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THE INVARIANT FACTORS OF THE INCIDENCE MATRICES
OF POINTS AND SUBSPACES IN PG(n, q) AND AG(n, q)

DAVID B. CHANDLER, PETER SIN, AND QING XIANG

Abstract. We determine the Smith normal forms of the incidence matrices
of points and projective (r − 1)-dimensional subspaces of PG(n, q) and of the
incidence matrices of points and r-dimensional affine subspaces of AG(n, q) for
all n, r, and arbitrary prime power q.

1. Introduction

Let Fq be the finite field of order q, where q = pt, p is a prime and t is a positive
integer, and let V be an (n + 1)-dimensional vector space over Fq. We denote by
PG(V ) (or PG(n, q) if we do not want to emphasize the underlying vector space)
the n-dimensional projective geometry of V . The elements of PG(V ) are subspaces
of V and two subspaces are considered to be incident if one is contained in the other.
We call one-dimensional subspaces of V points of PG(V ) and we call n-dimensional
subspaces of V hyperplanes of PG(V ). More generally, we regard r-dimensional
subspaces of V as projective (r−1)-dimensional subspaces of PG(V ). We will refer
to r-dimensional subspaces of V as r-subspaces and denote the set of these spaces
in V as Lr. The set of projective points is then L1. In this paper, we are concerned
with the incidence relation between Lr and L1. Specifically, let A be a (0,1)-matrix
with rows indexed by elements Y of Lr and columns indexed by elements Z of L1,
and with the (Y, Z) entry equal to 1 if and only if Z ⊂ Y . We are interested in
finding the Smith normal form ([9], p. 279) of A.

The incidence matrix A has been studied at least since the 1960s. In fact, several
authors have considered the more general incidence matrices Ar,s of r-subspaces vs.
s-subspaces, where s is not necessarily one. Most of their investigations were on
the rank of Ar,s over fields K of various characteristics. When K = Q, Kantor
in [15] showed that the matrix Ar,s has full rank under certain natural conditions
on r and s, and when char(K) = �, where � does not divide q, the rank of Ar,s

over K was given by Frumkin and Yakir [11]. The most interesting case is when
char(K) = p. In this case, the problem of finding the rank of Ar,s is open in general
(cf. [13]). However, under the additional condition s = 1, Hamada [14] gave a
complete solution to the problem of finding the p-rank of A (known as Hamada’s
formula). In this paper, we are not only interested in the p-rank of A, but also the
Smith normal form of A as an integral matrix. There are a couple of reasons for us
to study this problem.
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First, if we use the elements of L1 as points and use the elements of Lr as blocks,
then we obtain what is called a 2-design [2] with “classical parameters”. It is known
that there exist many 2-designs with classical parameters [5]. A standard way to
distinguish nonisomorphic designs with the same parameters is by comparing the p-
ranks of their incidence matrices. Unfortunately, nonisomorphic designs sometimes
have the same p-rank. In such a situation, one can try to prove nonisomorphism
of designs by comparing the Smith normal forms of the incidence matrices [8].
Therefore it is of interest to find Smith normal forms of incidence matrices of
designs.

Second, let Ω be an n-set. We say that an r-subset of Ω is incident with an
s-subset of Ω if one is contained in the other. In [22], Wilson found a diagonal form
of the incidence matrix of r-subsets versus s-subsets of Ω. One can consider the
q-analogue of this problem, namely, finding the Smith normal form of the incidence
matrix Ar,s defined above. So far we have only succeeded in solving this problem
in the case where s = 1. As far as we know, the problem of finding the p-rank of
Ar,s is open, let alone finding the p-part of the Smith form of Ar,s. (We mention
that the p′-part of the Smith normal form of Ar,s is known. See [7].)

We briefly summarize previous work on or related to the problem of finding the
Smith form of the incidence between L1 and Lr. Hamada [14] determined the p-
rank of the incidence between projective points and (r − 1)-subspaces of PG(n, q)
for any values of p, t, r, and n. The work of Hamada in [14] is based on an earlier
paper of Smith [19]. A more conceptual proof of Hamada’s formula, independent of
[19], was given in [4]. Lander [16] found the Smith form for the incidence between
points and lines in PG(2, q). Black and List [6] determined the invariant factors
of the incidence between points and hyperplanes in the case where q = p (i.e.,
t = 1). More recently, Liebler [17] and the second author each determined the
invariant factors of the incidence between points and hyperplanes for general q.
The invariant factors of the incidence between points and arbitrary r-spaces when
q = p (i.e., t = 1) were computed in [18]. Finally, Liebler and the second author [17]
had conjectured formulas for the invariant factors of the incidence between points
and arbitrary r-subspaces for general q, and could prove their formulas in the cases
where q = p, p2, or p3. In this paper we use a combination of techniques from
number theory and representation theory to confirm this conjecture.

In the following we will give a brief overview of the paper. For convenience, we
define the map

(1.1) η1,r : ZL1 → ZLr

by letting η1,r(Z) =
∑

Y ∈Lr,Z⊂Y Y for every Z ∈ L1, and then extending η1,r

linearly to ZL1 . The matrix of η1,r with respect to the basis L1 of ZL1 and the
basis Lr of ZLr is exactly the matrix A defined above. We will use the same η1,r to
denote the linear map from RL1 to RLr defined in the same way as above, where R
is a certain p-adic local ring with maximal ideal p and residue field Fq (see details
in Section 2). The paper is organized as follows. In Section 2, we introduce the
monomial basis M of FL1

q and its Teichmüller lifting to a basis MR of RL1 . These
bases are very important for finding the Smith normal form of A. In Section 3,
we state our main theorem (Theorem 3.3) which gives the Smith normal form of
A. We also include an elementary proof of a well-known fact stating that all the
invariant factors of A are powers of p except the last one. In Section 4, we discuss
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Wan’s theorem [21] on p-adic estimates of certain multiplicative character sums.
Wan’s theorem can be applied directly to our situation to give lower bounds on the
(p-adic) invariant factors of A (now viewed as a matrix with entries from R). In
order to prove that these lower bounds indeed give the p-adic invariant factors of A,
considerable effort is needed. In Section 5, we prove that there exists a basis B of
RL1 whose reduction modulo p is the monomial basis of FL1

q such that the matrix
of η1,r with respect to B and some basis of RLr is the (p-adic) Smith normal form
of A. Next we prove a refinement of this result in Section 6. We show that there
exists a basis B of RL1 with the following properties:

(1) B contains certain elements of MR—we will make this precise in Section 6;
(2) the reduction modulo p of B is M; and
(3) there exists a basis C of RLr such that the matrix of η1,r with respect to B

and C is the p-adic Smith normal form of A.
The proof of this result uses the natural action of the general linear group on RL1 ,
Jacobi sums, and Stickelberger’s theorem on Gauss sums. In Section 7, combining
the results in previous sections, we give a proof of a more precise statement (The-
orem 7.2) which implies our main theorem. Finally in Section 8, we use our results
in the projective geometry case to obtain the Smith normal form of the incidence
matrix of points and r-flats of AG(n, q).

2. Monomial bases

As we will see, most of the invariant factors of A are p-powers. It will be helpful
to view the entries of A as coming from some p-adic local ring. Let q = pt and let
K = Qp(ξq−1) be the unique unramified extension of degree t over Qp, the field
of p-adic numbers, where ξq−1 is a primitive (q − 1)th root of unity in K. Let
R = Zp[ξq−1] be the ring of integers in K and let p be the unique maximal ideal
in R. Then R is a principal ideal domain, and the reduction of R (mod p) will be
Fq. Define x̄ to be x (mod p) for x ∈ R. Let Tq be the set of roots of xq = x in R
(a Teichmüller set) and let T be the Teichmüller character of Fq, so that T (x̄) = x
for x ∈ Tq. We will use T to lift a basis of FL1

q to a basis of RL1 .
In (1.1), we defined the map η1,r from ZL1 to ZLr . Now we use the same η1,r

to denote the map from RL1 to RLr sending a 1-space to the formal sum of all
r-spaces incident with it. The matrix A is then the matrix of η1,r with respect to
the (standard) basis L1 of RL1 and the (standard) basis Lr of RLr . Crucial to our
approach of finding the Smith form of A is what we call a monomial basis for RL1 .
We introduce this basis below.

We start with the monomial basis of FL1
q . This basis was discussed in detail in

[4]. Let V = Fn+1
q . Then V has a standard basis v0, v1, . . . , vn, where

vi = (0, 0, . . . , 0, 1︸ ︷︷ ︸
i+1

, 0, . . . , 0).

We regard FV
q as the space of functions from V to Fq. Any function f ∈ FV

q can
be given as a polynomial function of n + 1 variables corresponding to the n + 1
coordinate positions: write the vector x ∈ V as

x = (x0, x1, . . . , xn) =
n∑

i=0

xivi;
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then f = f(x0, x1, . . . , xn). The function xi is, for example, the linear functional
that projects a vector in V onto its ith coordinate in the standard basis.

As a function on V , xq
i = xi, for each i = 0, 1, . . . , n, so we obtain all the

functions via the qn+1 monomial functions in

(2.1)

{
n∏

i=0

xbi
i | 0 ≤ bi < q, i = 0, 1, . . . , n

}
.

Since the characteristic function of {0} in V is
∏n

i=0(1 − xq−1
i ), we obtain a basis

for F
V \{0}
q by excluding xq−1

0 xq−1
1 · · ·xq−1

n from the set in (2.1).
The functions on V \ {0} which descend to L1 are exactly those which are in-

variant under scalar multiplication by F∗
q . Therefore we obtain a basis M of FL1

q

as follows:

M =

{
n∏

i=0

xbi
i | 0 ≤ bi < q,

∑
i

bi ≡ 0 (mod q − 1) ,

(b0, b1, . . . , bn) �= (q − 1, q − 1, . . . , q − 1)} .

This basis M will be called the monomial basis of FL1
q , and its elements will be

called basis monomials.
Now we lift the function xi : V → Fq to a function T (xi) : V → R, where T is

the Teichmüller character of Fq. For (a0, a1, . . . , an) ∈ V , we have

T (xi)(a0, a1, . . . , an) = T (ai) ∈ R.

For each basis monomial
∏n

i=0 xbi
i , we define T (

∏n
i=0 xbi

i ) similarly. We have the
following lemma.

Lemma 2.1. The elements in the set

MR =
{
T (

n∏
i=0

xbi
i ) | 0 ≤ bi < q,

∑
i

bi ≡ 0 (mod q − 1),

(b0, b1, . . . , bn) �= (q − 1, q − 1, . . . , q − 1)
}

form a basis of the free R-module RL1 .

Proof. To simplify notation, we use M to denote the free R-module RL1 , set v =
|L1|, and enumerate the elements of MR as f1, f2, . . . , fv. Since the images of the
elements of MR in the quotient M/pM are exactly the elements in M, which form
a basis of FL1

q
∼= M/pM (as vector spaces over Fq), by Nakayama’s lemma [1], the

elements in MR generate M , and since their number equals rank M , they form a
basis. �

The basis MR will be called the monomial basis of RL1 , and its elements are
called basis monomials.

3. The main theorem

Let q = pt, and let V be an (n + 1)-dimensional space over Fq. As before we use
A to denote the |Lr| × |L1| matrix of the linear map η1,r : ZL1 → ZLr with respect
to the standard bases of ZL1 and ZLr . It is known that all invariant factors of A
(as a matrix over Z) are p-powers except the last one, which is also divisible by
(qr − 1)/(q − 1). In [18], a proof was given using the structure of the permutation
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module for GL(n + 1, q) acting on L1 over fields of characteristic prime to p. We
give an elementary proof of the result.

Theorem 3.1. Let A be the matrix of the map η1,r with respect to the standard
bases of ZLr and ZL1 , and let v = |L1|. The invariant factors of A are all p-powers
except for the vth invariant, which is a p-power times (qr − 1)/(q − 1).

Proof. We first define ηr,1 : ZLr → ZL1 to be the linear map sending each element
of Lr to the formal sum of all the 1-spaces incident with it. Then the matrix of
ηr,1 with respect to the standard bases of ZLr and ZL1 is A�. For the purpose of
proving this theorem, it will be more convenient to work with A�.

We define
ε : ZL1 → Z

to be the map sending each element in L1 to 1. Clearly ε maps ZL1 onto Z and
Im ηr,1 onto ( qr−1

q−1 ) Z. Thus,

ZL1/(Ker ε + Im ηr,1) ∼= Z/ ( qr−1
q−1 ) Z.

To finish the proof, we are reduced to showing that (Ker ε + Im ηr,1)/ Im ηr,1 is a
p-group. We show that if x ∈ Ker ε, then qr−1x ∈ Im ηr,1. Now Ker ε is spanned
by vectors of the form u − w, where u and w are vectors representing individual
elements in L1, so it is enough to show that qr−1(u−w) is in Im ηr,1. Let U be some
(r + 1)-subspace of V which contains both u and w. We define η̃1,r to be the linear
map which maps a projective point to the formal sum of the r-subspaces, which
contain the point and also are contained in U . Also define jU to be the formal sum
of all the projective points inside U . Then ηr,1 restricted to r-subspaces inside U
and η̃1,r are simply the hyperplane-to-point and point-to-hyperplane maps for the
space U . By standard formula from design theory we have

ηr,1(η̃1,r(z)) = qr−1z +
qr−1 − 1

q − 1
jU

for every z ∈ L1. Hence by setting z = u and z = w respectively, and subtracting
the resulting equations, we get

ηr,1(η̃1,r(u − w)) = qr−1(u − w)

which is the desired result. �

In view of Theorem 3.1, in order to get the Smith normal form of A, we just
need to view A as a matrix with entries from Zp, the ring of p-adic integers, and
find its Smith normal form over Zp. This will be the approach we take in the rest
of the paper. To state our main theorem, we need more notation.

Let H denote the set of t-tuples ξ = (s0, s1, . . . , st−1) of integers satisfying (for
0 ≤ j ≤ t − 1) the following:

(3.1) (1) 1 ≤ sj ≤ n,
(2) 0 ≤ psj+1 − sj ≤ (p − 1)(n + 1),

with the subscripts read modulo t. The set H was introduced in [14], and used in
[4] to describe the module structure of FL1

q under the natural action of GL(n+1, q).
For a nonconstant basis monomial

f(x0, x1, . . . , xn) = xb0
0 · · ·xbn

n

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4940 DAVID B. CHANDLER, PETER SIN, AND QING XIANG

in M, we expand the exponents

bi = ai,0 + pai,1 + · · · + pt−1ai,t−1 0 ≤ ai,j ≤ p − 1,

and let

(3.2) λj = a0,j + · · · + an,j .

Because the total degree
∑n

i=0 bi is divisible by q − 1, there is a uniquely defined
t-tuple (s0, . . . , st−1) ∈ H [4] such that

λj = psj+1 − sj .

Explicitly

(3.3) sj =
1

q − 1

n∑
i=0

( j−1∑
�=0

p�+t−jai,� +
t−1∑
�=j

p�−jai,�

)
.

One way of interpreting the numbers sj is that the total degree of fpi

is st−i(q−1),
when the exponent of each coordinate xi is reduced to be no more than q − 1 by
the substitution xq

i = xi. We will say that f is of type ξ = (s0, s1, . . . , st−1). Also
we say that the corresponding basis monomial T (f) ∈ MR is of type ξ. (Note that
in [4] ξ is called a tuple in H and the term type is used for certain other t-tuples
in bijection with H. However, since we will not use the latter, there is no risk of
confusion within this paper.)

Let di be the coefficient of xi in the expansion of (
∑p−1

k=0 xk)n+1. Explicitly,

di =
�i/p�∑
j=0

(−1)j

(
n + 1

j

)(
n + i − jp

n

)
.

Lemma 3.2. Let di and λj be defined as above. The number of basis monomials
in both M and MR of type ξ = (s0, s1, . . . , st−1) is

∏t−1
j=0 dλj

.

Proof. From (3.2) each λj is the sum of n+1 integers which can be anywhere from
0 to p − 1. The number of such choices is the same as the coefficient of xλj in
(
∑p−1

k=0 xk)n+1. Counting the choices for each λj as j runs from 0 to t − 1 we get∏t−1
j=0 dλj

. �

We can now state the main theorem.

Theorem 3.3. Let L1 be the set of projective points, let Lr be the set of projective
(r − 1)-spaces in PG(n, q), and let di and H be as above. For each t-tuple ξ =
(s0, s1, . . . , st−1) ∈ H let

λi = psi+1 − si

and let

dξ =
t−1∏
i=0

dλi
.

Then the p-adic invariant factors of the incidence matrix A between L1 and Lr are
pα, 0 ≤ α ≤ (r − 1)t, with multiplicity

mα =
∑

ξ∈Hα

dξ + δ(0, α),
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where

(3.4) Hα =
{

(s0, s1, . . . , st−1) ∈ H |
t−1∑
i=0

max{0, r − si} = α
}

and

(3.5) δ(0, α) =
{

1, if α = 0,
0, otherwise.

Remark 3.4. (1) The theorem was conjectured by Liebler and the second author
[17].

(2) The multiplicity of 1 among the p-adic invariant factors, m0, is exactly the
p-rank of A, which was determined by Hamada; see [12, 4, 14]. The explicit formula
is

m0 = 1 +
∑

(s0,s1,...,st−1)∈H,si≥r,∀i

d(s0,s1,...,st−1).

(To match the above formula with the one in [4, p. 77], one notes that d(s0,...,st−1) =
d(n+1−s0,...,n+1−st−1) for each (s0, . . . , st−1) ∈ H.)

(3) We also mention that the largest α of the exponents of the p-adic invari-
ant factors of A is (r − 1)t. It arises in the case where ξ = (1, 1, . . . , 1). From
Theorem 3.3, we find that the multiplicity of p(r−1)t is

m(r−1)t = d(1,1,...,1) =
(

n + p − 1
n

)t

,

which is one less than the p-rank of η1,n.

We indicate how we proceed to prove Theorem 3.3. In order to get the Smith
normal form of A over R, we will find two invertible matrices P and Q−1 with
entries in R, such that

A = PDQ−1,

where D is an |Lr| × |L1| diagonal matrix with p powers on its diagonal. The
matrices Q and P will come from basis changes in RL1 and RLr , respectively.

Let {e1, e2, . . . , ev}, where v = |L1|, be the standard basis of RL1 , and let MR =
{f1, f2, . . . , fv} be the monomial basis of RL1 constructed in Lemma 2.1. For 1 ≤
j ≤ v, let fj =

∑v
i=1 qijei, qij ∈ R, and let Q = (qij). Then

η1,r(fj) =
v∑

i=1

qijη1,r(ei).

Therefore the columns of AQ are the vectors η1,r(fj), written with respect to the
standard basis of RLr . For 1 ≤ j ≤ v, let paj be the largest power of p dividing
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every coordinate of η1,r(fj). Then we try to factorize AQ as PD, where

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pa1 0 0 · · · 0
0 pa2 0

0
. . .

...
... pav−1 0
0 · · · 0 pav

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and P is an |Lr|× |Lr| matrix whose first v columns are 1
paj η1,r(fj), j = 1, 2, . . . , v.

In order to get the Smith normal form of A, we need to have some information on
aj . For this purpose we need to have some lower bound on the p-adic valuations of
the coordinates of η1,r(fj). Let fj be a typical basis monomial T (xb0

0 xb1
1 · · ·xbn

n ) in
MR, and let Y ∈ Lr. Then the Y -coordinate of η1,r(fj) is

η1,r(fj)(Y ) =
∑

Z⊂Y,Z∈L1

fj(Z)

=
1

q − 1

∑
x∈F

n+1
q \{(0,0,...,0)},x∈Y

T b0(x0)T b1(x1) · · ·T bn(xn),

where in the last summation x = (x0, x1, . . . , xn) ∈ Fn+1
q . Therefore the coordinates

of η1,r(fj) are all multiplicative character sums. Thanks to a theorem of Wan [21],
one can indeed obtain lower bounds on the p-adic valuations of these multiplicative
character sums. We discuss Wan’s theorem and its applications in the next section.

4. Wan’s theorem

We adopt the same notation as in Section 2. That is, q = pt, K = Qp(ξq−1) is
the unique unramified extension of degree t over Qp, R = Zp[ξq−1] is the ring of
integers in K, and p is the unique maximal ideal in R. Define x̄ to be x (mod p)
for x ∈ R. Let Tq be the set of roots of xq = x in R and let T be the Teichmüller
character of Fq, so that T (x̄) = x for x ∈ Tq. Then T is a p-adic multiplicative
character of Fq of order (q−1) and all multiplicative characters of Fq are powers of
T . Following the convention of Ax [3], T 0 is the character that maps all elements
of Fq to 1, while T q−1 maps 0 to 0 and all other elements to 1.

For 0 ≤ i ≤ n let Fi(x1, . . . , xr) be polynomials of degree di over Fq and let

χi = T bi (0 ≤ bi ≤ q − 1)

be multiplicative characters. We want the p-adic valuation νp(Sq(χ, F )) of the
multiplicative character sum

Sq(χ, F ) =
∑
x∈Fr

q

χ0(F0(x)) · · ·χn(Fn(x)).

For an integer k ≥ 0 we define σq(k) to be the sum of the digits in the expansion
of k as a base q number and σ(k) as the sum of the digits in the expansion of k as
a base p number. Wan’s Theorem ([21], Theorem 3.1) is the following.
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Theorem 4.1 (Wan). Let d = maxi di and q = pt. Then the p-adic valuation of
Sq(χ, F ) is at least

t−1∑
�=0

⌈
r − 1

q−1

∑n
i=0 σq(p�bi)di

d

⌉
.

Here we state a slightly stronger version of the theorem, which follows immedi-
ately from the proof in [21].

Theorem 4.2.

νp(Sq(χ, F )) ≥
t−1∑
�=0

max
{
0,

⌈
r − 1

q−1

∑n
i=0 σq(p�bi)di

d

⌉}
.

We will use this theorem only in the case where each Fi is a linear homogeneous
function. For the convenience of the reader we specialize the proof given in [21].

Theorem 4.3. For each i, 0 ≤ i ≤ n, let F i(x̄) = γ̄i1x̄1 + · · · + γ̄irx̄r be a linear
functional on Fr

q, where γ̄ij ∈ Fq for all i, j. Then

νp(Sq(χ, F )) ≥
t−1∑
�=0

max{0, r − 1
q − 1

n∑
i=0

σq(p�bi)}.

Proof. We will write
Fi(x) = γi1 x1 + · · · + γir xr

to represent the lifted functions from T r
q to R with γij = T (γ̄ij). Using the congru-

ence
T (x̄) ≡ xqr

(mod qr)
for all x ∈ R, we get

(4.1) Sq(χ, F ) ≡
∑

x∈Tq
r

(
F0(x)

)b0qr

· · ·
(
Fn(x)

)bnqr

(mod qr).

Expanding (4.1) we get

(4.2) Sq(χ, F )

≡
∑

ki1+···+kir=biq
r

0≤i≤n

n∏
i=0

(
biq

r

ki1, . . . , kir

)( n∏
i=0

r∏
j=1

γij
kij
)( r∏

j=1

∑
x∈Tq

x
∑

i kij
)

(mod qr).

We use the formula of Legendre, νp(k!) = (k−σ(k))/(p−1), and get that the p-adic
valuation of the multinomial coefficient part of (4.2) is

(4.3)
1

p − 1

n∑
i=0

(
biq

r−σ(bi)−
r∑

j=1

(kij −σ(kij))
)

=
1

p − 1

n∑
i=0

( r∑
j=1

σ(kij)−σ(bi)
)

.

For the Teichmüller set Tq we have

(4.4)
∑
x∈Tq

xk =

⎧⎨
⎩

0, if (q − 1) does not divide k,
q, if k = 0,
q − 1, if (q − 1)|k and k > 0.

Therefore, in (4.2) we only need to consider those terms for which

(4.5)
n∑

i=0

kij ≡ 0 (mod q − 1)
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for all j = 1, 2, . . . , r. Since k ≡ σq(k) (mod q − 1), we see that (4.5) implies

(4.6)
n∑

i=0

σq(kij) ≡ 0 (mod q − 1).

Given kij such that
∑r

j=1 kij = biq
r for 0 ≤ i ≤ n and (4.5) is satisfied, assume

that s coordinates of the vector

(
n∑

i=0

ki1,

n∑
i=0

ki2, . . . ,

n∑
i=0

kir)

are not identically 0. Then the same is true for the corresponding entries of the
vector

(4.7) (
n∑

i=0

σq(ki1),
n∑

i=0

σq(ki2), . . . ,
n∑

i=0

σq(kir)).

Summing up the entries of the vector in (4.7) we get

(4.8) s(q − 1) −
n∑

i=0

bi ≤
n∑

i=0

( r∑
j=1

σq(kij) − bi

)
.

We note that for a nonnegative integer �, (4.6) still holds with σq(kij) replaced by
σq(p�kij). Also

∑n
i=0 σq(p�kij) is not identically 0 for the same s subscripts of j.

Thus we have

s(q − 1) −
n∑

i=0

σq(p�bi) ≤
n∑

i=0

( r∑
j=1

σq(p�kij) − σq(p�bi)
)

.

Noting that the right-hand side is nonnegative since
∑r

j=1 kij = biq
r, we sum over

� to get
t−1∑
�=0

max
{
0, s(q − 1) −

n∑
i=0

σq(p�bi)
}
≤ q − 1

p − 1

n∑
i=0

( r∑
j=1

σ(kij) − σ(bi)
)

,

using the fact that
t−1∑
�=0

σq(p�k) =
q − 1
p − 1

σ(k).

Comparing with (4.3) we get that each term of (4.2) (with kij satisfying (4.5)) has
p-adic valuation at least

t(r−s)+
t−1∑
�=0

max
{

0, s− 1
q − 1

n∑
i=0

σq(p�bi)
}

≥
t−1∑
�=0

max
{

0, r− 1
q − 1

n∑
i=0

σq(p�bi)
}

.

This completes the proof. �

We now apply Wan’s theorem to our situation. Let f = T (xb0
0 xb1

1 · · ·xbn
n ) ∈ MR

be a basis monomial. We use Theorem 4.3 to give a lower bound on the p-adic
valuation of the coordinates of η1,r(f). Note that the coordinates of η1,r(f) are
indexed by the r-spaces in Lr. An r-subspace Y of V = Fn+1

q can be defined by
a system of (n + 1 − r) independent linear homogeneous equations. Putting the
n + 1 − r equations in reduced row echelon form, we have r coordinates which can
run freely through Fq and the remaining n + 1− r coordinates are linear functions
of those r coordinates. Without loss of generality we label the free coordinates
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(x0, . . . , xr−1) = x and express the defining equations of Y as xi = Fi(x) for
(r ≤ i ≤ n). The Y -coordinate of η1,r(f) is

η1,r(f)(Y )

(4.9)

=
1

q − 1

∑
x∈Fq

r\{(0,0,...,0)}
T b0(x0) · · ·T br−1(xr−1)T br(Fr(x)) · · ·T bn(Fn(x)).

Lemma 4.4. Let f(x0, . . . , xn) = T (x0
b0 · · ·xn

bn) be a nonconstant basis monomial
in MR. Then every coordinate of the image vector η1,r(f) is divisible by pα with

(4.10) α =
t−1∑
i=0

max{0, r − si},

where (s0, s1, . . . , st−1) is the type of f as defined in (3.3).

Proof. Let Y be an arbitrary r-space in Lr. By the above discussion, we may assume
that Y is defined by xi = Fi(x), i = r, r + 1, . . . , n, where x = (x0, x1, . . . , xr−1) ∈
Fr

q. The Y -coordinate of η1,r(f) is then given by (4.9). By Theorem 4.3, we have

νp(η1,r(f)(Y )) ≥
t−1∑
�=0

max{0, r − 1
q − 1

n∑
i=0

σq(p�bi)}.

Recalling that the type of f is denoted by (s0, s1, . . . , st−1) and noting that st−� =
1

q−1

∑n
i=0 σq(p�bi) (reading st as s0) for all � = 0, 1, . . . , t − 1, we have

νp(η1,r(f)(Y )) ≥
t−1∑
i=0

max{0, r − si}.

This completes the proof. �
Let Q be the basis change matrix between the standard basis and the monomial

basis MR = {f1, f2, . . . , fv} of RL1 (as used in Section 3). Using Lemma 4.4, we
see that one can factorize AQ as PD, where

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pα1 0 0 · · · 0
0 pα2 0

0
. . .

...
... pαv−1 0
0 · · · 0 pαv

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pαi corresponds to the basis monomial fi ∈ MR of type (s0, s1, . . . , st−1),

αi =
t−1∑
j=0

max{0, r − sj},

and P is an |Lr| × |Lr| matrix whose first v columns are 1
pαi

η1,r(fi), i = 1, 2, . . . , v.
We still need to show that D (with the diagonal entries suitably arranged) is indeed
the Smith normal form of A.
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5. p-filtrations and Smith normal form bases

Let R = Zp[ξq−1] with maximal ideal p = pR and residue field Fq, and let
η1,r : RL1 → RLr be the map defined before. In this section we prove that there
exists a basis B of RL1 whose reduction modulo p is the monomial basis of FL1

q such
that the matrix of η1,r with respect to B and some basis of RLr is the Smith normal
form of η1,r. We begin with some general results on injective homomorphisms of
free R-modules.

For any free R-module M we set M = M/pM , and for any R-submodule L of
M , let L = (L + pM)/pM be the image in M .

Let φ : M → N be an injective homomorphism of free R-modules of finite rank,
with rank M = m ≥ 1.

Let
N ′ = {x ∈ N | ∃j ≥ 0, pjx ∈ Im φ}.

Then N ′ is the smallest R-module direct summand of N containing Imφ (sometimes
called its purification) and is also of rank m. The invariant factors of φ stay the
same if we change the codomain to N ′. This will often allow us to reduce to the
case rank N = m.

Define
Mi = {m ∈ M | φ(m) ∈ piN}, i = 0, 1, ....

Then we have a filtration

M = M0 ⊇ M1 ⊇ · · ·
of M and the filtration

M = M0 ⊇ M1 ⊇ · · ·
of M .

Since φ is injective and N ′/ Imφ has finite exponent, it follows that there exists
a smallest index � such that M � = 0. So we have a finite filtration

M = M0 ⊇ M1 ⊇ · · · ⊇ M � = {0}.
Note that the inclusions need not be strict, though the last one is, by minimality
of �.

Proposition 5.1. For 0 ≤ i ≤ � − 1, pi is an invariant factor of φ with multiplicity
dim(M i/M i+1).

Proof. The theory of modules over PIDs says that there are bases of M and N ′ such
that φ is represented by an m×m diagonal matrix whose entries are the invariant
factors of φ. From this matrix we see that the multiplicity of pi is dim(M i/M i+1).

�
Let us start with a basis B�−1 of M �−1 and extend it to a basis of M �−2 by

adding a set B�−2 of vectors and so on until we have a basis

B = B0 ∪ B1 ∪ · · · ∪ B�−1

of M . At each stage we also select a set Bi ⊂ Mi of preimages of Bi and expand the
sets in the same way. The resulting set B =

⋃�−1
i=0 Bi is a basis of M , by Nakayama’s

lemma.
We show that this basis can be used to compute the Smith normal form of φ,

namely that there is a basis C of N such that the matrix of φ with respect to B
and C is the Smith normal form.
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Now for e in Bi, we have pi ‖ φ(e), so y = 1
pi φ(e) is an element of N ′. The

elements y thus obtained from all elements of B are linearly independent elements
of N ′, since φ is injective. Moreover, the index of Imφ in the R-submodule of N ′

generated by these elements y is equal to the index of Imφ in N ′ by the proposition.
Therefore, these elements y form a basis of N ′. The matrix of φ with respect to B
and any basis of N obtained by extending this basis will then be in Smith normal
form.

For convenience, we introduce a special name for bases such as B above.

Definition 5.2. We will call a basis B of M an SNF basis of M for φ if B =
⋃�−1

i=0 Bi,
where for each i we have Bi ⊆ Mi and Bi maps bijectively to a basis of M i/M i+1

under the composite map Mi → M i → M i/M i+1.

We now apply the above general theory to our situation. We will look at the
case where M = RL1 , N = RLr , φ = η1,r. Let G = GL(n + 1, q). Then G acts on
L1 and Lr and the map η1,r is an injective homomorphism of RG-modules, so the
Mi are RG-modules and the M i are FqG-modules.

We will use the following special properties of the FqG-module FL1
q .

Proposition 5.3. (1) Two basis monomials of the same type generate the
same FqG-submodule of FL1

q .
(2) Every FqG-submodule of FL1

q has a basis consisting of all basis monomials
in the submodule.

Proof. Part (1) is immediate from [4, Theorem B]. (The field in [4] is taken to be an
algebraically closed field k, not Fq, but it follows from [4, Theorem A] that in fact all
the kG-submodules of kL1 are simply scalar extensions of FqG-submodules of FL1

q ,
so for example [4, Theorems A, B] also hold over Fq.) Let S be an FqG-submodule
of FL1

q and let K ⊆ H ∪ {(0, . . . , 0)} be the set of tuples of the composition factors
of S. Let S′ be the FqG-submodule generated by all basis monomials with tuples
in K. By [4, Theorem B], S′ is the smallest FqG-submodule such that the set of
tuples of its composition factors contains K, so S′ = S. Hence, by [4, Theorem B],
in the expression of any element of S as a linear combination of basis monomials,
only basis monomials with tuples in K occur, proving (2). �

Corollary 5.4. RL1 has an SNF basis for η1,r whose image in FL1
q is the monomial

basis.

Proof. By Proposition 5.3(2) we can choose Bi in the construction above to be the
set of monomials in M i which are not in M i+1. �

Whenever we have a basis B of RL1 whose reduction modulo p is the monomial
basis, the type of an element of B will always mean the type of its image in the
monomial basis.

Corollary 5.5. Let B be an SNF basis of RL1 for η1,r whose image in FL1
q is the

monomial basis. Then the invariants corresponding to two elements of B of the
same type are equal.
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Proof. Let e, f ∈ B be two such basis elements, with images e and f . Then

e ∈ Mj ⇐⇒ e ∈ M j (def. of SNF basis)

⇐⇒ f ∈ M j (Proposition 5.3(1))
⇐⇒ f ∈ Mj (def. of SNF basis).

�

6. Jacobi sums and the action

of the general linear group on RL1

In this section we will prove a refinement of Corollary 5.4 (see Lemma 6.5 for
details). In order to prove this refinement, we need to use Jacobi sums and the
action of the general linear group on RL1 . We first define Jacobi sums.

Let T be the Teichmüller character of Fq defined in Section 2, where q = pt.
We know that T is a p-adic multiplicative character of Fq of order (q − 1), and all
multiplicative characters of Fq are powers of T . Again we adopt the convention
that T 0 is the character that maps all elements of Fq to 1, while T q−1 maps 0 to 0
and all other elements to 1.

For any two integers b0 and b1, we define

(6.1) J(T b0 , T b1) =
∑
x∈Fq

T b0(x)T b1(1 − x).

From the above definition and our convention on T 0 and T q−1, we see that if b0 �≡ 0
(mod q − 1), then

J(T b0 , T 0) = 0 and J(T b0 , T q−1) = −1.

Also we have J(T−1, T ) = 1. The Jacobi sum J(T b0 , T b1) lies in R = Zp[ξq−1].
Naturally we want to know its p-adic valuation. Using Stickelberger’s theorem on
Gauss sums [20] (see [10] for further reference) and the well-known relation between
Gauss and Jacobi sums, we have

Theorem 6.1. Let b0 and b1 be integers such that bi �≡ 0 (mod q−1), i = 0, 1, and
b0 + b1 �≡ 0 (mod q − 1). For any integer b, we use σ(b) to denote the sum of digits
in the expansion of the least nonnegative residue of b modulo (q − 1) as a base p
number. Then

νp(J(T−b0 , T−b1)) =
σ(b0) + σ(b1) − σ(b0 + b1)

p − 1
.

In other words, the number of times that p divides J(T−b0 , T−b1) is equal to the
number of carries in the addition b0 + b1 (mod q − 1).

We will now construct an element of RG with certain special properties. For this
purpose, we will first describe the action of G on RL1 . We think of elements of L1

in homogeneous coordinates as row vectors and elements of G as matrices acting by
right multiplication. Then RL1 is the left RG-module given in the following way.
For each function f ∈ RL1 and g ∈ G, the function gf is given by

(gf)(Z) = f(Zg), Z ∈ L1.

Let fi = T (xb0
0 xb1

1 · · ·xbn
n ) ∈ MR be an arbitrary basis monomial. Let ξ = ξq−1

be a primitive (q − 1)th root of unity in the Teichmüller set Tq ⊂ R, and let ξ̄ be
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its reduction modulo p. We define g� ∈ G to be the element which replaces x0 by
x0 + ξ̄�x1 and leaves all other xi unchanged. Then

g�fi = T
(
(x0 + ξ̄�x1)b0xb1

1 · · ·xbn
n

)
.

Let g =
∑q−2

�=0 ξ−�g� ∈ RG. The following lemma gives us gfi.

Lemma 6.2. Let fi and g be as given. Then

gfi =

⎧⎪⎪⎨
⎪⎪⎩

0, if b0 = 0,

T (xq−2
0 xb1+1

1 xb2
2 · · ·xbn

n ), if b0 = q − 1,(
q(1 − T (xq−1

0 )) − 1
)
T (xb1+1

1 xb2
2 · · ·xbn

n ), if b0 = 1,

−J(T−1, T b0)T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ), otherwise.

Proof. First note that

J(T−1, T 0) = 0,

J(T−1, T q−1) = −1,

so the cases b0 = 0 and b0 = q− 1 are really covered by the general case. Therefore
we will only consider two cases.

Case 1. b0 �= 1. First assume that x0 and x1 are both nonzero. We have

gfi =
q−2∑
�=0

ξ−�g�fi(6.2)

= T (xb1
1 · · ·xbn

n )
q−2∑
�=0

T−1(ξ̄�)T b0(x0 + ξ̄�x1)(6.3)

= T (xb1
1 · · ·xbn

n )
∑
u∈Fq

T−1(−x1u

x0
)T b0

(
1 − (−x1u

x0
)
)

T (−1)T (xb0−1
0 x1)(6.4)

= −J(T−1, T b0)T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ).(6.5)

If x1 = 0 we verify directly that (6.3) and (6.5) are both zero, so the formula is
still valid. If x0 = 0, since b0 �= 1, we see that (6.5) is 0; and (6.3) is also 0, since a
nontrivial (multiplicative) character summed over Fq is zero. Therefore the formula
still holds.

Case 2. b0 = 1. In this case

gfi = T (xb1
1 xb2

2 · · ·xbn
n )

q−2∑
�=0

T (ξ̄−�x0 + x1).

If x0 = 0, then gfi = (q − 1)T (xb1+1
1 xb2

2 · · ·xbn
n ). If x0 �= 0 but x1 = 0, then clearly

we have gfi = 0. If x0 �= 0 and x1 �= 0, then using the same calculations as in the
case b0 �= 1, we have

gfi = −J(T−1, T )T (xb1+1
1 xb2

2 · · ·xbn
n ) = −T (xb1+1

1 xb2
2 · · ·xbn

n ).

In summary, the formula for gfi in this case is(
q(1 − T (xq−1

0 )) − 1
)
T (xb1+1

1 xb2
2 · · ·xbn

n ).

This completes the proof. �
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Corollary 6.3. Let fi = T (xb0
0 xb1

1 · · ·xbn
n ) ∈ MR be a basis monomial, and let

g(j) =
∑q−2

�=0 ξ−�g�p−j be the jth Frobenius analog of g in Lemma 6.2 above. Then

g(j)fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if b0 = 0,

T (xq−1−pj

0 xb1+pj

1 xb2
2 · · ·xbn

n ), if b0 = q − 1,(
q(1 − T (xq−1

0 )) − 1
)
T (xb1+pj

1 xb2
2 · · ·xbn

n ), if b0 = pj ,

−J(T−pj

, T b0)T (xb0−pj

0 xb1+pj

1 xb2
2 · · ·xbn

n ), otherwise.

Proof. Let ρ denote the Frobenius automorphism of R, which maps an element of
the Teichmüller set Tq to its pth power, and let y = (y0, . . . , yn) = (xpj

0 , . . . , xpj

n ). We
can write fi(x) = fρ−j

i (y) = T (yb0p−j

0 · · · ybnp−j

n ). We observe that g�p−j replaces
y0 by y0 + ξ̄�y1. Therefore we can apply the previous lemma to get

g(j)fρ−j

i (y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if b0 = 0,

T (yq−2
0 yb1p−j+1

1 yb2p−j

2 · · · ybnp−j

n ), if b0 = q − 1,(
q(1 − T (yq−1

0 )) − 1
)
T (yb1p−j+1

1 yb2p−j

2 · · · ybnp−j

n ), if b0 = pj ,

−J(T−1, T b0p−j

)T (yb0p−j−1
0 yb1p−j+1

1 yb2p−j

2 · · · ybnp−j

n ), otherwise.

Substituting x back in and noting that J(χp, ψp) = J(χ, ψ), we get the result. �

For each basis monomial in MR with at least one exponent strictly between 0
and q − 1, we want to construct an element of RG which acts as the identity on
that basis monomial and annihilates all other members of MR.

Lemma 6.4. Let MR = {f1, f2, . . . , fv} be the monomial basis of RL1 . For each
fi = T (xb0

0 xb1
1 · · ·xbn

n ) ∈ MR with some bj strictly between 0 and q − 1, there is an
element hi ∈ RG with the following property. If

f = c1f1 + c2f2 + · · · + cvfv

is any element in RL1 , then
hif = cifi.

Proof. We will construct the required hi in two steps. Let H denote the subgroup
of diagonal matrices of G. Then each basis monomial in MR spans a rank one
RH-submodule of RL1 , which is the direct sum of all such submodules. Two ba-
sis monomials fi = T (xb0

0 xb1
1 · · ·xbn

n ) and fj = T (xb′0
0 x

b′1
1 · · ·xb′n

n ) afford the same
character of H if and only if bi ≡ b′i mod q − 1 for 0 ≤ i ≤ n.

Since the order of H is not divisible by p, the group ring RH contains, for each
character χ of H, an idempotent element projecting onto the χ-isotypic component
of RL1 , the span of all the basis monomials affording χ.

If none of the exponents of fi is divisible by q−1, then no other basis monomials
afford the same character as fi and we can take hi to be the above idempotent. Now
suppose that some exponents of fi are divisible by q − 1. We proceed successively
for each exponent of fi which is either 0 or q−1. Without loss of generality, assume
that fi has b0 = q − 1. We construct an element h ∈ RG which annihilates every
basis monomial in MR for which b0 = 0 and acts as the identity on fi. (If fi instead
has b0 = 0, then the element we want is 1 − h.)

Without loss of generality we will take b1 = a1,t−1p
t−1 + · · · + a1,0 to be an

exponent lying strictly between 0 and q − 1 with 0 < a1,j < p− 1 for some j. Then
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we take the element h1 = g(j) ∈ RG from Lemma 6.3 that shifts pj from b0 to b1.
We get

h1fi = T (xq−1−pj

0 xb1+pj

1 xb2
2 · · ·xbn

n ).

If e is any other basis monomial of the form e = T (xq−1
0 xb1

1 · · · ), then we similarly
have

h1e = T (xq−1−pj

0 xb1+pj

1 · · · ),
and if x0 has exponent 0 in e then from Corollary 6.3, we have

h1e = 0.

Next we set h2 = g′(j) ∈ RG to be the analog of g(j) but with the roles of x0 and
x1 interchanged. Noting that here b1 + pj �= pj (we assumed that 0 < b1 < q − 1),
we get

h2h1fi = −J(T−pj

, T b1+pj

)fi,

h2h1e = −J(T−pj

, T b1+pj

)e, if the exponent of x0 in e is q − 1,

h2h1e = 0 otherwise.

Since there is no carry in the sum pj+b1, the Jacobi sum J(T−pj

, T b1+pj

) is a unit in
R (cf. Theorem 6.1). Hence the element h of RG we want is − 1

J(T−pj ,T b1+pj
)
h2h1.

We can repeat the above process for each exponent of fi that is divisible by q−1.
The product of all the elements we have constructed is the element hi ∈ RG which
kills every basis monomial in MR except fi. �

We now prove the main result in this section.

Lemma 6.5. Assume q > 2. There exists an SNF basis of RL1 for η1,r, whose
reduction modulo p is M, and which contains all the basis monomials of MR having
at least one exponent lying strictly between 0 and q − 1.

Proof. By Corollary 5.4, there exists an SNF basis B =
⋃�−1

j=0 Bj of RL1 for η1,r

such that the reduction of B modulo p is M. Let f ∈ B, and let the reduction of f
modulo p be

f = xb0
0 xb1

1 · · ·xbn
n ∈ M,

with some bj satisfying 0 < bj < q − 1. Let MR = {f1, f2, . . . , fv} with f1 =
T (xb0

0 xb1
1 · · ·xbn

n ), where v = |L1|. We write

f = c1f1 + c2f2 + · · · + cvfv, ci ∈ R.

Since f = f1, we see that c1 = 1, hence c1 is a unit in R. Since there is an exponent
bj lying strictly between 0 and q− 1, by Lemma 6.4 we can find h1 ∈ RG such that
h1f = c1f1. In the notation of Definition 5.2 with M = RL1 , we see that if f ∈ Bj ,
then f1 ∈ Mj since Mj is an RG-submodule, so B′ = (B \ {f}) ∪ {f1} is again an
SNF basis of RL1 for η1,r. We can repeat this process for every element in B whose
reduction modulo p has one exponent strictly lying between 0 and q − 1. At the
end, we obtain the required SNF basis of RL1 for η1,r. �

We will use M′
R to denote the special SNF basis of RL1 for η1,r produced by

Lemma 6.5. Again the type of f ∈ M′
R is defined to be that of f ∈ M.

Lemma 6.6. The invariants of η1,r corresponding to two elements of M′
R of types

(s0, . . . , st−1) and (s1, s2, . . . , st−1, s0), respectively, are equal.
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Proof. We may assume t ≥ 2 since there is nothing to prove otherwise. For any type
ξ ∈ H, we can always find a basis monomial f ∈ MR of type ξ and with at least
one exponent lying strictly between 0 and q − 1; hence f ∈ M′

R. By Corollary 5.5,
the invariants of η1,r corresponding to two elements in M′

R of the same type are
equal. Therefore we may assume that the two elements of M′

R in the statement of
the lemma are actually in MR.

The Frobenius field automorphism

ρ : Fq → Fq,

xi �→ xp
i

applied to the coordinates of V is an automorphism of the projective geometry. It
maps points to points, subspaces to subspaces, and preserves incidence . The image
of a point Z = (x0, . . . , xn) is Zρ = (xp

0, . . . , x
p
n), and for an r-subspace Y , Y ρ is

the r-subspace containing the images of all the points incident with Y . Given a
monomial function fi = T (xb0

0 · · ·xbn
n ) we have

fρ
i = T (xpb0

0 · · ·xpbn
n ).

Clearly if fi is of type (s0, . . . , st−1), then fρ
i is of type (st−1, s0, . . . , st−2) because

λj becomes λj+1 in (3.2). It is also clear that

fi(Zρ) = fρ
i (Z)

so that
η1,r(fi)(Y ρ) = η1,r(f

ρ
i )(Y ).

As Y runs through RLr , so does Y ρ. Thus, the coordinates of η1,r(fi) are the same
as the coordinates of η1,r(fi

ρ) but permuted by ρ, so the invariants corresponding
to fi and fρ

i are equal. �

7. The proof of Theorem 3.3

Our aim in this section is to prove Theorem 3.3, and we will achieve this by
proving the more detailed result of Theorem 7.2 below. Our proof depends on
Lemma 4.4, which gives lower bounds on the p-adic valuations of the coordinates
of η1,r(f), where f ∈ MR, and the results in Section 5 and 6.

We first prove a lemma.

Lemma 7.1. Let f be a nonconstant basis monomial in MR. Then p does not
divide η1,r(f) if and only if f has type (s0, s1, . . . , st−1), with sj ≥ r for all 0 ≤ j ≤
t − 1.

Proof. Let f be the image modulo p of f . Then p does not divide η1,r(f) if and only
if the image of f under the induced map η1,r : FL1

q → FLr
q is nonzero. Suppose that

sj < r for some j. By Lemma 4.4, p|η1,r(f). That is, only those basis monomials
f of type (s0, s1, . . . , st−1), where sj ≥ r for all 0 ≤ j ≤ t − 1, could possibly have
nonzero image under η1,r. On the other hand, by Hamada’s formula, the rank of
η1,r is equal to one plus the number of f ’s with this property. Therefore, the images
of all such basis monomials must be linearly independent, in particular, nonzero.
Hence p � η1,r(f) if and only if f has type (s0, s1, . . . , st−1), where sj ≥ r for all
0 ≤ j ≤ t − 1. This completes the proof. �
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Theorem 7.2. Let M′
R = {f ′

1, f
′
2, . . . , f

′
v} with f̄ ′

1 = 1 ∈ M. Let the type of f ′
i ,

2 ≤ i ≤ v, be (s(i)
0 , s

(i)
1 , . . . , s

(i)
t−1) and let pβi be the invariant of η1,r corresponding

to f ′
i . Then

βi =
t−1∑
j=0

max{0, r − s
(i)
j }.

Proof. We shall assume that t ≥ 2. When t = 1 a similar and easier argument
works, but we omit the details to keep the notation simple and the argument clear,
since this case is already known [18]. Let αi =

∑t−1
j=0 max{0, r − s

(i)
j } and let

fi ∈ MR be the basis monomial which has the same reduction modulo p as f ′
i ,

namely fi = T (f̄ ′
i). We use the notation of Definition 5.2 with M = RL1 and

φ = η1,r. By Lemma 4.4, we have fi ∈ Mαi
. Since the image of f̄i = f̄ ′

i in
Mβi

/Mβi+1 is not zero, it follows that αi ≤ βi.
Suppose by way of contradiction that βk > αk for some k. Let

fk = T (xb0
0 xb1

1 · · ·xbn
n )

be of type (s0, s1, . . . , st−1) (here we suppressed the superscript (k) of sj to keep the
notation simple). Assume that we have picked k so that if αj < αk, then αj = βj .
By Lemma 6.6 we can assume for convenience that s1 = min{s0, . . . , st−1}. We
have

λ0 = ps1 − s0 ≤ n(p − 1)
with equality only if s0 = s1 = · · · = st−1 = n and

λ1 = ps2 − s1 ≥ 1.

We note that the case s0 = s1 = · · · = st−1 = n will not occur by our assump-
tion that βk > αk. The reason is as follows. If fk has type (s0, s1, . . . , st−1) =
(n, n, . . . , n), by Lemma 7.1 we see that p � η1,r(fk). Since f̄ ′

k = f̄k, we have
p � η1,r(f ′

k). But the invariant corresponding to f ′
k is pβk , and we assumed that

βk > αk = 0, so p|η1,r(f ′
k), a contradiction.

By Corollary 5.5, basis vectors in M′
R of the same type correspond to the same

invariant, so in the sum λ0 =
∑n

i=0 ai,0 we can assume that a0,0 = 0, and we can
also assume that a1,0 < p − 1 since the case s0 = s1 = · · · = st−1 = n has been
excluded. In the sum λ1 =

∑n
i=0 ai,1, we can assume that a0,1 ≥ 1. By these

assumptions, we see that 0 < p ≤ b0 < q − 1, hence from our definition of M′
R we

have
f ′

k = fk.

Since the exponent b0 in fk is not equal to 1, applying the group ring element
h ∈ RG in Lemma 6.2, we get

(7.1) hf ′
k = hfk = −J(T−1, T b0)T (xb0−1

0 xb1+1
1 xb2

2 · · ·xbn
n ).

Set T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ) := f�∈MR. The type of f� is (s0, s1+1, s2, . . . , st−1)
because we have increased λ0 by p and decreased λ1 by 1. Also note that b0 − 1 is
still strictly between 0 and q − 1, so f� = f ′

� ∈ M′
R. As for the coefficient of f� in

(7.1), Theorem 6.1 tells us that p divides J(T−1, T b0) exactly once, because when 1
is added to q − 1− b0 there is exactly one carry: from the ones place to the p-place
of the sum. Since pβk |η1,r(f ′

k) and η1,r is an RG-module homomorphism, we have

pβk |η1,r(hf ′
k).
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Since p ‖ J(T−1, T b0), we get

p(βk−1) | η1,r(f ′
�),

where the type of f ′
� is (s0, s1 + 1, s2, . . . , st−1). Since we assumed that αk is the

smallest such that αk < βk, we must conclude that
t−1∑
j=0

max{0, r − sj} =
t−1∑

j=0,j �=1

max{0, r − sj} + max{0, r − (s1 + 1)}.

That is, s1 ≥ r. As s1 is assumed to be the smallest among sj , 0 ≤ j ≤ t − 1, we
see that

sj ≥ r, 0 ≤ j ≤ t − 1, and hence αk = 0.

By Lemma 7.1, p � η1,r(fk), so p � η1,r(f ′
k) since f ′

k = fk. However we have assumed
that βk > αk = 0, that is, p|η1,r(f ′

k). This is a contradiction. The theorem is
proved. �

The following corollary is immediate.

Corollary 7.3. The monomial basis MR is an SNF basis of RL1 for the map η1,r,
and the invariant of η1,r corresponding to a monomial of type (s0, . . . , st−1) is equal
to

t−1∑
j=0

max{0, r − sj}.

Remark 7.4. We have seen that, for each r, the RGL(n + 1, q) homomorphism η1,r

defines a filtration {M i} of FL1
q by FqGL(n + 1, q)-modules. In the case r = n, it

follows from Theorem 7.2 and [4, Theorems A and B] that this filtration is equal to
the radical filtration, the most rapidly descending filtration with semisimple factors.
Equivalently, Mi = J i(FL1

q ), where J is the Jacobson radical of the group algebra
FqGL(n + 1, q).

8. The invariant factors of the incidence

between points and r-flats in AG(n, q)

In this section, we consider the incidence between points and r-flats in the affine
geometry AG(n, q). We will view AG(n, q) as obtained from PG(n, q) by deleting a
hyperplane and all the subspaces it contains. Let H0 be the hyperplane of PG(n, q)
given by the equation x0 = 0. Then for any integer r, 0 ≤ r ≤ n, the set of r-flats
of AG(n, q) is

Fr = {Y \ (Y ∩ H0) | Y ∈ Lr+1}.
(The empty set is not considered as an r-flat for any r.) In particular, the set of
points of AG(n, q) is F0. We define the incidence map

(8.1) η′
0,r : ZF0 → ZFr

by letting η′
0,r(Z) =

∑
Y ∈Fr,Z⊂Y Y for every Z ∈ F0, and then extending η′

0,r

linearly to ZF0 . Similarly, we define η′
r,0 to be the map from ZFr to ZF0 sending

an r-flat of AG(n, q) to the formal sum of all points incident with it. Let A1 be
the matrix of η′

0,r with respect to the standard bases of ZF0 and ZFr . We have the
following counterpart of Theorem 3.1.

Theorem 8.1. The invariant factors of A1 are all powers of p.
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Proof. The proof is parallel to that of Theorem 3.1. We will actually work with
A�

1 , which is the matrix of η′
r,0 : ZFr → ZF0 with respect to the standard bases of

ZFr and ZF0 . We define
ε′ : ZF0 → Z

to be the function sending each element in F0 to 1. Clearly ε′ maps ZF0 onto Z
and Im η′

r,0 onto qrZ. Thus, ZF0/(Ker ε′ +Im η′
r,0) ∼= Z/qrZ, and we are reduced to

proving that (Ker ε′ + Im η′
r,0)/ Im η′

r,0 is a p-group. The proof goes in exactly the
same way as that of Theorem 3.1. Note that Ker(ε′) is spanned by elements in ZF0

of the form u − w, where u and w are distinct points of AG(n, q); so it is enough
to show that qr(u−w) ∈ Im(η′

r,0) for any two distinct points u and w. We pick an
(r +1)-flat containing the two distinct points u and w and let η̃′

0,r be the restricted
map. The number of r-flats through one point in AG(r + 1, q) is (qr+1 − 1)/(q − 1)
while the number of r-flats through two points in AG(r + 1, q) is (qr − 1)/(q − 1),
so we get

η′
r,0(η̃

′
0,r(z)) = qrz +

qr − 1
q − 1

jU

for any point z. Therefore

η′
r,0(η̃

′
0,r(u − w)) = qr(u − w).

This completes the proof. �

In view of the above theorem, we view A1 as a matrix with entries from R =
Zp[ξq−1]. The Smith normal form of A1 over R will completely determine the
Smith normal form of A1 over Z. We will get the p-adic invariants of A1 from the
invariants of the incidence between points and projective r-spaces in PG(n, q) and
those of the incidence between points and projective r-spaces in PG(n − 1, q).

Let A be the matrix of the incidence map η1,r+1 : RL1 → RLr+1 with respect to
the standard bases of RL1 and RLr+1 . We want to partition A into a certain block
form. For this purpose, we define

LH0
1 = {Z ∈ L1 | Z ⊆ H0}

and
LH0

r+1 = {Y ∈ Lr+1 | Y ⊆ H0}.
So we have the partitions

L1 = F0 ∪ LH0
1

and
Lr+1 = Fr ∪ LH0

r+1.

We now partition A as

F0 LH0
1︷︸︸︷ ︷︸︸︷

A =
[

A1 A2

0 A3

]
}Fr

}LH0
r+1

where A3 is the incidence matrix of the incidence between LH0
1 and LH0

r+1, which can
be thought as the matrix of the incidence between points and projective r-spaces
in PG(n − 1, q).

In order to obtain the SNF of A1, we need to modify the monomial basis MR

of RL1 slightly. We replace the constant monomial in MR by T (xq−1
0 xq−1

1 · · ·xq−1
n )

and denote the resulting set by M∗
R. Note that M∗

R is still a basis of RL1 because
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(1 − aq−1
0 )(1 − aq−1

1 ) · · · (1 − aq−1
n ) = 0 for each point (a0, a1, . . . , an) of PG(n, q).

Furthermore M∗
R is an SNF basis of RL1 for η1,r+1 since MR is an SNF basis of

RL1 for η1,r+1 and the invariant corresponding to T (xq−1
0 xq−1

1 · · ·xq−1
n ) is 1. So we

have the factorization

(8.2) P ∗D = AQ∗,

where the columns of Q∗ are the basis vectors in M∗
R written with respect to the

standard basis of RL1 , P ∗ is nonsingular over R and D is the Smith normal form
of A.

We now partition M∗
R as B1 ∪ B2, where

B1 = {T (xb0
0 xb1

1 · · ·xbn
n ) | b0 �= 0, T (xb0

0 xb1
1 · · ·xbn

n ) ∈ M∗
R}

and
B2 = {T (xb0

0 xb1
1 · · ·xbn

n ) | b0 = 0, T (xb0
0 xb1

1 · · ·xbn
n ) ∈ M∗

R}.
We partition the matrix Q∗ according to the partition of M∗

R as B1 ∪ B2 and the
partition of L1 as F0 ∪ LH0

1 . Explicitly we have

B1 B2︷︸︸︷ ︷︸︸︷
Q∗ =

[
Q1 Q2

0 Q3

]
}F0

}LH0
1

where the columns of Q3 are the basis vectors in {f |H0 | f ∈ B2} written with
respect to the standard basis of RLH0

1 .
Now we rewrite (8.2) according to the block forms of the matrices A and Q∗.

We have

(8.3)
(

P1 P3 P5

0 P2 P4

)⎛⎝ D1 0
0 D2

0 0

⎞
⎠ =

(
A1 A2

0 A3

)(
Q1 Q2

0 Q3

)

which gives us
P1D1 = A1Q1

and
P2D2 = A3Q3.

Since P1 and Q1 inherit the property that the reductions modulo p of their columns
are linearly independent, D1 must be the Smith normal form of A1. By Corol-
lary 7.3, {f |H0 | f ∈ B2} is an SNF basis of RLH0

1 for the incidence map η1,r+1

between points and projective r-spaces in PG(n − 1, q). We see that D2 is the
Smith normal form of A3.

For any n ≥ 2, 1 < i ≤ n, and α ≥ 0, let m(α, n, i) denote the multiplicity
of pα as a p-adic invariant of the incidence between points and projective (i − 1)-
dimensional subspaces in PG(n, q). (The numbers m(α, n, i) are determined by
Theorem 3.3.) We have the following theorem.

Theorem 8.2. The p-adic invariants of A1 are pα, 0 ≤ α ≤ rt, with multiplicity
m(α, n, r + 1) − m(α, n − 1, r + 1).

Proof. From (8.3), we see that the multiplicity of pα as an invariant of A1 is equal
to the number of times pα appears in D minus the number of times pα appears in
D2. �
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