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1. Introduction

Cameron–Liebler line classes were first introduced by Cameron and Liebler [6] in their 
study of collineation groups of PG(3, q) having the same number of orbits on points and 
lines of PG(3, q). Later on it was found that these line classes have many connections 
to other geometric and combinatorial objects, such as blocking sets of PG(2, q), pro-
jective two-intersection sets in PG(5, q), two-weight linear codes, and strongly regular 
graphs. In the last few years, Cameron–Liebler line classes have received considerable 
attention from researchers in both finite geometry and algebraic combinatorics; see, for 
example, [7,20,21,26,11,10]. In [6], the authors gave several equivalent conditions for a set 
of lines of PG(3, q) to be a Cameron–Liebler line class; Penttila [23] gave a few more 
of such characterizations. We will use one of these characterizations as the definition of 
a Cameron–Liebler line class. Let L be a set of lines of PG(3, q) with |L| = x(q2 + q+1), 
x a nonnegative integer. We say that L is a Cameron–Liebler line class with parameter x

if every spread of PG(3, q) contains x lines of L. Clearly the complement of a Cameron–
Liebler line class with parameter x in the set of all lines of PG(3, q) is a Cameron–Liebler 
line class with parameter q2 + 1 − x. So without loss of generality we may assume that 
x ≤ q2+1

2 when discussing Cameron–Liebler line classes of parameter x.
Let (P, π) be any non-incident point–plane pair of PG(3, q). Following [23], we define 

star(P ) to be the set of all lines through P , and line(π) to be the set of all lines contained 
in the plane π. We have the following trivial examples:

(1) The empty set gives a Cameron–Liebler line class with parameter x = 0;
(2) Each of star(P ) and line(π) gives a Cameron–Liebler line class with parameter x = 1;
(3) star(P ) ∪ line(π) gives a Cameron–Liebler line class with parameter x = 2.

Cameron–Liebler line classes are rare. It was once conjectured [6, p. 97] that the above 
trivial examples and their complements are all of the Cameron–Liebler line classes. The 
first counterexample to this conjecture was given by Drudge [9] in PG(3, 3), and it has 
parameter x = 5. Later Bruen and Drudge [4] generalized Drudge’s example into an 
infinite family with parameter x = q2+1

2 for all odd q. This represents the only known 
infinite family of nontrivial Cameron–Liebler line classes before our work. Govaerts and 
Penttila [13] gave a sporadic example with parameter x = 7 in PG(3, 4). Recent work by 
Rodgers suggests that there are probably more infinite families of Cameron–Liebler line 
classes awaiting to be discovered. In [26], Rodgers obtained new Cameron–Liebler line 
classes with parameter x = q2−1

2 for q ≡ 5 or 9 (mod 12) and q < 200. In his thesis [25], 
Rodgers also reported new examples with parameters x = (q+1)2

3 for q ≡ 2 (mod 3) and 
q < 150 as joint work with his collaborators. These examples motivated us to find new 
general constructions of Cameron–Liebler line classes.

On the nonexistence side, Govaerts and Storme [14] first showed that there are no 
Cameron–Liebler line classes in PG(3, q) with parameter 2 < x ≤ q when q is prime. 
Then De Beule, Hallez and Storme [7] excluded parameters 2 < x ≤ q/2 for all val-
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ues q. Next Metsch [20] proved the non-existence of Cameron–Liebler line classes with 
parameter 2 < x ≤ q, and subsequently improved this result by showing the nonexis-
tence of Cameron–Liebler line classes with parameter 2 < x < q 3

√
q
2 −

2
3q [21]. The latter 

result represents the best asymptotic nonexistence result to date. It seems reasonable 
to believe that for any fixed 0 < ε < 1 and constant c > 0 there are no Cameron–
Liebler line classes with 2 < x < cq2−ε for sufficiently large q. Very recently, Gavrilyuk 
and Metsch [10] proved a modular equality which eliminates almost half of the possi-
ble values x for a Cameron–Liebler line class with parameter x. We refer to [21] for 
a comprehensive survey of the known nonexistence results.

In the present paper we construct a new infinite family of Cameron–Liebler line classes 
with parameter x = q2−1

2 for q ≡ 5 or 9 (mod 12). This family of Cameron–Liebler line 
classes generalizes the examples found by Rodgers in [26] through a computer search. 
Furthermore, in the case where q is an even power of 3, we construct the first infinite 
family of affine two-intersection sets, which is closely related to the newly constructed 
Cameron–Liebler line classes. The first step of our construction follows the same idea 
as in [26]. That is, we prescribe an automorphism group for the Cameron–Liebler line 
classes that we intend to construct; as a consequence, the Cameron–Liebler line classes 
will be unions of orbits of the prescribed automorphism group on the set of lines of 
PG(3, q). The main difficulty with this approach is how to choose orbits properly so that 
their union is a Cameron–Liebler line class. We overcome this difficulty by giving an 
explicit choice of orbits so that their union gives a Cameron–Liebler line class with the 
required parameters. The details are given in Section 4.

The paper is organized as follows. In Section 2, we review basic properties of and facts 
on Cameron–Liebler line classes; furthermore, we collect auxiliary results on characters 
of finite fields, which are needed in the proof of our main theorem. In Section 3, we 
introduce a subset of Fq3 , which we will use in the construction of our Cameron–Liebler 
line classes, and prove a few properties of the subset. In Section 4, we give an algebraic 
construction of an infinite family of Cameron–Liebler line classes with x = q2−1

2 for q ≡ 5
or 9 (mod 12). In Section 5, we construct the first infinite family of affine two-intersection 
sets in AG(2, q), q odd, whose existence was conjectured in the thesis [25] of Rodgers. 
We close the paper with some concluding remarks.

2. Preliminaries

In this section, we review basic facts on Cameron–Liebler line classes, and collect 
auxiliary results on characters of finite fields.

2.1. Preliminaries on Cameron–Liebler line classes

It is often advantageous to study Cameron–Liebler line classes in PG(3, q) by using 
their images under the Klein correspondence. Let Q+(5, q) be the 5-dimensional hyper-
bolic orthogonal space and x be a nonnegative integer. A subset M of Q+(5, q) is called 



310 T. Feng et al. / Journal of Combinatorial Theory, Series A 133 (2015) 307–338
an x-tight set if for every point P ∈ Q+(5, q), |P⊥ ∩ M| = x(q + 1) + q2 or x(q + 1)
according as P is in M or not, where ⊥ is the polarity determined by Q+(5, q). The 
geometries of PG(3, q) and Q+(5, q) are closely related through a mapping known as 
the Klein correspondence which maps the lines of PG(3, q) bijectively to the points of 
Q+(5, q), cf. [16,22]. Let L be a set of lines of PG(3, q) with |L| = x(q2 + q+1), x a non-
negative integer, and let M be the image of L under the Klein correspondence. Then 
it is known that L is a Cameron–Liebler line class with parameter x in PG(3, q) if and 
only if M is an x-tight set of Q+(5, q). Moreover, if L is a Cameron–Liebler line class 
with parameter x, by [20, Theorem 2.1 (b)], it holds that |P⊥ ∩M| = x(q + 1) for any 
point P off Q+(5, q); consequently M is a projective two-intersection set in PG(5, q)
with intersection sizes h1 = x(q + 1) + q2 and h2 = x(q + 1), namely each hyperplane 
of PG(5, q) intersects M in either h1 or h2 points. We summarize these known facts as 
follows.

Result 2.1. Let L be a set of x(q2 + q + 1) lines in PG(3, q), with 0 < x ≤ q2+1
2 , and 

let M be the image of L under the Klein correspondence. Then L is a Cameron–Liebler 
line class with parameter x if and only if M is an x-tight set in Q+(5, q); moreover, in 
the case when L is a Cameron–Liebler line class, we have

|P⊥ ∩M| =
{
x(q + 1) + q2, if P ∈ M,

x(q + 1), otherwise.

A (v, k, λ, μ) strongly regular graph is a simple undirected regular graph on v vertices 
with valency k satisfying the following: for any two adjacent (resp. nonadjacent) vertices x
and y there are exactly λ (resp. μ) vertices adjacent to both x and y. It is known that 
a graph with valency k, not complete or edgeless, is strongly regular if and only if its 
adjacency matrix has exactly two restricted eigenvalues. Here, we say that an eigenvalue 
of the adjacency matrix is restricted if it has an eigenvector perpendicular to the all-ones 
vector.

One of the most effective methods for constructing strongly regular graphs is by the 
Cayley graph construction. Let G be a finite abelian group and D be an inverse-closed 
subset of G \ {0}. We define a graph Cay(G, D) with the elements of G as its vertices; 
two vertices x and y are adjacent if and only if x −y ∈ D. The graph Cay(G, D) is called 
a Cayley graph on G with connection set D. The eigenvalues of Cay(G, D) are given by 
ψ(D), ψ ∈ Ĝ, where Ĝ is the group consisting of all complex characters of G, cf. [3, 
§1.4.9]. Using the aforementioned spectral characterization of strongly regular graphs, 
we see that Cay(G, D) with connection set D(�= ∅, G) is strongly regular if and only if 
ψ(D), ψ ∈ Ĝ \ {1}, take exactly two values, say α1 and α2 with α1 > α2. We note that 
if Cay(G, D) is strongly regular with two restricted eigenvalues α1 and α2, then the set 
{ψ ∈ Ĝ | ψ(D) = α1} also forms a connection set of a strongly regular Cayley graph 
on Ĝ; this set is called the dual of D. For basic properties of strongly regular graphs, 
see [3, Chapter 9]. For known constructions of strongly regular Cayley graphs and their 
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connections to two-weight linear codes, partial difference sets, and finite geometry, see 
[3, p. 133] and [5,19].

Let L be a Cameron–Liebler line class with parameter x in PG(3, q) and let M ⊂
Q+(5, q) be the image of L under the Klein correspondence. By Result 2.1, M is a pro-
jective two-intersection set in PG(5, q). By [5], we can construct a corresponding strongly 
regular Cayley graph as follows. First define D := {λv : λ ∈ F

∗
q , 〈v〉 ∈ M}, which is 

a subset of (F6
q, +). Then the Cayley graph with vertex set (F6

q, +) and connection set D
is strongly regular. Its restricted eigenvalues can be determined as follows. Let ψ be 
a nonprincipal additive character of F6

q. Then ψ is principal on a unique hyperplane P⊥

for some P ∈ PG(5, q). We have

ψ(D) =
∑

〈v〉∈M

∑
λ∈F∗

q

ψ(λv) =
∑

〈v〉∈M
(q[[〈v〉 ∈ P⊥]] − 1)

= −|M| + q|P⊥ ∩M| =
{−x + q3, if P ∈ M,

−x, otherwise,

where [[〈v〉 ∈ P⊥] ] is the Kronecker delta function taking value 1 if 〈v〉 ∈ P⊥ and value 0
otherwise. Conversely, for each hyperplane P⊥ of PG(5, q), we can find a nonprincipal 
character ψ that is principal on P⊥, and the size of P⊥ ∩ M can be computed from 
ψ(D). Therefore, the character values of D reflect the intersection sizes of M with the 
hyperplanes of PG(5, q). To summarize, we have the following result.

Result 2.2. Let L be a set of x(q2 + q + 1) lines in PG(3, q), with 0 < x ≤ q2+1
2 , and 

let M be the image of L under the Klein correspondence. Define

D := {λv : λ ∈ F
∗
q , 〈v〉 ∈ M} ⊂ (F6

q,+).

Then L is a Cameron–Liebler line class with parameter x if and only if |D| = (q3 − 1)x
and for any P ∈ PG(5, q)

ψ(D) =
{−x + q3, if P ∈ M,

−x, otherwise,

where ψ is any nonprincipal character of F6
q that is principal on the hyperplane P⊥.

Following [26] we now introduce a model of the hyperbolic quadric Q+(5, q), which 
will facilitate our algebraic construction. Let E = Fq3 and F = Fq. We view E × E as 
a 6-dimensional vector space over F . For a nonzero vector v ∈ E × E, we use 〈v〉 to 
denote the projective point in PG(5, q) corresponding to the one-dimensional subspace 
over F spanned by v. Define a quadratic form Q : E × E → F by

Q((x, y)) = Tr(xy), ∀ (x, y) ∈ E × E,
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where Tr is the relative trace from E to F (that is, for any x ∈ E, Tr(x) = x +xq +xq2). 
The quadratic form Q is clearly nondegenerate and Q((x, 0)) = 0 for all x ∈ E. So 
{〈(x, 0)〉 | x ∈ E∗} is a totally isotropic plane with respect to Q. It follows that the 
quadric defined by Q has Witt index 3, and so is hyperbolic. This quadric will be our 
model for Q+(5, q). Note that for a point P = 〈(x0, y0)〉, its polar hyperplane P⊥ is 
given by P⊥ = {〈(x, y)〉 : Tr(xy0 + x0y) = 0}.

Let ψE and ψF be the canonical additive characters of E and F , respectively. Then 
each additive character of E × E has the form

ψa,b((x, y)) = ψE(ax + by) = ψF (Tr(ax + by)), (x, y) ∈ E ×E, (2.1)

where (a, b) ∈ E×E. Since ψa,b is principal on the hyperplane {〈(x, y)〉 : Tr(ax +by) = 0}, 
the character sum condition in Result 2.2 can be more explicitly rewritten as

ψa,b(D) =
{−x + q3, if (b, a) ∈ D,

−x, otherwise.
(2.2)

2.2. Preliminaries on characters of finite fields

In this subsection, we will collect some auxiliary results on Gauss sums. We assume 
that the reader is familiar with the basic theory of characters of finite fields as can be
found in Chapter 5 of [18].

For a multiplicative character χ and the canonical additive character ψ of Fq, define 
the Gauss sum by

G(χ) =
∑
x∈F∗

q

χ(x)ψ(x).

The following are some basic properties of Gauss sums:

(i) G(χ)G(χ) = q if χ is nonprincipal;
(ii) G(χ−1) = χ(−1)G(χ);
(iii) G(χ) = −1 if χ is principal.

Let γ be a fixed primitive element of Fq and k a positive integer dividing q − 1. For 
0 ≤ i ≤ k − 1 we set C(k,q)

i = γi〈γk〉. These are called the kth cyclotomic classes of Fq. 
The Gauss periods associated with these cyclotomic classes are defined by ψ(C(k,q)

i ) :=∑
x∈C

(k,q)
i

ψ(x), 0 ≤ i ≤ k − 1, where ψ is the canonical additive character of Fq. By 
orthogonality of characters, the Gauss periods can be expressed as a linear combination 
of Gauss sums:

ψ(C(k,q)
i ) = 1

k

k−1∑
G(χj)χ−j(γi), 0 ≤ i ≤ k − 1, (2.3)
j=0



T. Feng et al. / Journal of Combinatorial Theory, Series A 133 (2015) 307–338 313
where χ is any fixed multiplicative character of order k of Fq. For example, if k = 2, we 
have

ψ(C(2,q)
i ) = −1 + (−1)iG(η)

2 , 0 ≤ i ≤ 1, (2.4)

where η is the quadratic character of Fq.
The following theorem on Eisenstein sums will be used in the proof of our main 

theorem in Section 4.

Theorem 2.3. (See [27, Theorem 1].) Let χ be a nonprincipal multiplicative character 
of Fqm and χ′ be its restriction to Fq. Choose a system L of coset representatives of F∗

q

in F∗
qm in such a way that L can be partitioned into two parts:

L0 = {x : Tr(x) = 0} and L1 = {x : Tr(x) = 1},

where Tr is the relative trace from Fqm to Fq. Then,

∑
x∈L1

χ(x) =
{
G(χ)/G(χ′), if χ′ is nonprincipal,
−G(χ)/q, otherwise.

We will also need the Hasse–Davenport product formula, which is stated below.

Theorem 2.4. (See [2, Theorem 11.3.5].) Let θ be a multiplicative character of order � > 1
of Fq. For every nonprincipal multiplicative character χ of Fq,

G(χ) = G(χ�)
χ�(�)

�−1∏
i=1

G(θi)
G(χθi) .

The Stickelberger theorem on the prime ideal factorization of Gauss sums gives us 
p-adic information on Gauss sums. We will need this theorem to prove a certain divis-
ibility result later on. Let p be a prime, q = pf , and let ξq−1 be a complex primitive 
(q− 1)th root of unity. Fix any prime ideal P in Z[ξq−1] lying over p. Then Z[ξq−1]/P is 
a finite field of order q, which we identify with Fq. Let ωP be the Teichmüller character 
on Fq, i.e., an isomorphism

ωP : F∗
q → {1, ξq−1, ξ

2
q−1, . . . , ξ

q−2
q−1}

satisfying

ωP(α) (mod P) = α, (2.5)

for all α in F∗
q . The Teichmüller character ωP has order q − 1. Hence it generates all 

multiplicative characters of Fq.



314 T. Feng et al. / Journal of Combinatorial Theory, Series A 133 (2015) 307–338
Let P be the prime ideal of Z[ξq−1, ξp] lying above P. For an integer a, let

s(a) = νP(G(ω−a
P

)),

where νP is the P-adic valuation. Thus Ps(a)‖G(ω−a
P

). The following evaluation of s(a)
is due to Stickelberger (see [2, p. 344]).

Theorem 2.5. Let p be a prime and q = pf . For an integer a not divisible by q − 1, let 
a0 +a1p +a2p

2 + · · ·+af−1p
f−1, 0 ≤ ai ≤ p −1, be the p-adic expansion of the reduction 

of a modulo q − 1. Then

s(a) = a0 + a1 + · · · + af−1,

that is, s(a) is the sum of the p-adic digits of the reduction of a modulo q − 1.

3. The subset X and its properties

Notation 3.1. Let q be a prime power with q ≡ 5 or 9 (mod 12) so that gcd(q − 1,
q2 + q + 1) = 1. Write E = Fq3 , F = Fq, and let ω be a fixed primitive element of E. 
For any x ∈ E∗, we use logω(x) to denote the integer 0 ≤ i ≤ q3 − 2 such that x = ωi. 
We write N = q2 + q + 1, and let w1 be an element of order N in E (for example, take 
w1 = ωq−1). For x ∈ F ∗, we define the sign of x, sgn(x) ∈ F , by

sgn(x) =
{ 1, if x is a square,
−1, otherwise.

(3.1)

We also define sgn(0) := 0.

It is the purpose of this section to introduce a subset X ⊂ E and prove a few results 
on X, which we will need in the construction of our Cameron–Liebler line classes.

Viewing E as a 3-dimensional vector space over Fq, we will use E as the underlying 
vector space of PG(2, q). The points of PG(2, q) are 〈ωi〉, 0 ≤ i ≤ q3 − 2, and the lines 
of PG(2, q) are

Lu := {〈x〉 : Tr(ωux) = 0}, (3.2)

where 0 ≤ u ≤ q3 − 2. Of course, 〈ωi〉 = 〈ωi+jN 〉 and Lu = Lu+jN , for any i, j and u. 
Note that since gcd(q − 1, q2 + q + 1) = 1, we can also take 〈wi

1〉, 0 ≤ i ≤ q2 + q, as the 
points of PG(2, q).

Define a quadratic form f : E → F by f(x) := Tr(x2), where Tr is the relative trace 
from E to F . The associated bilinear form B : E×E → F is given by B(x, y) = 2 Tr(xy). 
It is clear that B is nondegenerate. Therefore f defines a nondegenerate conic Q = {〈x〉 |
f(x) = 0} in PG(2, q), which contains q + 1 points. Consequently each line l of PG(2, q)
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meets Q in 0, 1 or 2 points, and l is called a passant, tangent or secant line accordingly. 
Also it is known that each point P ∈ PG(2, q) \Q is on either 0 or 2 tangent lines to Q, 
and P is called an interior or exterior point accordingly, cf. [22, p. 158].

Lemma 3.2. With the above notation, we have the following:

(1) The tangent lines to Q are given by Lu with Tr(ω2u) = 0, 0 ≤ u ≤ q3 − 2.
(2) The polarity of PG(2, q) induced by Q interchanges 〈ωu〉 and Lu, where Tr(ω2u) = 0, 

0 ≤ u ≤ q3 − 2, and maps exterior (resp. interior) points to secant (resp. passant) 
lines.

(3) For any point P = 〈v〉 off Q, P is an exterior (resp. interior) point if and only if 
f(v) has some fixed nonzero sign ε (resp. −ε).

Proof. (1) and (2) are well-known facts, and we refer the reader to [15] for the proofs. 
(3) is clear from [22, p. 166] in the proof of Theorem 4.3.1 therein. �

Now we define the following subset of ZN :

IQ := {i : 0 ≤ i ≤ N − 1, Tr(w2i
1 ) = 0} = {d0, d1, . . . , dq}, (3.3)

where the elements are numbered in any (unspecified) order. That is, Q = {〈wdi
1 〉 | 0 ≤

i ≤ q}.
Let β be any element of F ∗ such that sgn(β) = ε, with ε as defined in Lemma 3.2. 

For d0 ∈ IQ, we define

X := {wdi
1 Tr(wd0+di

1 ) : 1 ≤ i ≤ q} ∪ {2βwd0
1 } (3.4)

and

X := {logω(x) (mod 2N) : x ∈ X} ⊂ Z2N . (3.5)

Lemma 3.3. Let di, dj, dk be three distinct elements of IQ. Then the sign of

B(wdi
1 , w

dj

1 )B(wdi
1 , wdk

1 )B(wdj

1 , wdk
1 )

is equal to the sign of f(v) for any exterior point 〈v〉. In other words, 2 Tr(wdi+dj

1 )×
Tr(wdi+dk

1 ) Tr(wdj+dk

1 ) has sign ε, where ε is the same as in part (3) of Lemma 3.2. In 
particular, ε = 1.

Proof. Since Q is a conic, wdi
1 , wdj

1 , wdk
1 are linearly independent over F and thus form 

a basis of E over F . The Gram matrix of the bilinear form B with respect to this basis 
is equal to
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⎛⎝B(wdi
1 , wdi

1 ) B(wdi
1 , w

dj

1 ) B(wdi
1 , wdk

1 )
B(wdj

1 , wdi
1 ) B(wdj

1 , w
dj

1 ) B(wdj

1 , wdk
1 )

B(wdk
1 , wdi

1 ) B(wdk
1 , w

dj

1 ) B(wdk
1 , wdk

1 )

⎞⎠ (3.6)

which is symmetric with diagonal entries equal to 0. Its determinant is equal to

2B(wdi
1 , w

dj

1 )B(wdi
1 , wdk

1 )B(wdj

1 , wdk
1 ).

Let P = 〈v〉 be an exterior point, say, P is the intersection of the tangent lines through 
〈wdi

1 〉 and 〈wdj

1 〉. Then B(v, wdi
1 ) = B(v, wdj

1 ) = 0, and the Gram matrix with respect to 
the basis v, wdi

1 , wdj

1 has determinant −2f(v)B(wdi
1 , wdj

1 )2. Since q ≡ 1 (mod 4), −1 is 
a square in F∗

q . By [22, p. 262], the two determinants have the same sign. This proves the 
first part of the lemma. It remains to prove that ε = 1. We observe that the matrix (3.6)
can be written as 2MM� with

M =

⎛⎜⎝ wdi
1 wqdi

1 wq2di

1

w
dj

1 w
qdj

1 w
q2dj

1
wdk

1 wqdk

1 wq2dk

1

⎞⎟⎠ .

We claim that the determinant of M , det(M), is in F . To see this, applying the Frobenius 
automorphism σ : x �→ xq of Gal(E/F ) to M entry-wise, we get

σ(det(M)) = det(σ(M)) =

∣∣∣∣∣∣∣
wqdi

1 wq2di

1 wdi
1

w
qdj

1 w
q2dj

1 w
dj

1
wqdk

1 wq2dk

1 wdk
1

∣∣∣∣∣∣∣ = det(M).

The claim that ε = 1 now follows from this fact and the first part of the lemma. �
Lemma 3.4. With the above notation, if we use any other di in place of d0 in the definition 
of X, then the resulting set X ′ satisfies that X ′ ≡ X (mod 2N) or X ′ ≡ X+N (mod 2N).

Proof. Without loss of generality, we assume that we use d1 in place of d0 in the definition 
of X, and obtain X ′ = {wdi

1 Tr(wd1+di
1 ) : 0 ≤ i ≤ q, i �= 1} ∪ {2βwd1

1 }. We have the 
following observations.

(1) For i �= 0, 1, that is, 2 ≤ i ≤ q, the sign of the quotient of wdi
1 Tr(wd0+di

1 ) and 
wdi

1 Tr(wd1+di
1 ) is a constant: their quotient Tr(wd0+di

1 ) Tr(wd1+di
1 )−1 lies in F , and 

its sign is clearly equal to that of Tr(wd0+di
1 ) Tr(wd1+di

1 ); this sign is equal to 
sgn(2Tr(wd0+d1

1 )) by Lemma 3.3.
(2) The sign of the quotient of 2βwd1

1 and wd1
1 Tr(wd0+d1

1 ) is equal to sgn(2β×
Tr(wd1+d0

1 )) = sgn(2 Tr(wd1+d0
1 )), since we have chosen β such that sgn(β) =

ε = 1. Similarly the sign of the quotient of 2βwd0
1 and wd0

1 Tr(wd1+d0
1 ) is equal 

to sgn(2 Tr(wd1+d0
1 )).
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The above observations imply that there is a pairing of the elements of X ′ and X, say, 
p : X ′ → X a bijection, such that x′/p(x′) are nonzero squares in F for all x′ ∈ X ′ or 
x′/p(x′) are nonsquares in F for all x′ ∈ X ′. Upon taking logarithm and modulo 2N we 
get the conclusion of the lemma. �
Remark 3.5. It is clear that d′0 := qd0 (mod N) is an element of IQ. In Lemma 3.4, 
consider the special case where we replace d0 by d′0 in the definition of X, and denote 
the resulting set by X ′. We observe that

2 Tr(wd′
0+d0

1 ) = Tr(wd0
1 )2 − Tr(w2d0

1 ) − Tr(w2d0
1 )q = (Tr(wd0

1 )2.

Consequently sgn(2 Tr(wd′
0+d0

1 )) = 1. It follows that X ′ ≡ X (mod 2N) in this particular 
case. By definition, we have X ′ ≡ qX (mod N), so we have shown that the subset X is 
invariant under multiplication by q. This fact will be needed in the next section when 
we discuss automorphism groups of the newly constructed Cameron–Liebler line classes.

We now prove some properties of the set X which will be needed in the next section. 
Let S (resp. N) be the set of nonzero squares (resp. nonsquares) of F , and write

s =
∑
x∈S

ψF (x), n =
∑
x∈N

ψF (x),

where ψF is the canonical additive character of F . For 0 ≤ u ≤ q3 − 2, we define the 
exponential sums

Tu :=
∑
i∈X

∑
x∈S

ψF (Tr(ωu+i)x)

To simplify notation, we often write Tu =
∑

i∈X ψF (Tr(ωu+i)S). Note that i ∈ X if and 
only if i ≡ logω(x) (mod 2N) for some x ∈ X, which in turn is equivalent to x = ωi+2Nj

for some integer j. Since ω2Nj is an element of S, we can view ωi in the above definition 
of Tu as coming from X. It follows that

Tu = ψF (Tr(2βωuwd0
1 )S) +

q∑
i=1

ψF (Tr(ωuwdi
1 )Tr(wdi+d0

1 )S) (3.7)

We will evaluate these sums explicitly.

Remark 3.6. The following are some simple observations.

(1) It is clear that each summand in the right hand side of (3.7) is equal to one of 
|S| = q−1

2 , s and n, depending on the sign of the trace term in front of S.
(2) If we replace X by X ′ as in Lemma 3.4, then the value of Tu is either unchanged or 

is equal to Tu+N .
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Theorem 3.7. Let T = {logω(x) (mod N) | Tr(x) = 0} and T ′ = {logω(x) (mod 2N) |
Tr(x) = 1}. The exponential sums Tu take the following four values:

Tu =

⎧⎪⎨⎪⎩
q−1
2 + qs or q−1

2 + qn, if 2u (mod N) ∈ T,

− q+1
2 , if 2u (mod N) /∈ T and 2u (mod 2N) /∈ T ′,

q−1
2 , if 2u (mod N) /∈ T and 2u (mod 2N) ∈ T ′,

where s and n are defined as above, that is, s =
∑

x∈S ψF (x) and n =
∑

x∈N ψF (x).

Proof. We consider the following three cases according as the line Lu as defined in (3.2)
is a tangent, passant, or secant.

Case 1: Lu is a tangent line. In this case, ωu is a zero of f by (1) of Lemma 3.2, where 
we recall that f(x) := Tr(x2), so 〈ωu〉 = 〈wdk

1 〉 for some 0 ≤ k ≤ q by the definition 
of IQ in Eq. (3.3). Note that u satisfies 2u (mod N) ∈ T by the definition of f and T . 
In view of (2) of Remark 3.6, we may assume that dk = d0. (If necessary, replace u by 
u +N , and then the resulting ωu is still a zero of f , i.e., satisfies 2u (mod N) ∈ T .) Now 
Tr(ωuwdi

1 ) = 0 if and only if 〈wdi
1 〉 lies on the tangent line Lu, i.e., di = d0. We see that the 

elements Tr(wd0+di
1 )2, i �= 0, are all nonzero squares, so that Tu = q−1

2 + qs or q−1
2 + qn

by (1) of Remark 3.6. Note that if we replace u by u +N , then the value of Tu is replaced 
by the other in this case. Hence, {Tu, Tu+N} = { q−1

2 + qs, q−1
2 + qn}.

Case 2: Lu is a passant line. In this case, 〈ωu〉 is an interior point and thus f(ωu)
has sign −ε(= −1) by Lemmas 3.2 and 3.3. Note that u satisfies 2u (mod N) /∈ T and 
2u (mod 2N) /∈ T ′ since f(ωu) is a nonsquare of F . Each line through 〈ωu〉 has either 0
or 2 points of Q, so the points of Q are partitioned into pairs accordingly. Let 〈wdi

1 〉, 
〈wdj

1 〉 be two points of Q that lie on a secant line through 〈ωu〉.
Since the three points 〈wdi

1 〉, 〈wdj

1 〉 and 〈ωu〉 are collinear, the Gram matrix of the 
bilinear form B with respect to wdi

1 , wdj

1 , ωu is singular. By direct computations we 
find that the determinant of this Gram matrix is equal to B(wdi

1 , wdj

1 )2B(ωu, ωu) +
2B(wdi

1 , ωu)B(wdj

1 , ωu)B(wdi
1 , wdj

1 ). It follows that

B(wdi
1 , w

dj

1 )2B(ωu, ωu) + 2B(wdi
1 , ωu)B(wdj

1 , ωu)B(wdi
1 , w

dj

1 ) = 0 (3.8)

Recall that f(ωu) = Tr(ω2u) has sign −ε = −1, and −1 is a square since q ≡ 1 (mod 4). 
We see from (3.8) that 2 Tr(wdi

1 ωu) Tr(wdj

1 ωu) Tr(wdi+dj

1 ) has sign −ε = −1. If either di
or dj is d0, say di is d0, then Tr(2βωuwd0

1 ) Tr(ωuw
dj

1 ) Tr(wdj+d0
1 ) is a nonsquare since 

β ∈ F ∗ has sign ε = 1. Hence exactly one of Tr(2βωuwd0
1 ) and Tr(ωuw

dj

1 ) Tr(wdj+d0
1 )

is a square and the other is a nonsquare of F . Their corresponding summands in 
the right hand side of (3.7) thus contribute s + n = −1 to Tu. On the other hand, 
if di, dj �= d0, by Lemma 3.3, 2 Tr(wdi+dj

1 ) Tr(wdi+d0
1 ) Tr(wdj+d0

1 ) has sign ε = 1, so 
Tr(wdi

1 ωu) Tr(wdj

1 ωu) Tr(wdi+d0
1 ) Tr(wdj+d0

1 ) has sign −1, i.e., it is a nonsquare of F . 
Again exactly one of Tr(wdi

1 ωu) Tr(wdi+d0
1 ) and Tr(wdj

1 ωu) Tr(wdj+d0
1 ) is a square and 

the other is a nonsquare of F . Their corresponding summands in the right hand side 
of (3.7) thus contribute s + n = −1 to Tu.
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Summing up we have Tu = − q+1
2 in this case. Note that replacing u by u + N does 

not change the value of Tu in this case. Hence, Tu = Tu+N = − q+1
2 .

Case 3: Lu is a secant line. In this case, 〈ωu〉 is an exterior point, and thus f(ωu)
has sign ε(= 1) by Lemmas 3.2 and 3.3. Note that u satisfies 2u (mod N) /∈ T and 
2u (mod 2N) ∈ T ′ since f(ωu) is a square. By (2) of Remark 3.6, we may assume that it 
is on the tangent line l of 〈wd0

1 〉. (If necessary, replace u by u +N , and then the resulting 
u still satisfies that 2u (mod N) /∈ T and 2u (mod 2N) ∈ T ′.) For i �= 0, the tangent 
line through 〈wdi

1 〉 intersects l at the point 〈ωu−λiw
d0
1 〉 by straightforward calculations, 

where λi = Tr(ωuwdi
1 ) Tr(wdi+d0

1 )−1. When i ranges from 1 to q, we get all the points 
of l other than 〈wd0

1 〉, since each other tangent line intersects l at a distinct point. This 
implies that the values λi are all distinct, and hence {λi : 1 ≤ i ≤ q} is equal to F . 
Since Tr(ωuwdi

1 ) Tr(wdi+d0
1 ) has the same sign as λi, we see that the q terms in the 

second sum in the right hand side of (3.7) are q−1
2 once, s with multiplicity q−1

2 , and 
n with multiplicity q−1

2 . Also the first summand in the right hand side of (3.7) is equal 
to q−1

2 since 〈ωu〉 is on the tangent line l of 〈wd0
1 〉. Summing up, in this case, we have 

Tu = 2 · q−1
2 + q−1

2 (s +n) = q−1
2 . Note that the replacing of u by u +N does not change 

the value of Tu in this case. Hence, Tu = Tu+N = q−1
2 .

This completes the proof of the theorem. �
Remark 3.8.

(i) Some parts of the above theorem can be made more precise. We have Tu = q−1
2 + qs

if and only if

u (mod 2N) ∈
{
X, when sgn(2) = 1,
X + N, when sgn(2) = −1.

and Tu = q−1
2 + qn if and only if

u (mod 2N) ∈
{
X, when sgn(2) = −1,
X + N, when sgn(2) = 1.

To see this, by Eq. (3.7), consider the set

{sgn(Tr(ωu · c)) : c ∈ X}

= {sgn(Tr(ωuwdi
1 ) Tr(wd0+di

1 )) : 1 ≤ i ≤ q} ∪ {sgn(2β Tr(ωuwd0
1 ))}.

For ωu ∈ X, by Lemma 3.3, we have the following observations:
(1) If ωu = w

dj

1 Tr(wdj+d0
1 ), then

sgn(Tr(ωuwdi
1 ) Tr(wd0+di

1 )) = sgn(Tr(wdj+di

1 ) Tr(wdi+d0
1 ) Tr(wdj+d0

1 )) = sgn(2)
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and

sgn(2β Tr(ωuwd0
1 )) = sgn(2β) sgn(Tr(w2d0

1 )) = 0.

(2) If ωu = 2β Tr(wd0
1 ), then

sgn(Tr(ωuwdi
1 ) Tr(wd0+di

1 )) = sgn(2β Tr(wdi+d0
1 )2) = sgn(2)

and

sgn(2β Tr(ωuwd0
1 )) = sgn(2β) sgn(Tr(w2d0

1 )) = 0.

Summing up, we have Tu = q−1
2 + qs (resp. q−1

2 + qn) when sgn(2) = 1 (resp. 
sgn(2) = −1). Similarly, for ωu ∈ ωNX, it holds that Tu = q−1

2 +qs (resp. q−1
2 +qn) 

when sgn(2) = −1 (resp. sgn(2) = 1). By Theorem 3.7, the converse is also true.
(ii) By (2.4), the values of s and n are given by s = −1+G(η′)

2 and n = −1−G(η′)
2 , where 

η′ is the quadratic character of F . Thus, the condition of the remark above can be 
described as follows: Tu = q−1

2 + q−1+η′(2)G(η′)
2 (resp. Tu = q−1

2 + q−1−η′(2)G(η′)
2 ) if 

and only if u (mod 2N) ∈ X (resp. u (mod 2N) ∈ X + N).

4. A construction of Cameron–Liebler line classes with parameter x = q2−1
2

In this section, we give the promised construction of Cameron–Liebler line classes with 
parameter x = q2−1

2 . We will use the same notation introduced in previous sections. By 
Result 2.1, it suffices to construct an x-tight set M ∈ Q+(5, q) satisfying the hyperplane 
intersection property specified in Result 2.1. Going from a subset of points in PG(5, q)
to a subset of vectors in E × E, by Result 2.2, it suffices to construct a subset D ⊂
E × E \ {(0, 0)} such that |D| = x(q3 − 1), Q((u, v)) = 0 for all (u, v) ∈ D, and the 
additive character values of D satisfy (2.2).

The first step of our construction follows the idea in [25, p. 37]. That is, we prescribe 
an automorphism group for the x-tight set that we intend to construct. We will take the 
model of Q+(5, q) as introduced in Section 2. Define the map g on Q+(5, q) by

g : (x, y) �→ (w1x,w
−1
1 y),

where w1 ∈ E∗ has order N = q2 + q + 1. Then the cyclic subgroup C ≤ PGO+(6, q)
generated by g has order q2 + q + 1, and it acts semi-regularly on the points of Q+(5, q)
(so each orbit contains q2 + q + 1 points). The x-tight set M will be a union of orbits 
of C acting on Q+(5, q). The main difficulty with this approach lies in coming up with 
a general choice of orbits of C for all q so that the union of the chosen orbits is an 
x-tight set. We will use the subset X introduced in Section 3 to help choose orbits for 
our purpose.
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Let X be the set as defined in (3.5). The set X can be expressed as

X = 2A ∪ (2B + N) (mod 2N)

for some A, B ⊆ ZN with |A| + |B| = q + 1. Define a subset IX of Z4N by

IX := {4t + Ns (mod 4N) : t ∈ A, s = 0, 1}
∪ {4t + Ns (mod 4N) : t ∈ B, s = 2, 3}. (4.1)

That is,

IX = 4A ∪ (4A + N) ∪ (4B + 2N) ∪ (4B + 3N).

Note that |IX | = 2(q + 1). Now we use IX to give the main construction of this paper. 
Let q be a prime power such that q ≡ 5 or 9 (mod 12). Define

D := {(xy, xy−1zω�) | x ∈ F ∗, y ∈ C
(q−1,q3)
0 , z ∈ C

(4N,q3)
0 , � ∈ IX} ⊆ E × E, (4.2)

where C(q−1,q3)
0 := 〈ωq−1〉, C(4N,q3)

0 := 〈ω4N 〉. Clearly we have

|D| = (q − 1)(q2 + q + 1)q − 1
4 · 2(q + 1) = q2 − 1

2 (q3 − 1),

and λD = D for all λ ∈ F ∗. Also it is clear that D is a subset of the hyperbolic quadric 
{(x, y) ∈ E2 | Tr(xy) = 0} since Tr(ω�) = 0 for any � ∈ IX by the definition of IX
and X. Let M be the set of projective points in PG(5, q) corresponding to D. Then 
|M| = q2−1

2 (q2 + q + 1) and M ⊂ Q+(5, q).

Theorem 4.1. The line set L in PG(3, q) corresponding to M under the Klein correspon-
dence forms a Cameron–Liebler line class with parameter x = q2−1

2 .

In the rest of this section we give a proof of Theorem 4.1. By the discussions at the 
beginning of this section, it suffices to show that for all (0, 0) �= (a, b) ∈ E × E,

ψa,b(D) =
{
− q2−1

2 + q3, if (b, a) ∈ D,

− q2−1
2 , otherwise.

By (2.1) and the definition of D, ψa,b(D) is expressed as

Sa,b :=
∑
�∈IX

N−1∑
i=0

q−1
4 −1∑
j=0

q−2∑
k=0

ψE(aωNkω(q−1)i + bωNkω−(q−1)iω4Nj+�). (4.3)

We evaluate these character sums by considering two cases: (i) a = 0 or b = 0; and 
(ii) a �= 0 and b �= 0.
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Lemma 4.2. Assume either a = 0 or b = 0. Then the quadruple sum Sa,b in (4.3) is equal 
to − q2−1

2 .

Proof. If a �= 0 and b = 0, since {ωNk+(q−1)i | 0 ≤ k ≤ q − 2, 0 ≤ i ≤ N − 1} = E∗, we 
have

Sa,b =
∑
�∈IX

N−1∑
i=0

q−1
4 −1∑
j=0

q−2∑
k=0

ψE(aωNkω(q−1)i)

= q − 1
4 |IX |

∑
x∈E∗

ψE(ax) = −1
4(q − 1)|IX | = −q2 − 1

2 .

Similarly, if a = 0 and b �= 0, we have

Sa,b =
∑
�∈IX

N−1∑
i=0

q−1
4 −1∑
j=0

q−2∑
k=0

ψE(bωNkω−(q−1)iω4Nj+�)

=
∑
�∈IX

q−1
4 −1∑
j=0

∑
x∈E∗

ψE(bxω4Nj+�) = −1
4(q − 1)|IX | = −q2 − 1

2 .

This completes the proof of the lemma. �
Next, we consider case (ii): a �= 0 and b �= 0. The quadruple sum Sa,b in this case 

can be essentially reduced to the character sum Tu, which was already evaluated in 
Theorem 3.7 (and Remark 3.8). The computations involved in reducing Sa,b to Tu are 
routine but complicated. So we start with a lemma, which says that the sum Sa,b can 
be expressed in terms of Gauss sums of order 4N of E.

Lemma 4.3. Assume that a, b �= 0. Then

Sa,b = (q − 1)
4(q3 − 1)

∑
�∈IX

4N−1∑
u,v=0

u+v≡0(mod 4)
u≡v(mod N)

G(χ−v
4N )G(χ−u

4N )χv
4N (a)χu

4N (b)χu
4N (ω�), (4.4)

where χ4N is a multiplicative character of order 4N of E.

Proof. By orthogonality of characters, the quadruple sum Sa,b is equal to

1
4

∑ N−1∑ ∑
∗

ψE(axω(q−1)i + bxω−(q−1)iy4ω�)

�∈IX i=0 x,y∈F
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= 1
4(q3 − 1)2

∑
�∈IX

N−1∑
i=0

∑
x,y∈F∗

q3−2∑
j,k=0

G(χ−j
q3−1)χ

j
q3−1(axω

(q−1)i)G(χ−k
q3−1)

× χk
q3−1(bxω−(q−1)iy4ω�)

= 1
4(q3 − 1)2

∑
�∈IX

N−1∑
i=0

∑
x∈F∗

q3−2∑
j,k=0

G(χ−j
q3−1)G(χ−k

q3−1)χ
j
q3−1(a)χ

k
q3−1(b)χ

j+k
q3−1(x)

× χj−k
q3−1(ω

(q−1)i)χk
q3−1(ω�)

( ∑
y∈F∗

χk
q3−1(y4)

)
. (4.5)

Let χ4N = χ
q−1
4

q3−1. Since 
∑

y∈F∗ χk
q3−1(y4) = q − 1 or 0 according as (q−1)

4 | k or not, 
continuing from (4.5), we have

Sa,b = q − 1
4(q3 − 1)2

∑
�∈IX

N−1∑
i=0

∑
x∈F∗

q3−2∑
j=0

4N−1∑
u=0

G(χ−j
q3−1)G(χ−u

4N )χj
q3−1(a)χ

u
4N (b)χj+ q−1

4 u

q3−1 (x)

× χ
j− q−1

4 u

q3−1 (ω(q−1)i)χu
4N (ω�)

= q − 1
4(q3 − 1)2

∑
�∈IX

N−1∑
i=0

q3−2∑
j=0

4N−1∑
u=0

G(χ−j
q3−1)G(χ−u

4N )χj
q3−1(a)χ

u
4N (b)χj− q−1

4 u

q3−1 (ω(q−1)i)

× χu
4N (ω�)

( ∑
x∈F∗

χ
j+ q−1

4 u

q3−1 (x)
)
. (4.6)

Let χN = χq−1
q3−1. Since 

∑
x∈F∗ χ

j+ q−1
4 u

q3−1 (x) = q − 1 or 0 according as j ≡ 0 (mod q−1
4 )

and j + q−1
4 u ≡ 0 (mod q − 1) or not, continuing from (4.6), we have

Sa,b = (q − 1)2

4(q3 − 1)2
∑
�∈IX

N−1∑
i=0

4N−1∑
u,v=0

u+v≡0(mod 4)

G(χ−v
4N )G(χ−u

4N )χv
4N (a)χu

4N (b)χv−u
4N (ω(q−1)i)

× χu
4N (ω�)

= (q − 1)2

4(q3 − 1)2
∑
�∈IX

4N−1∑
u,v=0

u+v≡0(mod 4)

G(χ−v
4N )G(χ−u

4N )χv
4N (a)χu

4N (b)

× χu
4N (ω�)

(N−1∑
i=0

χ
(v−u) q−1

4
N (ωi)

)

= (q − 1)
4(q3 − 1)

∑
�∈IX

4N−1∑
u,v=0

u+v≡0(mod 4)
u≡v(mod N)

G(χ−v
4N )G(χ−u

4N )χv
4N (a)χu

4N (b)χu
4N (ω�). (4.7)

The proof of the lemma is now complete. �
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Remark 4.4. In (4.4) of Lemma 4.3, v is expressed as v = −Nc + 4d if u = Nc + 4d
for c = 0, 1, 2, 3, and d = 0, 1, . . . , N − 1. Write χ4 = χN

4N and we can assume that 
χ4(ωN ) = i, where i =

√
−1. Then, by the definition of IX , the sum in (4.4) can be 

expanded as follows:

4(q3 − 1)
q − 1 Sa,b =

∑
s=0,1

∑
t∈A

∑
c=0,1,2,3

N−1∑
d=0

G(χNc−4d
4N )G(χ−Nc−4d

4N )χc
4(a−1b)χd

N (ab)

× χNc+4d
4N (ω4t+Ns)

+
∑
s=2,3

∑
t∈B

∑
c=0,1,2,3

N−1∑
d=0

G(χNc−4d
4N )G(χ−Nc−4d

4N )χc
4(a−1b)χd

N (ab)

× χNc+4d
4N (ω4t+Ns)

=
∑
t∈A

∑
c=0,1,2,3

N−1∑
d=0

G(χNc−4d
4N )G(χ−Nc−4d

4N )χc
4(r′)χd

N (r)χd
N (ω4t)(1 + (i)c)

+
∑
t∈B

∑
c=0,1,2,3

N−1∑
d=0

G(χNc−4d
4N )G(χ−Nc−4d

4N )χc
4(r′)

× χd
N (r)χd

N (ω4t)((−1)c + (−i)c) (4.8)

where r′ := a−1b and r := ab.

We now compute the right hand side of Eq. (4.8) by dividing it into three partial 
sums: P1, P2 and P3, where P1 is the contribution of the summands with c = 2, P2 is the 
contribution of the summands with c = 0, and P3 is the contribution of the summands 
with c = 1, 3. That is, we have

4(q3 − 1)
q − 1 Sa,b = P1 + P2 + P3.

It is obvious that P1 is equal to 0. Next we evaluate P2.

Lemma 4.5. We have

P2 = 2(q + 1)(1 − q3) + 2q3δr,

where

δr :=
{
N, if logω(r) (mod N) ∈ T,

0, if logω(r) (mod N) /∈ T,

and T is as defined in Theorem 3.7.
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Proof. Recall that T = {logω(x) (mod N) : Tr(x) = 0}. Note that 4(A ∪B) ≡ T (mod N)
by the definition of A, B and the fact that G(χd

N ) = q
∑

t∈A∪B χd
N (ω4t) which follows 

from Theorem 2.3. We have

P2 = 2
∑

t∈A∪B

N−1∑
d=0

G(χ−d
N )G(χ−d

N )χd
N (r)χd

N (ω4t)

= 2
q

N−1∑
d=1

G(χ−d
N )G(χ−d

N )χd
N (r)G(χd

N ) + 2(q + 1). (4.9)

Since G(χ−d
N )G(χd

N ) = q3 and G(χd
N ) = q

∑
x∈T χd

N (ωx), continuing from (4.9), we have

P2 = 2q2
N−1∑
d=1

G(χ−d
N )χd

N (r) + 2(q + 1) = 2q3
N−1∑
d=1

∑
x∈T

χ−d
N (ωx)χd

N (r) + 2(q + 1)

= 2q3
N−1∑
d=0

∑
x∈T

χ−d
N (ωx)χd

N (r) + 2(q + 1) − 2(q + 1)q3

= 2(q + 1)(1 − q3) + 2q3 ·
{
N, if logω(r)(mod N) ∈ T

0, if logω(r)(mod N) /∈ T

The conclusion of the lemma now follows. �
It remains to evaluate P3.

Lemma 4.6. Let η be the quadratic character of E, and define nr′ = χ4(r′) + χ3
4(r′) +

i(χ4(r′) − χ3
4(r′)). Then

P3 = η(2)nr′G(η)
(
2N

∑
t∈X

ψE(r
N+1

2 ωtC
(2N,q3)
0 ) + N − qδ′r

)
, (4.10)

where δ′r is defined by

δ′r =

⎧⎪⎨⎪⎩
0, if logω(r) (mod N) ∈ T,

N, if logω(r) (mod N) /∈ T and logω(rN+1) (mod 2N) ∈ T ′,

−N, if logω(r) (mod N) /∈ T and logω(rN+1) (mod 2N) /∈ T ′,

where T ′ = {logω(x) (mod 2N) | Tr(x) = 1}.

Remark 4.7. Before going into the proof of the lemma, we make the following observa-
tions.
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(i) The nr′ in Lemma 4.6 can be explicitly evaluated:

nr′ =
{ 2 if χ4(r′) = 1 or χ4(r′) = −i,

−2 if χ4(r′) = −1 or χ4(r′) = i.

(ii) The character sum 
∑

t∈X ψE(rN+1
2 ωtC

(2N,q3)
0 ) =

∑
t∈X ψF (Tr(rN+1

2 ωt)S) in
Lemma 4.6 has been already evaluated in Theorem 3.7 (and Remark 3.8) as:

T
logω(r

N+1
2 )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q−1
2 + q−1+η′(2)G(η′)

2 , if logω(rN+1
2 ) (mod 2N) ∈ X,

q−1
2 + q−1−η′(2)G(η′)

2 , if logω(rN+1
2 ) (mod 2N) ∈ X + N,

q−1
2 , if logω(r)(mod N) /∈ T

and logω(rN+1) (mod 2N) ∈ T ′,

− q+1
2 , if logω(r)(mod N) /∈ T

and logω(rN+1) (mod 2N) /∈ T ′.

Proof of Lemma 4.6. First we note that

P3 = nr′

N−1∑
d=0

G(χN−4d
4N )G(χ−N−4d

4N )χd
N (r)

(∑
t∈A

χd
N (ω4t) −

∑
t∈B

χd
N (ω4t)

)
. (4.11)

Applying the Hasse–Davenport product formula with � = 2, χ = χ−d
N χ4, and θ = η, we 

have

G(χ−d
N χ4)G(χ−d

N χ3
4) = η(2)G(η)G(χ−2d

N η). (4.12)

Substituting Eq. (4.12) into Eq. (4.11), we obtain

η(2)
nr′G(η) · P3 =

N−1∑
d=0

G(χ−2d
N η)χd

N (r)
(∑

t∈A

χ2d
N (ω2t) −

∑
t∈B

χ2d
N (ω2t)

)

=
N−1∑
d=0

G(χ−2d
N η)χ2d

N (r
N+1

2 )η(r
N+1

2 )
(∑

t∈A

χ2d
N η(ω2t) +

∑
t∈B

χ2d
N η(ω2t+N )

)

=
∑
t∈X

N−1∑
d=0

G(χ−2d
N η)χ2d

N η(r
N+1

2 )χ2d
N η(ωt) (4.13)

where we have used the definition of X and the fact that η(rN+1
2 ) = 1. By orthogonality 

of characters, we have

η(2)
nr′G(η) · P3 = 2N

∑
ψE(r

N+1
2 ωtC

(2N,q3)
0 ) −

∑ N−1∑
G(χ−d

N )χd
N (r

N+1
2 ωt). (4.14)
t∈X t∈X d=0
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Finally, we evaluate the second sum in Eq. (4.14). Using G(χ2−1d
N ) = q

∑
t∈X χd

N (ωt)
and applying the Hasse–Davenport product formula again with � = 2, χ = χ−2−1d

N , and 
θ = η, we can rewrite the second sum in Eq. (4.14) as follows:

∑
t∈X

N−1∑
d=0

G(χ−d
N )χd

N (r
N+1

2 ωt) = 1
q

N−1∑
d=1

G(χ−d
N )G(χ2−1d

N )χd
N (r

N+1
2 ) − (q + 1)

= G(η)
q

N−1∑
d=1

G(χ−2−1d
N η)χd

N (r
N+1

2 ) − (q + 1)

= G(η)
q

N−1∑
d=0

G(χ−d
N η)χd

Nη(rN+1) −N. (4.15)

Let χ2N be a multiplicative character of order 2N of E and η′ be the quadratic character 
of F . We now use the following formula:

G(χ−d
N η) =

( ∑
x∈E:Tr(x)=1

χ−d
N η(x)

)
G(η′),

which follows from Theorem 2.3. Noting that G(η)G(η′) = q2 (cf. [18, Theorem 5.18]), 
we have

∑
t∈X

N−1∑
d=0

G(χ−d
N )χd

N (r
N+1

2 ωt) + N

= G(η)
q

G(η′)
N−1∑
d=0

( ∑
x∈E:Tr(x)=1

χ−d
N η(x)

)
χd
Nη(rN+1)

= q
2N−1∑
d=0

( ∑
x∈E:Tr(x)=1

χ−d
2N (x)

)
χd

2N (rN+1) − q
N−1∑
d=0

( ∑
x∈E:Tr(x)=1

χ−d
N (x)

)
χd
N (rN+1)

= q ·

⎧⎪⎨⎪⎩
0, if logω(r) (mod N) ∈ T,

N, if logω(r) (mod N) /∈ T and logω(rN+1)(mod 2N) ∈ T ′,

−N, if logω(r) (mod N) /∈ T and logω(rN+1)(mod 2N) /∈ T ′.

This completes the proof of the lemma. �
We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. If either a = 0 or b = 0, then ψa,b(D) = − q2−1
2 by Lemma 4.2. If 

a �= 0 and b �= 0, by Lemmas 4.5, 4.6, and Remark 4.7, we have
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4(q3 − 1)
q − 1 Sa,b = 2(q + 1)(1 − q3) + 2q3δr + η(2)nr′G(η)(2NT

logω(r
N+1

2 )
+ N − qδ′r)

= 2(q + 1)(1 − q3) +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4q3N, if logω(rN+1
2 ) (mod 2N) ∈ X,

and nr′ = 2,
or logω(rN+1

2 ) (mod 2N) ∈ X + N,

and nr′ = −2,
0, otherwise.

Thus by Lemma 4.3 and Remark 4.4, the value of ψa,b(D) in this case is given by − q2−1
2

or q3 − q2−1
2 .

Finally, we show that ψa,b(D) = q3 − q2−1
2 if and only if (b, a) ∈ D. If (b, a) ∈ D, then 

there are x ∈ F ∗, y ∈ C
(q−1,q3)
0 , z ∈ C

(4N,q3)
0 , u ∈ X, and v ∈ {1, ωN} such that b = xy

and a = xy−1zu2v. Then, r := ab = x2zu2v and r′ := a−1b = yz−1u−2v−1, and they 
satisfy

logω(r
N+1

2 ) (mod 2N) ≡ logω(uN+1) (mod 2N) ∈ X + logω(uN )

and

χ4(r′) = χ4(u−2v−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if u is a square and v = 1,
−i, if u is a square and v = ωN ,

−1, if u is a nonsquare and v = 1,
i, if u is a nonsquare and v = ωN .

If u is a square, then logω(rN+1
2 ) (mod 2N) ∈ X and nr′ = 2. If u is a nonsquare, 

then logω(rN+1
2 ) (mod 2N) ∈ X + N and nr′ = −2. Thus, in both cases, we have 

ψa,b(D) = q3 − q2−1
2 . The converse also holds since the size of the dual of D is |D|, cf.

[19, Theorem 3.4]. The proof of the theorem is now complete. �
Remark 4.8.

(1) It is clear that the subset D defined in (4.2) is disjoint from both {(y, 0) | y ∈ E∗} and 
{(0, y) | y ∈ E∗}. By adding one of these sets to D, we therefore obtain a Cameron–
Liebler line class of parameter q

2+1
2 .

(2) We observe that IX = 2X ∪ (2X + N). Consider the element σ ∈ PΓO+(5, q)
defined by σ((x, y)) = (xq, yq), ∀(x, y) ∈ E×E. This automorphism σ belongs to the 
embedded image of PΓL(4, q) in PΓO+(5, q) induced by the Klein correspondence. 
We claim that σ stabilizes our line set L. This amounts to the fact that D is invariant 
under the map (x, y) �→ (xq, yq), which follows from the fact that X is invariant 
under multiplication by q as proved in Remark 3.5. Summing up, our line set L has 
an automorphism group isomorphic to (Zq2+q+1 × Zq−1) � Z3.
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5. Affine two-intersection sets

A set K of points of a projective or affine plane is called a set of type (m, n) if every 
line of the plane intersects K in m or n points; we assume that m < n, and we require 
both values to occur. There are many known sets of type (m, n) in PG(2, q) for both 
even and odd q, e.g., a maximal arc of degree n in PG(2, 2f ) is a set of type (0, n)
with n | 2f , and a unital in PG(2, q2) is a set of type (1, q + 1). The situation is quite 
different for affine planes. When q is even, let K be a maximal arc of degree n in PG(2, q)
and let � be a line of PG(2, q) such that |� ∩ K| = 0. Then K is a set of type (0, n) in 
AG(2, q) = PG(2, q) \ �. Since nontrivial maximal arcs do not exist in PG(2, q) when q
is odd, cf. [1], the construction just mentioned does not work in AG(2, q), q odd. In fact, 
for affine planes of odd order, we only know examples of sets of type (m, n) in affine 
planes of order 9 and in AG(2, 81). Penttila and Royle [24] classified sets of type (3, 6)
in all affine planes of order 9 by exhaustive computer search. In [26], Rodgers developed 
a method to obtain new affine two-intersection sets in AG(2, 32e) by establishing certain 
tactical decompositions of the points and lines of PG(3, 32e) induced by Cameron–Liebler 
line classes with some nice properties. He was thus able to rediscover an example of sets 
of type (3, 6) in AG(2, 9), and obtain a new example of affine two-intersection sets in 
AG(2, 81). In his thesis [25], Rodgers made the following conjecture.

Conjecture 5.1. (See [25].) For each integer e ≥ 1, there exists a set of type (1
2 (32e−3e),

1
2(32e + 3e)) in AG(2, 32e).

Since we just established the existence of Cameron–Liebler line classes of parameters 
32e−1

2 in PG(3, 32e) for any e ≥ 1, it is natural to ask whether Rodgers’ method can be 
applied to these new line classes to produce affine two-intersection sets in AG(2, 32e). 
We have not been able to check whether the tactical decompositions induced by the 
Cameron–Liebler line classes constructed in Section 4 have the properties predicted by 
Rodgers. On the other hand, we are able to establish Conjecture 5.1 by a direct and 
explicit algebraic construction. Before doing so, we describe the model of AG(2, 32e) we 
are going to use.

Notation 5.2. Let q = 32e with e ≥ 1. Write N = q2 + q + 1, and let ω be a primitive 
element of E = Fq3 . Let w1 be an element of order N in E. We identify the points of 
PG(2, q) with ZN as follows: View E as a 3-dimensional vector space over F = Fq, and 
use E as the underlying vector space of PG(2, q). We identify the projective point 〈wi

1〉
with i ∈ ZN , 0 ≤ i ≤ N − 1. Let J = {i : i ∈ ZN , Tr(wi

1) = 0}. We obtain the affine 
plane AG(2, q) from PG(2, q) by deleting J . The points and lines of AG(2, q) are given 
below:

(1) the points: ZN \ J ,
(2) the lines: li = {j ∈ ZN \ J : Tr(wi+j

1 ) = 0}, 1 ≤ i ≤ N − 1.
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The following is our main theorem of this section.

Theorem 5.3. With the notation as above, let w0 = ωN ∈ F and C(4,q)
i = wi

0〈w4
0〉, 

0 ≤ i ≤ 3. Then K := {k ∈ ZN : Tr(wk
1 ) ∈ C

(4,q)
0 ∪ C

(4,q)
1 } ⊆ ZN \ J is a set of type 

(1
2 (32e − 3e), 12 (32e + 3e)) in AG(2, 32e).

We divide the proof into a series of lemmas. The following lemma reduces the problem 
to the computation of the modulus of a certain exponential sum.

Lemma 5.4. Let γ be any fixed element of E \F , and let χ4 be a multiplicative character 
of E∗ of order 4 such that χ4(ωN ) = i, where i =

√
−1. Define a = c = 1−i

4 and

Hγ,j :=
∑
x∈F

χj
4(1 + γx), j = 1, 3. (5.1)

Then the size of the set {i ∈ ZN : Tr(wi
1) ∈ C

(4,q)
0 ∪ C

(4,q)
1 , Tr(γwi

1) = 0} is equal to

q

2 + aHγ,1 + cHγ,3. (5.2)

Proof. The size of the set {i ∈ ZN : Tr(wi
1) ∈ C

(4,q)
0 ∪ C

(4,q)
1 , Tr(γwi

1) = 0} is given by

1
q2

∑
e,f∈F

∑
y∈C

(q−1,q3)
0

∑
x∈C

(4,q)
0 ∪C

(4,q)
1

ψE(ey)ψF (−ex)ψE(fγy)

= 1
q2

∑
e∈F∗

∑
λ∈F

∑
y∈C

(q−1,q3)
0

∑
x∈C

(4,q)
0 ∪C

(4,q)
1

ψE(ye(1 + λγ))ψF (−ex) (5.3)

+ 1
q2

∑
f∈F

∑
y∈C

(q−1,q3)
0

∑
x∈C

(4,q)
0 ∪C

(4,q)
1

ψE(yfγ). (5.4)

The sum in (5.4) is equal to

S2 := 1
q2

∑
z∈E∗

∑
x∈C

(4,q)
0 ∪C

(4,q)
1

ψE(zγ) + N(q − 1)
2q2 = q2 − 1

2q .

Let χq−1 be a multiplicative character of order q − 1 of E and χ′
q−1 be its restriction 

to F . Write χ4 = χ
q−1
4

q−1 and χ′
4 = χ′

q−1
4

q−1 , which are multiplicative characters of order 4
of E and F respectively. Here, we can assume that χ4(ωN ) = i. Then, by orthogonality 
of characters, the sum (5.3), denoted by S1, is computed as follows:

S1 = 1
4q2(q − 1)

q−2∑ 3∑
G(χ−i

q−1)G(χ′j
4)

∑
∗

∑ ∑
χi
q−1(a(1 + λγ))χ′−j

4 (−awh
0 )
i=0 j=0 a∈F λ∈F h=0,1
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= 1
4q2(q − 1)

q−2∑
i=0

3∑
j=0

G(χ−i
q−1)G(χ′j

4)
∑
λ∈F

∑
h=0,1

χi
q−1(1 + λγ)χ′−j

4 (−wh
0 )

×
∑
a∈F∗

χ′i− q−1
4 j

q−1 (a). (5.5)

Here 
∑

a∈F∗ χ′i−
q−1
4 j

q−1 (a) = q − 1 or 0 according as i ≡ q−1
4 j (mod q − 1) or not. Hence 

we have

S1 = 1
4q2

3∑
j=0

G(χ−j
4 )G(χ′j

4)
∑
λ∈F

∑
h=0,1

χj
4(1 + λγ)χ′−j

4 (−wh
0 ).

Noting that G(χ−j
4 )G(χ′j

4) = q2 for j = 1, 2, 3, cf. [2, Theorem 11.6.3], and χ′
4(−1) = 1, 

we can rewrite the above as

1
4

3∑
j=0

∑
λ∈F

∑
h=0,1

χj
4(1 + λγ)χ′−j

4 (wh
0 ) + 1 − q2

2q .

Therefore, the size of the set {i ∈ ZN : Tr(wi
1) ∈ C

(4,q)
0 ∪ C

(4,q)
1 , Tr(γwi

1) = 0} is equal 
to

S1 + S2 = 1
4

3∑
j=0

∑
λ∈F

∑
h=0,1

χj
4(1 + λγ)χ−j

4 (ωNh)

= 1
4
∑
λ∈F

∑
h=0,1

1 + 1
4

( ∑
h=0,1

χ2
4(ωNh)

) ∑
λ∈F

χ2
4(1 + λγ)

+ 1
4

( ∑
h=0,1

χ3
4(ωNh)

) ∑
λ∈F

χ4(1 + λγ) + 1
4

( ∑
h=0,1

χ4(ωNh)
) ∑

λ∈F

χ3
4(1 + λγ)

= q

2 + aHγ,1 + cHγ,3.

This completes the proof of the lemma. �
Now, the exponential sum Hγ,j can be transformed to an exponential sum over F as 

follows: Since χ4(z) = χ3
4(Norm(z)) for z ∈ E, where Norm is the norm from E to F , 

we have

Hγ,j = χj
4(γ)

∑
x∈F

χj
4(γ−1 + x)

= χj
4(γ)

∑
x∈F

χ−j
4 (Norm(γ−1 + x))

= χj
4(γ)

∑
χ−j

4 (x3 + Tr(γ−1)x2 + Tr(γ−1−q)x + Norm(γ−1)). (5.6)

x∈F
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Write

fγ(x) := x3 + Tr(γ−1)x2 + Tr(γ−1−q)x + Norm(γ−1).

The rest of this section is devoted to showing that the exponential sum 
∑

x∈F χ−j
4 (fγ(x))

has modulus 3e. Note that if |
∑

x∈F χ−j
4 (fγ(x))| = 3e, then 

∑
x∈F χ−j

4 (fγ(x)) = α3e, 
for a fourth root of unity α, since Z[i] is a unique factorization domain and 3 is a prime 
in Z[i]; it follows from Lemma 5.4 that the intersection sizes of K with the lines of 
AG(2, 32e) are 32e+3e

2 or 32e−3e

2 .
Therefore, we are interested in the modulus of the exponential sum 

∑
x∈F χ−j

4 (fγ(x)). 
The well known theorem of Weil on multiplicative character sums implies that 
|
∑

x∈F χ−j
4 (fγ(x))| ≤ 2 · 3e, cf. [18, Theorem 5.41], which is useful but not enough.

Lemma 5.5. For j = 1 or 3, it holds that

∑
x∈F

χ−j
4 (fγ(x)) = −1

3e
∑
a∈F∗

χj
4(a)

∑
x∈F

ψ(aTr(γ−1)x2 + (aTr(γ−1−q) + a1/3)x

+ aNorm(γ−1))). (5.7)

Proof. By orthogonality of characters,

∑
x∈F

χ−j
4 (fγ(x)) = G(χ−j

4 )
32e

∑
a∈F∗

χj
4(a)

∑
x∈F

ψ(afγ(x)). (5.8)

Noting that G(χ−j
4 ) = −3e, cf. [2, Theorem 11.6.3], we have

∑
x∈F

χ−j
4 (fγ(x)) = −1

3e
∑
a∈F∗

χj
4(a)

∑
x∈F

ψ(a(x3 + Tr(γ−1)x2 + Tr(γ−1−q)x + Norm(γ−1)))

= −1
3e

∑
a∈F∗

χj
4(a)

∑
x∈F

ψ(aTr(γ−1)x2 + (aTr(γ−1−q) + a1/3)x

+ aNorm(γ−1))).

The proof of the lemma is complete. �
First we consider the case where Tr(γ−1) = 0 in Lemma 5.5.

Lemma 5.6. Let γ ∈ E \ F be such that Tr(γ) = 0. Then Tr(γ1+q) is a nonzero square 
of F .

Proof. By Hilbert’s Theorem 90 [18, Theorem 2.24], there exists y ∈ E such that γ =
y − yq. We can directly compute that Tr(γ1+q) = Tr(y1+q) − Tr(y2) and Tr(y)2 =
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Tr(y2) + 2 Tr(y1+q). It follows that Tr(γ1+q) = − Tr(y)2. Since q ≡ 1 (mod 4), −1 is 
a square, and hence Tr(γ1+q) is a square of F .

Next we show that Tr(γ1+q) �= 0. The conic {〈x〉 : Tr(x1+q) = 0} in PG(2, q) contains 
the point 〈1〉, and the tangent line through 〈1〉 is {〈x〉 : Tr(x) = 0}. Since Tr(γ) = 0, 
the point 〈γ〉 lies on this tangent line, and thus Tr(γ1+q) �= 0. �
Proposition 5.7. Let γ be an element of E\F such that Tr(γ−1) = 0. Then, for j = 1 or 3, 
we have ∣∣∣∑

x∈F

χ−j
4 (fγ(x))

∣∣∣ = 3e.

Proof. By Lemma 5.5, we need to show that∣∣∣ ∑
a∈F∗

χj
4(a)

∑
x∈F

ψ((aTr(γ−1−q) + a1/3)x + aNorm(γ−1)))
∣∣∣ = 32e.

Since Tr(γ−1−q) is a nonzero square of F by Lemma 5.6 and −1 is a square in F (in 
fact, −1 is a fourth power in F ), there is an element t ∈ F such that t2 = − Tr(γ−1−q). 
Then a Tr(γ−1−q) + a1/3 = 0 if and only if a = 0, ±t−3. Hence∣∣∣ ∑

a∈F∗

χj
4(a)

∑
x∈F

ψ((aTr(γ−1−q) + a1/3)x + aNorm(γ−1)))
∣∣∣

= 32e|ψ(t−3 Norm(γ−1)) + ψ(−t−3 Norm(γ−1))|.

Noting that

{
t3
(x3

t3
− x

t
+ Norm(γ−1)

t3

)
: x ∈ F

}
=

{
y : Trq/3

( y

t3

)
= Trq/3

(Norm(γ−1)
t3

)}
, (5.9)

we have Trq/3(t−3 Norm(γ−1)) �= 0; otherwise the set (5.9) contains zero, and fγ(x) = 0
for some x ∈ F , which is impossible since fγ(x) = Norm(γ−1 + x). Hence, we have 
ψ(t−3 Norm(γ−1)) + ψ(−t−3 Norm(γ−1)) = −1, which completes the proof. �

Next, we consider the case where Tr(γ−1) �= 0 in Lemma 5.5.

Lemma 5.8. Let γ be an element of E \ F such that Tr(γ−1) �= 0. Then, for j = 1 or 3, 
there exists an element z ∈ F such that∣∣∣∑

x∈F

χ−j
4 (fγ(x))

∣∣∣ =
∣∣∣ ∑
a∈F∗

χj
4(a)ψ(za + a−1)

∣∣∣. (5.10)
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Proof. If a Tr(γ−1) �= 0, by [18, Theorem 5.33], we have

∑
x∈F

ψ(aTr(γ−1)x2 + (aTr(γ−1−q) + a1/3)x + aNorm(γ−1)))

= G(η′)ψ(aNorm(γ−1) − (aTr(γ−1−q) + a1/3)2a−1 Tr(γ−1)−1)η′(aTr(γ−1)),

where η′ is the quadratic character of F . Write a0 = Norm(γ−1)1/3, a1 = Tr(γ−1−q), 
and a2 = Tr(γ−1)−1. Then, by Lemma 5.5 and G(η′) = ±3e (cf. [18, Theorem 5.15]), we 
obtain∣∣∣∑

x∈F

χ−j
4 (fγ(x))

∣∣∣
=

∣∣∣ ∑
a∈F∗

χj
4(a)ψ(aNorm(γ−1) − (aTr(γ−1−q) + a1/3)2a−1 Tr(γ−1)−1)η′(aTr(γ−1))

∣∣∣
=

∣∣∣ ∑
a∈F∗

χ3j
4 η′(a)ψ(a3 Norm(γ−1) − (a3a1 + a)2a−3a2)

∣∣∣
=

∣∣∣ ∑
a∈F∗

χj
4(a)ψ(a0a− a2a

−3(a6a2
1 − a4a1 + a2))

∣∣∣
=

∣∣∣ ∑
a∈F∗

χj
4(a)ψ(ya− a2a

−1)
∣∣∣ =

∣∣∣ ∑
a∈F∗

χj
4(a)ψ(za + a−1)

∣∣∣
where y = a0 − (a2

1a2)1/3 + a1a2 and z = −ya2. �
The exponential sum Kj,z :=

∑
a∈F∗ χ

j
4(a)ψ(za + a−1) appearing in the right-

hand side of Eq. (5.10) is a generalized Kloosterman sum [18, p. 265]. It is clear that ∑
x∈F χ−j

4 (fγ(x)) = αKj,z for a fourth root of unity α by the proof above. If z = 0
in Eq. (5.10), then the sum Kj,z is just a Gauss sum, and hence 

∑
x∈F χ−j

4 (fγ(x)) has 
modulus 3e.

Now, we assume that z �= 0. Again by orthogonality of characters, the sum Kj,z can 
be expressed in terms of Gauss sums as follows:

Kj,z = 1
(q − 1)2

q−1∑
h,i=0

G(χ−h)G(χ−i)
∑
a∈F∗

χj
4(a)χh(za)χ−i(a),

where χ is a multiplicative character of order q − 1 of F . Here, we can assume that 
χ

q−1
4 = χ4. Since the inner sum 

∑
a∈F∗ χ

j
4(a)χh(a)χ−i(a) = q − 1 or 0 according as

i ≡ h + q−1
4 j (mod q − 1) or not, we see that

Kj,z = 1
q − 1

q−1∑
G(χ−h)G(χ−h− q−1

4 j)χh(z).

h=0
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In the following lemma, we show that 3e |G(χ−h)G(χ−h− q−1
4 j) for every h = 0, 1, . . . ,

q − 2, which implies that 3e divides Kj,z.

Lemma 5.9. For any h = 0, 1, . . . , q − 2 and j = 1 or 3, we have

3e |G(χ−h)G(χ−h− q−1
4 j),

where χ is a multiplicative character of order q − 1 of F .

Proof. We will only prove the lemma in the case where j = 1. The case where j = 3
is similar. If h = 0, G(χ−h)G(χ−h− q−1

4 ) = G(χ− q−1
4 ) = −3e by [2, Theorem 11.6.3]. 

Similarly, if h = 3(q−1)
4 , then G(χ−h)G(χ−h− q−1

4 ) = G(χ− 3(q−1)
4 ) = −3e. Thus, we will 

assume that h �= 0 or 3(q−1)
4 below.

By Theorem 2.5, it is enough to show that

s(h) + s(h + q − 1
4 ) ≥ 2e

for all h = 1, . . . , q − 2, where s(x) is the sum of the 3-adic digits of the reduction of x
modulo q − 1.

Define a ≡ h + q−1
4 (mod q − 1). For any x ∈ Zq−1, x �= 0, write x =

∑2e−1
i=0 xi3i =

x2e−1x2e−2 · · ·x0 with xi ∈ {0, 1, 2}, where the subscripts are taken modulo 2e. Note 
that q−1

4 =
∑e−1

i=0 2 · 32i = 0202 · · · 02. We now use the modular p-ary add-with-carry 
algorithm described in [17, Theorem 4.1], which says that there is a unique carry sequence 
c = c2e−1c2e−2 · · · c0 with ci ∈ {0, 1} such that for all 0 ≤ i ≤ 2e − 1

ai + 3ci = ci−1 + hi + (1 + (−1)i). (5.11)

It follows that

s(h) + s(h + q − 1
4 ) =

2e−1∑
i=0

hi +
2e−1∑
i=0

ai = 2
2e−1∑
i=0

hi − 2
2e−1∑
i=0

ci + 2e.

Thus, if 
∑2e−1

i=0 hi ≥
∑2e−1

i=0 ci is shown, then we obtain the assertion of this lemma. We 
now prove a stronger inequality, namely, h2j+1 +h2j+2 ≥ c2j+1 + c2j+2 for 0 ≤ j ≤ e −1, 
from which it follows that 

∑2e−1
i=0 hi ≥

∑2e−1
i=0 ci.

If either of h2j+1 or h2j+2 is greater than or equal to 2, then the stronger inequality 
clearly holds since ci ∈ {0, 1}. So we assume that both h2j+1 and h2j+2 are less than 2.

By Eq. (5.11), we have

a2j+1 + 3c2j+1 = c2j + h2j+1 and a2j+2 + 3c2j+2 = c2j+1 + h2j+2 + 2.

If c2j+1 = 1, then a2j+1 = 0, c2j = 1, and h2j+1 = 2, which implies that h2j+1 +h2j+2 ≥
c2j+1 +c2j+2. If c2j+1 = 0, then a2j+2 +3c2j+2 = h2j+2 +2. In the case where h2j+2 = 0, 
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we have a2j+2 = 2 and c2j+2 = 0. In the case where h2j+2 = 1, we have a2j+2 = 0 and 
c2j+2 = 1. In both cases, we have h2j+1 +h2j+2 ≥ c2j+1 + c2j+2. The proof of the lemma 
is complete. �

Now recall that 
∑

x∈F χ−j
4 (fγ(x)) = αKj,z for a fourth root unity α. Since now we 

have shown that 3e divides Kj,z, we can write 
∑

x∈F χ−j
4 (fγ(x)) = 3e(a + bi) for some 

a, b ∈ Z. Since |
∑

x∈F χ−j
4 (fγ(x))| ≤ 2 · 3e, we see that (a, b) is equal to one of

(a, b) = (0, 0), (0,±1), (0,±2), (±1,±1), (±1, 0), (±2, 0).

If (a, b) = (0, 0), (0, ±2), (±1, ±1), or (±2, 0), then the intersection size stated in (5.2) is 
not integral, a contradiction. Therefore, it must be that (a, b) = (0, ±1) or (±1, 0), i.e., 
|
∑

x∈F χ−j
4 (fγ(x))| = 3e. Summing up, we have proved the following.

Proposition 5.10. Let γ be an element of E \ F such that Tr(γ−1) �= 0. Then, for j = 1
or 3, it holds that

∣∣∣∑
x∈F

χ−j
4 (fγ(x))

∣∣∣ = 3e.

By Lemma 5.4 together with Propositions 5.7 and 5.10, we obtain the assertion of 
Theorem 5.3.

Remark 5.11. It is well known (cf. [5]) that projective two-intersection sets are equivalent 
to certain strongly regular Cayley graphs (hence certain two-class association schemes). 
It is natural to ask what combinatorial objects are behind affine two-intersection sets. 
We give an answer in this remark. The notation here is almost the same as that in 
Notation 5.2. The only difference is that we simply identify the points of PG(2, q) with 
i ∈ ZN , and define J = {j : j ∈ ZN , Tr(ωj) = 0}, and li = {j ∈ ZN \ J : Tr(ωi+j) = 0}, 
1 ≤ i ≤ N − 1, where Tr is the relative trace from E to F . Assume that X ⊆ ZN \ J is 
a set of type (m, n) in AG(2, q). Then there exists a set Y ⊆ ZN \ {0} such that

|X ∩ li| =
{
m, if i ∈ Y,

n, if i ∈ ZN \ (Y ∪ {0}).
(5.12)

Define

D0 := {0}, D1 :=
⋃
i∈J

C
(N,q3)
i , D2 :=

⋃
i∈X

C
(N,q3)
i , D3 :=

⋃
i∈ZN\(J∪X)

C
(N,q3)
i .

Let ψ be the canonical additive character of E. Then, by (5.12), the values of ψ(ωaD2) :=∑
x∈D ψ(ωax), a = 0, 1, . . . , N − 1, can be computed as follows:
2
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∑
x∈D2

ψ(ωax) =
∑
i∈X

∑
λ∈F∗

q

ψ(ωa+iλ) = −|X| + q(|X ∩ (J − a)|)

= −|X| +

⎧⎪⎨⎪⎩
qm, if a ∈ Y,

qn, if a ∈ ZN \ (Y ∪ {0}),
0, if a = 0.

On the other hand, it is clear that

∑
x∈D1

ψ(ωax) =
{
q2 − 1, if a = 0,
−1, otherwise.

Furthermore, 
∑

x∈D3
ψ(ωax), a = 0, 1, . . . , N − 1, can be computed as −1 −∑

x∈D1∪D2
ψ(ωax). Thus, for each i = 1, 2, 3, the character values ψ(ωaDi), a =

0, 1, . . . , N − 1, are constant according as a = 0, a ∈ Y , or a ∈ ZN \ (Y ∪ {0}). 
(In the language of association schemes, the Cayley graphs Cay(E, Di), i = 0, 1, 2, 3, 
form a three-class association scheme on E. See, e.g., [12, Theorem 10.1].) Thus, as an 
immediate consequence of our result on affine two-intersection sets, we obtain a three-
class association scheme on F36e . Conversely, starting from a three-class association 
scheme defined by the three Cayley graphs Cay(E, Di), 1 ≤ i ≤ 3, we obtain an affine 
two-intersection set in AG(2, q). Summing up, we have the following proposition.

Proposition 5.12. With the notation as above, a subset X ⊆ ZN \ J is an affine two-in-
tersection set in AG(2, q) if and only if there exists a subset Y ⊆ ZN \ {0} such that for 
each i = 1, 2, 3, the character values ψ(ωaDi), a = 0, 1, . . . , N−1, are constant according 
as a = 0, a ∈ Y , or a ∈ ZN \ (Y ∪ {0}) (or, equivalently, the Cayley graphs Cay(E, Di), 
i = 0, 1, 2, 3, form a three-class association scheme on E).

Note that a result similar to Proposition 5.12 holds for affine two-intersection sets in 
AG(s, q) for s ≥ 3. We omit the detailed statement.

6. Concluding remarks

In this paper, we constructed an infinite family of Cameron–Liebler line classes in 
PG(3, q) with parameter x = q2−1

2 , where q ≡ 5 or 9 (mod 12). Furthermore we con-
structed the first infinite family of sets of type (m, n) in the affine plane AG(2, q), where q
is an even power of 3. It would be interesting to come up with a general construction 
of Cameron–Liebler line classes in PG(3, q) when q is even since there are some known 
examples in this case in the thesis [25] of Rodgers.

We close this paper by referring the reader to a paper [8] by De Beule, Demeyer, 
Metsch, and Rodgers. Immediately after we finished a draft of this manuscript, we be-
came aware that De Beule, Demeyer, Metsch and Rodgers [8] also obtained the same 
result on Cameron–Liebler line classes with parameter x = q2−1 at almost the same 
2
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time. The approaches for proving the main result are comparable but different enough 
to justify that we write two separate papers; our approach is more algebraic and the 
approach taken by De Beule, Demeyer, Metsch and Rodgers is more geometric. The two 
teams of authors discussed this matter with each other, and decided to submit their 
papers separately.
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