difference sets found in this way is the Hall sextic difference sets
in (Fq,+) formed by taking a union of three cyclotomic classes of order 6, where q = 4x2 + 27 is a
prime power congruent to 1 modulo 6. One of the reasons that very few difference sets have been
discovered by using unions of cyclotomic classes is that the investigations often relied on the so-called
cyclotomic numbers and these numbers are in general very difficult to compute if N is large.

In this paper, we construct skew Hadamard difference sets in (Fq,+) by using union of cyclotomic
classes of order N = 2pm

1 of Fq , where p1 is an odd prime, q is a power of a prime p, gcd(p, N) = 1,
−1 /∈ 〈p〉 ⊂ (Z/NZ)∗ , and the order of p modulo N is half of φ(N) (here φ is the Euler phi function).
This last condition is the so-called index 2 condition in the theory of Gauss sums. The significance
of our constructions is twofold. First, other than the classical Paley difference sets, previously known
abelian skew Hadamard difference sets were constructed either in (Fq,+), where q is a power of 3,
or in groups of order p3k , where p is an odd prime. The constructions in this paper can produce
skew Hadamard difference sets in elementary abelian groups where no previous constructions were
known except for the classical Paley difference sets. Secondly, our constructions demonstrate that the
old idea of constructing difference sets from cyclotomic classes is not a dead end, thus it should be
further exploited.

The recent success in constructing strongly regular Cayley graphs by using union of cyclotomic
classes in [14] lends further credence to our opinion on cyclotomic methods for constructing differ-
ence sets. Since the constructions in this paper are motivated by those in [14], we include here a brief
discussion of the results in [14]. Let D be a subset of Fq such that −D = D and 0 /∈ D . We define the
Cayley graph Cay(Fq, D) to be the graph with the elements of Fq as vertices; two vertices are adja-
cent if and only if their difference belongs to D . When D is a subgroup of the multiplicative group
F∗

q of Fq and Cay(Fq, D) is strongly regular, then we speak of a cyclotomic strongly regular graph. In
particular, if D is the subgroup of F∗

q consisting of the squares, where q is a prime power congruent
to 1 modulo 4, then Cay(Fq, D) is the well-known Paley graph. In [14], we were interested in exam-
ples due to De Lange [19] and Ikuta and Munemasa [15], in which one single cyclotomic class does
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not give rise to a strongly regular Cayley graph while a union of several classes does. Generalizing
these examples, we give two constructions of strongly regular Cayley graphs on finite fields Fq by
using union of cyclotomic classes of Fq of order N , where N = pm

1 or pm
1 p2, p1 and p2 are distinct

odd primes. The main tools used in the proofs are index 2 Gauss sums. In particular, we [14] obtain
twelve infinite families of strongly regular Cayley graphs with new parameters.

2. Gauss sums

Let p be a prime, f a positive integer, and q = p f . Let ξp = e2π i/p and let ψ be the additive
character of Fq defined by

ψ : Fq → C∗, ψ(x) = ξ
Tr(x)
p , (2.1)

where Tr is the absolute trace from Fq to Fp . Let χ : F∗
q → C∗ be a character of F∗

q . We define the
Gauss sum by

gFq (χ) =
∑
a∈F∗

q

χ(a)ψ(a).

Usually we simply write g(χ) for gFq (χ) if the finite field involved is clear from the context. Note
that if χ0 is the trivial multiplicative character of Fq , then g(χ0) = −1. We are usually concerned
with nontrivial Gauss sums g(χ), i.e., those with χ �= χ0. Gauss sums can be viewed as the Fourier
coefficients in the Fourier expansion of ψ |F∗

q
in terms of the multiplicative characters of Fq . That is,

for every c ∈ F∗
q ,

ψ(c) = 1

q − 1

∑
χ∈F̂∗

q

g(χ̄ )χ(c), (2.2)

where χ̄ = χ−1 and F̂∗
q denotes the complex character group of F∗

q .
We first recall a few elementary properties of Gauss sums. For proofs of these properties, see [4,

Theorem 1.1.4]. The first is

g(χ)g(χ) = q, if χ �= χ0. (2.3)

The second is

g
(
χ p) = g(χ), (2.4)

and the third one is

g
(
χ−1) = χ(−1)g(χ). (2.5)

While it is easy to determine the absolute value of nontrivial Gauss sums (see (2.3)), the explicit
evaluation of Gauss sums is a difficult problem. However, there are a few cases where the Gauss sums
g(χ) can be explicitly evaluated. The simplest case is the so-called semi-primitive case, where there
exists an integer j such that p j ≡ −1 (mod N) (here N is the order of χ in F̂∗

q ). Some authors [3,4]
also refer to this case as uniform cyclotomy, or pure Gauss sums. We refer the reader to [4, p. 364]
for the precise evaluation of Gauss sums in this case.

The next interesting case is the index 2 case, where −1 is not in the subgroup 〈p〉, the cyclic
group generated by p, and 〈p〉 has index 2 in (Z/NZ)∗ (again here N is the order of χ in F̂∗

q ). Many
authors have studied this case, including Baumert and Mykkeltveit [2], McEliece [22], Langevin [20],
Mbodj [21], Meijer and Van der Vlugt [23], and Yang and Xia [30]. In the index 2 case, it can be
shown that N has at most two odd prime divisors. For the purpose of constructing difference sets
by taking union of cyclotomic classes, we will need N to be even and (q − 1)/N to be odd (cf. [5,
p. 357]). Below is the result on evaluation of Gauss sums that we will need in Section 3.
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Theorem 2.1. (See [30, Theorem 4.4, Case D].) Let N = 2pm
1 , where p1 > 3 is a prime, p1 ≡ 3 (mod 4) and m

is a positive integer. Assume that p is a prime, gcd(p, N) = 1, [(Z/NZ)∗ : 〈p〉] = 2. Let f = φ(N)/2, q = p f ,
and χ be a character of order N of F∗

q . Then

g(χ) =
⎧⎨⎩ (−1)

p−1
2 m√

p∗p
f −1

2 , if p1 ≡ 7 (mod 8),

(−1)
p−1

2 (m+1)
√

p∗p
f −1

2 −h(
b+c

√−p1
2 )2, if p1 ≡ 3 (mod 8),

where h is the class number of Q(
√−p1), p∗ = (−1)

p−1
2 p, and b, c are integers satisfying the following

conditions

(i) b, c �≡ 0 (mod p),
(ii) b2 + p1c2 = 4ph,

(iii) bp
f −h

2 ≡ −2 (mod p1).

Moreover, when p ≡ 3 (mod 4), we have

(1) for 0 � t � m − 1,

g
(
χ pt

1
) =

{
(−1)m√−pp( f −1)/2, if p1 ≡ 7 (mod 8),

(−1)m+1√−pp( f −1)/2−hpt
1(

b+c
√−p1
2 )2pt

1 , if p1 ≡ 3 (mod 8);
(2) g(χ2pt

1) = p( f −pt
1h)/2(

b+c
√−p1
2 )pt

1 ;

(3) g(χ pm
1 ) = (−1)( f −1)/2 p( f −1)/2√−p.

We will also need the Stickelberger congruence for Gauss sums, which we state below. Let p be a
prime, q = p f , and let ξq−1 be a complex primitive (q − 1)th root of unity. Fix any prime ideal P in
Z[ξq−1] lying over p. Then Z[ξq−1]/P is a finite field of order q, which we identify with Fq . Let ωP

be the Teichmüller character on Fq , i.e., an isomorphism

ωP : F∗
q → {

1, ξq−1, ξ
2
q−1, . . . , ξ

q−2
q−1

}
satisfying

ωP(α) (mod P) = α, (2.6)

for all α in F∗
q . The Teichmüller character ωP has order q − 1; hence it generates all multiplicative

characters of Fq .
Let P be the prime ideal of Z[ξq−1, ξp] lying above P. For an integer a, let

s(a) = νP
(

g
(
ω−a

P

))
,

where νP is the P-adic valuation. Thus P s(a) ‖ g(ω−a
P ). The following evaluation of s(a) is due to

Stickelberger (see [4, p. 344]).

Theorem 2.2. Let p be a prime and q = p f . For an integer a not divisible by q − 1, let a0 +a1 p +a2 p2 +· · ·+
a f −1 p f −1 , 0 � ai � p − 1, be the p-adic expansion of the reduction of a modulo q − 1. Then

s(a) = a0 + a1 + · · · + a f −1,

that is, s(a) is the sum of the p-adic digits of the reduction of a modulo q − 1. Furthermore, define

t(a) = a0!a1! · · ·a f −1!, π = ξp − 1.

Then with s(a) and ωP as above we have the congruence

g
(
ω−a

P

) ≡ −π s(a)

t(a)

(
mod P s(a)+1).
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3. Cyclotomic constructions of difference sets

We first recall a well-known lemma in the theory of difference sets.

Lemma 3.1. Let G be an abelian group of order v, D be a subset of G of size k, and let λ be a positive integer.
Then D is a (v,k, λ) difference set in G if and only if

χ(D)χ(D) = k − λ

for every nontrivial complex character χ of G. Here, χ(D) stands for
∑

d∈D χ(d). Moreover suppose that
D ∩ D(−1) = ∅ and 1 /∈ D. Then D is a skew Hadamard difference set in G if and only if

χ(D) = −1 ± √−v

2
(3.1)

for every nontrivial complex character χ of G.

Paley type partial difference sets are counterparts of skew Hadamard difference sets. We give the
definition of these sets here. Let G be a finite (multiplicative) group of order v . A k-element subset
D of G is called a (v,k, λ,μ) partial difference set (PDS, in short) provided that the list of “differences”
xy−1, x, y ∈ D , x �= y, contains each nonidentity element of D exactly λ times and each nonidentity
element of G\D exactly μ times. Furthermore, assume that v ≡ 1 (mod 4). A subset D of G , 1 /∈ D ,
is called a Paley type PDS if D is a (v, v−1

2 , v−5
4 , v−1

4 ) PDS. The set of nonzero squares in Fq , q ≡ 1
(mod 4), is an example of Paley type PDS, which is usually called the Paley PDS in Fq . The strongly
regular Cayley graph constructed from the Paley PDS is the Paley graph.

All constructions in this section are done in the following specific index 2 case: N = 2pm
1 , p1 > 3

is a prime, and p1 ≡ 3 (mod 4); p is a prime such that gcd(p, N) = 1, −1 /∈ 〈p〉 ⊂ (Z/NZ)∗ , and
[(Z/NZ)∗ : 〈p〉] = 2 (that is, f := ordN (p) = φ(N)/2).

3.1. The p1 ≡ 7 (mod 8) case

We first give a construction of skew Hadamard difference sets in the case where p1 ≡ 7 (mod 8).
Let p be a prime such that gcd(p, N) = 1. Write f := ordN (p) = φ(N)/2 (so N|(p f − 1)). Let E = Fqs

be an extension field of Fq , where q = p f . Let γ be a fixed primitive element of E , let C0 = 〈γ N 〉 and
Ci = γ i C0 for 1 � i � N − 1.

Theorem 3.2. Assume that we are in the index 2 case as specified above, and E = Fqs with s odd. Let I be any
subset of Z/NZ such that {i (mod pm

1 ) | i ∈ I} = Z/pm
1 Z, and let D = ⋃

i∈I Ci . Then D is a skew Hadamard
difference set in (E,+) if p ≡ 3 (mod 4) and D is a Paley type PDS if p ≡ 1 (mod 4).

Proof. We shall only give the proof in the case where p ≡ 3 (mod 4). The proof in the case where
p ≡ 1 (mod 4) is similar. First, we note that since p ≡ 3 (mod 4) and s is odd, we have −1 ∈ C pm

1
.

By the choice of I , we have −D ∩ D = ∅. Secondly, observe that since p1 ≡ 7 (mod 8), we have
f − 1 = p1−1

2 pm−1
1 − 1 ≡ (−1)m − 1 (mod 4). Therefore (−1)( f −1)/2 = (−1)m . Thirdly, let η be any

character of F∗
q of order N . By Theorem 2.1 and the second observation, we have that for every

0 � t � m, gFq
(ηpt

1 ) = (−1)m p( f −1)/2√−p; so by (2.5),

gFq

(
η−pt

1
) = ηpt

1(−1)gFq

(
ηpt

1
) = (−1)m p( f −1)/2√−p.

Now by the index 2 assumption, any integer in the set {i | 1 � i � N − 1,gcd(i, N) = 1} is congruent
(modulo N) to an element in 〈p〉 or an element in −〈p〉. Therefore all odd integers in the interval
[1, N − 1] are congruent to ±pr pt

1 modulo N . Using (2.4) and the third observation above, with η
being any character of F∗

q of order N , we have

gFq

(
η− j) = (−1)m p( f −1)/2√−p

for all odd integers j, 1 � j � N − 1.
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Now let χ be an arbitrary character of E∗ of order N . Since N|(q − 1), χ is the lift of some
character η of F∗

q and o(η) = N (see [4, Theorem 11.4.4]). Following the notation of [4], we write

χ = η′ . It follows that χ j = (η j)′ for all 1 � j � N − 1. Using the Davenport–Hasse theorem on lifted
Gauss sums [4, p. 360], we have that for all odd integers j, 1 � j � N − 1,

gE

(
χ− j) = (−1)s−1 gFq

(
η− j)s = (−1)m p

s( f −1)
2 (

√−p)s. (3.2)

We will prove the result stated in the theorem by using the second part of Lemma 3.1. To this end,
let a be an arbitrary integer such that 0 � a � N − 1 and let ψ be the additive character of E defined
as in (2.1), with Fq replaced by E . We compute

ψ
(
γ a D

) =
∑
i∈I

ψ
(
γ aCi

)
= 1

N

∑
i∈I

∑
x∈E∗

ψ
(
γ a+i xN)

= 1

N
Ta,

where

Ta =
∑
θ∈C⊥

0

gE (θ̄)
∑
i∈I

θ
(
γ a+i).

Here C⊥
0 is the unique subgroup of order N of Ê∗ . Note that in the last step of the above calculations

we have used (2.2).
We now proceed to computing the sum Ta . If θ ∈ C⊥

0 and o(θ) = 1, then gE (θ̄) = −1, and∑
i∈I θ(γ a+i) = pm

1 . If θ ∈ C⊥
0 , o(θ) �= 1, and o(θ) is odd, then

∑
i∈I θ(γ a+i) = ∑pm

1 −1
i=0 θ(γ a+i) =

θ(γ a)
θ(γ )

pm
1 −1

θ(γ )−1 = 0. Therefore, with χ a fixed generator of C⊥
0 , we have

Ta = −pm
1 +

∑
j odd,1� j�N−1

gE
(
χ− j)∑

i∈I

χ j(γ a+i).
Using (3.2) and writing ξN for χ(γ ), a complex primitive Nth root of unity, we have

Ta = −pm
1 + (−1)m ps( f −1)/2(

√−p)s
pm

1 −1∑
u=0

∑
i∈I

χ1+2u(
γ a+i)

= −pm
1 + (−1)m ps( f −1)/2(

√−p)s
∑
i∈I

ξa+i
N

( pm
1 −1∑

u=0

ξ
u(a+i)
pm

1

)
.

For each a, 0 � a � N − 1, there is a unique ia ∈ I such that pm
1 |(a + ia). Write a + ia = pm

1 ja for some
integer ja . Then

Ta = −pm
1 + (−1)m ps( f −1)/2(

√−p)s(−1) ja pm
1 .

It follows that

ψ
(
γ a D

) = −1 + (−1)m+ ja
√−psf

2
.

By Lemma 3.1, D is a skew Hadamard difference set in (E,+). The proof is now complete. �
Example 3.3. Let p1 = 7, N = 14, p = 11. Then it is routine to check that ordN (p) = 3 = φ(N)/2. Let
Ci , 0 � i � 13, be the cyclotomic classes of order 14 of F113 .
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(1) Take I = {0,1, . . . ,6}. Then by Theorem 3.2, D = C0 ∪ C1 ∪ · · · ∪ C6 is a skew Hadamard difference
set in (F113 ,+). Let Dev(D) denote the symmetric design developed from the difference set D .
One can use a computer to find that Aut(Dev(D)) has size 5 · 113 · 19.

(2) Take I = {0,1,3,4,5,6,9}. Then by Theorem 3.2, D ′ = C0 ∪ C1 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C9 is also a
skew Hadamard difference set in (F113 ,+). One finds by using a computer that Aut(Dev(D ′)) has
size 3 · 5 · 113 · 19.

The automorphism group of the Paley design has size 3 · 5 · 7 · 113 · 19. So the three difference sets
D , D ′ and the Paley difference set in (F113 ,+) are pairwise inequivalent. Also note that the sizes of
the Sylow p-subgroups of Aut(Dev(D)) and Aut(Dev(D ′)) are q = 113, while the size of the Sylow p-
subgroups of the automorphism groups of the designs developed from the difference sets constructed
by Muzychuk [24] is strictly greater than q, we conclude that both D and D ′ are inequivalent to the
corresponding skew Hadamard difference sets in [24].

Remark 3.4.

(1) The automorphism group of the Paley design is determined in [16]. Our construction in The-
orem 3.2 includes the Paley construction as a special case. It seems difficult to generalize the
method in [16] to determine the automorphism groups of the designs developed from our
difference sets. Based on some computational evidence, we conjecture that Aut(Dev(D)), with
D = ⋃

i∈I Ci as given in the statement of the theorem, is generated by the following three types
of elements: (i) translations by elements of E , (ii) multiplications by elements in C0, and (iii) σ i

p ,

pi I = I , where σp is the Frobenius automorphism of the finite field Fpsf .

(2) Let N = 2 · 7m , where m � 2. One can use induction to prove that ordN (11) = 3 · 7m−1 = φ(N)/2.
Therefore the conditions of Theorem 3.2 are satisfied. So the examples in Example 3.3 can be
generalized into infinite families.

3.2. The p1 ≡ 3 (mod 8) case

We will again do the constructions in the index 2 case as specified at the beginning of this section.
In addition, we will assume that

(1) p1 ≡ 3 (mod 8), (p1 �= 3),
(2) N = 2p1,
(3) 1 + p1 = 4ph , where h is the class number of Q(

√−p1 ),
(4) p ≡ 3 (mod 4).

Let q = p f , f = ordN (p) = φ(N)/2. As in Section 2, let ξq−1 be a primitive complex (q − 1)th root of
unity, and P be a prime ideal in Z[ξq−1] lying over p. Then Z[ξq−1]/P is a finite field of order q. We
will use Z[ξq−1]/P as a model for Fq . That is,

Fq = {
0,1, ξq−1, ξ

2
q−1, . . . , ξ

q−2
q−1

}
, (3.3)

where ξq−1 = ξq−1 (mod P). Hence γ := ξq−1 is a primitive element of Fq . Let ωP be the Teichmüller
character of Fq . Then

ωP(γ ) = ξq−1.

Let χ = ω
(q−1)/N
P . Then χ is a character of F∗

q of order N = 2p1 (and χ depends on the choice

of P). To simplify notation, we write ξN for χ(γ ) = ξ
(q−1)/N
q−1 and ξp1 for χ2(γ ) = ξ

q−1
p1

q−1 . Next let
n = (q − 1)/p1. By the result in [20] (see also [4, p. 376]), we have

(1) s(−n) = (p − 1)b0, s(n) = (p − 1)b1 for some positive integers b0,b1, and b0 > b1 = f −h
2 ,
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(2) g(χ2) = p
f −h

2
(b+c

√−p1)

2 , where b, c are integers satisfying (i) b, c �≡ 0 (mod p), (ii) b2 + p1c2 =
4ph , (iii) bp

f −h
2 ≡ −2 (mod p1).

By the assumption that 1 + p1 = 4ph , we must have b, c ∈ {1,−1}. The sign of b is determined by
the congruence in (iii). The sign of c depends on the choice of P. We have the following:

Lemma 3.5. With notation as above, bc ≡ −√−p1 (mod P).

Proof. Let P be the unique prime ideal of Z[ξq−1, ξp] lying above P. Applying the Stickelberger
congruence to g(χ2) = g(ωn

P), we have

g
(
χ2) = p

f −h
2

(b + c
√−p1)

2
≡ −π s(−n)

t(−n)

(
mod P s(−n)+1).

Now using the fact that p = ∏p−1
i=1 (1−ξ i

p) ≡ π p−1 ∏p−1
i=1 i ≡ −π p−1 (mod P p), we can further simplify

the above congruence to

b + c
√−p1 ≡ 2(−1)1+ f −h

2
π(p−1)(b0−( f −h)/2)

t(−n)
≡ 0 (mod P),

where in the last step we have used the nontrivial fact that b0 > b1 = f −h
2 . Therefore bc ≡

−√−p1 (mod P). Since
√−p1 ∈ Z[ξp1 ] ⊂ Z[ξq−1], we have bc + √−p1 ∈ P ∩ Z[ξq−1] = P. That

is, bc ≡ −√−p1 (mod P). The proof is complete. �
Since 1 + p1 = 4ph , we have (1 + √−p1)(1 − √−p1) ∈ P for any prime ideal P of Z[ξq−1] lying

above p. It follows that either 1 + √−p1 ∈ P or 1 − √−p1 ∈ P. We can choose a prime ideal P (and
then fix this choice) such that

1 + √−p1 ∈ P. (3.4)

The corresponding b, c in the evaluation of g(χ2) will then satisfy bc = 1 by Lemma 3.5. These dis-
cussions were essentially done in [31]. But there are a few minor problems in that paper. That is the
reason why we gave the detailed account here.

By the index 2 assumption, we see that {i (mod p1) | i ∈ 〈p〉} is the set of nonzero squares

of Z/p1Z. Consequently,
∑

i∈〈p〉 ξ i
p1

= −1±√−p1
2 . It follows that 1 + 2

∑
i∈〈p〉 ξ i

p1
≡ ±√−p1 ≡

∓1 (mod P). Hence 1 + 2
∑

i∈〈p〉 γ in = ∓1. Since
∑

i∈〈p〉 ξ i
p1

+ ∑
i∈〈p〉 ξ−i

p1
= −1, we have(

1 + 2
∑
i∈〈p〉

γ in
)

+
(

1 + 2
∑
i∈〈p〉

γ −in
)

= 0.

Hence we can make a suitable choice of ξq−1 (that is, if necessary replace the originally chosen ξq−1

by ξ−1
q−1) such that 1 + 2

∑
i∈〈p〉 γ in = −1.

We now give the construction of difference sets by using unions of cyclotomic classes. Let Fq be
given as in (3.3) with P chosen in such a way that (3.4) holds, and γ = ξq−1 be the primitive element
of Fq chosen above such that 1 + 2

∑
i∈〈p〉 γ in = −1. Let N = 2p1 and let C0 = 〈γ N 〉, and Ci = γ i C0

for i = 1,2, . . . , N − 1, be the cyclotomic classes of Fq of order N . Choose I = 〈p〉 ∪ 2〈p〉 ∪ {0}, and
define

D :=
⋃
i∈I

Ci .

Note that |I| = p1, and since 2 is a quadratic nonresidue modulo p1, we have {i (mod p1) | i ∈ I} =
Z/p1Z.
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Theorem 3.6. With the above definition, D is a skew Hadamard difference set in (Fq,+).

Proof. Since −1 ∈ C p1 and 2 is a quadratic nonresidue modulo p1, we have −D ∩ D = ∅. That is, D is
skew.

We now proceed to proving the result by using the second part of Lemma 3.1. To this end, let a
be an arbitrary integer such that 0 � a � N − 1 and let ψ be the additive character defined as in (2.1).
Also let χ = ω

(q−1)/N
P , where P is chosen such that (3.4) holds. We have

ψ
(
γ a D

) =
∑
i∈I

ψ
(
γ aCi

)
= 1

N

∑
i∈I

∑
x∈F∗

q

ψ
(
γ a+i xN)

= 1

N
Ta,

where

Ta =
N−1∑
j=0

g
(
χ j)∑

i∈I

χ− j(γ a+i).
When j = 0, we have g(χ0) = −1, and

∑
i∈I χ

− j(γ (a+i)) = p1. If j �= 0 is even, then
∑

i∈I χ(γ − j(a+i))

= ∑p1−1
i=0 χ(γ − j(a+i)) = χ(γ − ja)

χ(γ )− jp1 −1
χ(γ − j)−1

= 0. Now note that every odd integer in the interval

[1, N − 1] is congruent (modulo N) to an element in 〈p〉, or an element in −〈p〉, or p1. Therefore, we
have

Ta = −p1 +
∑
j∈〈p〉

g
(
χ j)∑

i∈I

χ̄ j(γ a+i) +
∑

j∈−〈p〉
g
(
χ j)∑

i∈I

χ̄ j(γ a+i) + g
(
χ p1

)∑
i∈I

χ̄ p1
(
γ a+i).

Specializing Theorem 2.1 to the m = 1 case and noting that f − 1 ≡ 0 (mod 4) since p1 ≡ 3
(mod 8), we have

g(χ) = p( f −1)/2−h√−p

(
b + c

√−p1

2

)2

, g
(
χ p1

) = p( f −1)/2√−p,

where b, c are the same as in the evaluation of g(χ2) (cf. [30, p. 2531]), and bc = 1 by our choice
of P. Also recall that by (2.4), we have g(χ p) = g(χ). We compute

Ta = −p1 + p( f −1)/2−h√−p

(
b + c

√−p1

2

)2 ∑
j∈〈p〉

∑
i∈I

χ̄ j(γ a+i)

+ p( f −1)/2−h√−p

(
b − c

√−p1

2

)2 ∑
j∈−〈p〉

∑
i∈I

χ̄ j(γ a+i)
+ p( f −1)/2√−p

∑
i∈I

χ̄ p1
(
γ a+i).

Since {i (mod p1) | i ∈ I} = Z/p1Z, for each a, 0 � a � N − 1, there is a unique ia in I such that
p1|(a + ia). Write a + ia = p1 ja . We have
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j∈〈p〉

∑
i∈I

χ̄ j(γ a+i) +
∑

j∈−〈p〉

∑
i∈I

χ̄ j(γ a+i) +
∑
i∈I

χ̄ p1
(
γ a+i)

=
∑
j odd

ξ
− j(a+i)
N =

∑
i∈I

ξ
−(a+i)
2p1

p1−1∑
u=0

ξ
−u(a+i)
p1

= (−1) ja p1.

In order to prove that D is a skew Hadamard difference set, we must show that

Ta = −p1 + p( f −1)/2√−pp1εa (3.5)

for some εa = ±1. Noting that (
b+c

√−p1
2 )2 = b2−c2 p1+2bc

√−p1
4 = 1−p1+2

√−p1
4 , and∑

j∈〈p〉

∑
i∈I

χ̄ j(γ a+i) +
∑

j∈−〈p〉

∑
i∈I

χ̄ j(γ a+i) +
∑
i∈I

χ̄ p1
(
γ a+i) = (−1) ja p1,

one simplifies (3.5) to

1 − p1

4ph
p1(−1) ja +

(
1 − 1 − p1

4ph

)
(−1)a +

√−p1

2ph
Xa = p1εa,

where Xa = ∑
j∈〈p〉

∑
i∈I ξ

− j(a+i)
N − ∑

j∈−〈p〉
∑

i∈I ξ
− j(a+i)
N . Using the assumption that 1 + p1 = 4ph ,

one further simplifies the last equation to

(1 − p1)(−1) ja + 2(−1)a − 2
Xa√−p1

= (1 + p1)εa. (3.6)

Below we will prove that (3.6) always holds, thus proving that D is a skew Hadamard difference set.
We recall some useful facts.

(1) {i (mod p1) | i ∈ 〈p〉} is the set of nonzero squares of Z/p1Z.
(2) The odd integers p1−1

2 and p1 − 2 are congruent to elements in 〈p〉 modulo p1 since both 2 and
−1 are nonresidues modulo p1.

(3) By our choice of ξq−1 we have
∑

i∈〈p〉 ξ i
p1

= −1+√−p1
2 .

(4) We have
∑

i∈〈p〉 ξ
−i
N = ∑

i∈〈p〉 ξ
(2·(p1−1)/2−p1)i
N = ∑

i∈〈p〉 ξ
p1−1

2 i
p1 (−1)i = −−1+√−p1

2 = 1−√−p1
2 , since

p1−1
2 is a square in Z/p1Z.

Now set Ya := ∑
j∈〈p〉

∑
i∈I ξ

− j(a+i)
N . Then Xa = Ya − Ya . We have

Ya =
∑
j∈〈p〉

ξ
−aj
N

∑
i∈I

ξ
−i j
N =

( ∑
j∈〈p〉

ξ
−aj
N

)(∑
i∈I

ξ−i
N

)
.

The last sum above,
∑

i∈I ξ−i
N , can be evaluated as follows:

∑
i∈I ξ−i

N = ∑
i∈〈p〉 ξ

−i
N + ∑

i∈2〈p〉 ξ
−i
N + 1 =

1−√−p1
2 + −1−√−p1

2 + 1 = 1 − √−p1. Therefore

Ya =
( ∑

j∈〈p〉
ξ

−aj
N

)
(1 − √−p1 ).

We consider the following six cases.

Case 1. a = 0. In this case, ia = 0, ja = 0. We have
∑

j∈〈p〉 ξ
−aj
N = p1−1

2 , Ya = p1−1
2 (1 − √−p1), and

Xa = −(p1 − 1)
√−p1. Condition (3.6) is satisfied with εa = 1.
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Case 2. a ∈ 〈p〉. In this case, ia = 2 · p1−1
2 a ∈ 2〈p〉. ja = a ≡ 1 (mod 2). We have

∑
j∈〈p〉 ξ

−aj
N =∑

j∈〈p〉 ξ
− j
N = 1−√−p1

2 , Ya = 1−√−p1
2 · (1 − √−p1 ) = 1−p1

2 − √−p1, and Xa = −2
√−p1. Condition

(3.6) is satisfied with εa = 1.

Case 3. a ∈ −〈p〉. In this case, ia = −a ∈ 〈p〉, ja = 0. We have
∑

j∈〈p〉 ξ
−aj
N = ∑

j∈〈p〉 ξ
j

N = 1+√−p1
2 ,

Ya = 1+√−p1
2 · (1 − √−p1 ) = p1+1

2 , and Xa = 0. Condition (3.6) is satisfied with εa = −1.

Case 4. a ∈ 2〈p〉. In this case, write a = 2u for some u ∈ 〈p〉. We have ia = (p1 − 2)u ∈ 〈p〉, ja = u ≡
1 (mod 2), and

∑
j∈〈p〉 ξ

−aj
N = ∑

j∈〈p〉 ξ
− j
p1 = −1−√−p1

2 . It follows that Ya = −1−√−p1
2 · (1 − √−p1 ) =

− p1+1
2 . Thus Xa = 0. Condition (3.6) is satisfied with εa = 1.

Case 5. a ∈ −2〈p〉. In this case, ia = −a ∈ 2〈p〉, ja = 0. We have
∑

j∈〈p〉 ξ
−aj
N = ∑

j∈〈p〉 ξ
j

p1 = −1+√−p1
2 ,

Ya = −1+√−p1
2 · (1 − √−p1 ) = −1+p1

2 + √−p1, and Xa = 2
√−p1. Condition (3.6) is satisfied with

εa = −1.

Case 6. a = p1. In this case, ia = 0, ja = 1. We have
∑

j∈〈p〉 ξ
−aj
N = − (p1−1)

2 , Ya = − (p1−1)
2 (1 −√−p1 ),

and Xa = (p1 − 1)
√−p1. Condition (3.6) is satisfied with εa = −1.

The proof is now complete. �
Remark 3.7. It would be interesting to extend the construction in Theorem 3.6 to the general case
where N = 2pm

1 , p1 ≡ 3 (mod 8) and m � 2 is arbitrary. If this can be done, then we will obtain
infinite families of skew Hadamard difference sets in this way even though currently we only know
finitely many pairs (p1, p) such that 1 + p1 = 4ph , where h is the class number of Q(

√−p1 ).

Example 3.8. Let p = 3, N = 22, p1 = 11. It is routine to check that ord22(3) = 5 = φ(N)/2. Let f = 5,
q = 35 and n = q−1

p1
. The class number h of Q(

√−11 ) is 1 (cf. [9, p. 514]). Therefore the condition

1+ p1 = 4ph is indeed satisfied. Let F35 be the finite field as in (3.3) with P chosen in such a way that
(3.4) holds. Choose a primitive element γ of F35 such that γ such that 1 + 2

∑
i∈〈p〉 γ in = −1, and let

Ci , 0 � i � 21, be the cyclotomic classes with respect to this choice of γ . Define I := 〈3〉∪ 2〈3〉∪ {0} =
{0,1,2,3,5,6,8,9,10,15,18}. Then D = ⋃

i∈I Ci is a skew Hadamard difference set in (F35 ,+). Using
a computer one finds that Aut(Dev(D)) has size 35 · 5 · 11, while the automorphism group of the
corresponding Paley design has size 35 · 5 · 112. We conclude that Dev(D) is not isomorphic to the
Paley design.
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