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Matrices

Qing Xiang∗

Abstract

We survey recent results on p-ranks of certain inclusion matrices arising from a

finite projective space or a finite symplectic space.
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1 Introduction

Let X be a set of size v and let r, s be two integers such that 1 6 s 6 r < v.
Let W v

r,s be the (0, 1)-incidence matrix with rows indexed by the r-subsets R of
X and columns indexed by the s-subsets S of X , and with (R, S)-entry equal to
one if and only if S ⊆ R. These subset-inclusion matrices W v

r,s play an important
role in applications of linear algebra to combinatorics (see [1], [12]); and in many
such applications, it is important to know the rank of W v

r,s over various fields. It
is well known that W v

r,s has full rank over the field of rational numbers. That is,

rankQ(W v
r,s) = min{

(

v
r

)

,
(

v
s

)

}. This result goes back at least to Gottlieb [10]. More
recently, Wilson [23] determined the rank of W v

r,s over all finite fields, and also
found a diagonal form of W v

r,s.
There is a q-analog of this problem. Let V be an (n + 1)-dimensional vector

space over Fq, where q = pt, p is a prime. For any integer r, 1 6 r 6 n, we denote
the set of r-dimensional subspaces of V by Lr. For integers r, s, 1 6 s 6 r 6 n,
let An+1

r,s (q) be the (0,1)-incidence matrix with rows indexed by elements Y of Lr

and columns indexed by elements Z of Ls, and with (Y, Z)-entry equal to 1 if and
only if Z ⊆ Y . The matrices An+1

r,s (q) are q-analogues of the matrices W v
r,s defined

above. We consider the following problem.

Problem 1.1. What is the rank of An+1
r,s (q) over Fp? Moreover, what is the Smith

normal form of An+1
r,s (q) as a matrix over Z?
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For convenience the rank of An+1
r,s (q) over Fp will be called the p-rank of

An+1
r,s (q). The first part of Problem 1.1 appeared in [11] as Problem 10.1. The

second part of Problem 1.1 is more general than the first part (hence much more
difficult), and is motivated by our recent work on the Smith normal form of An+1

r,1 (q)
([5]).

The subspace-inclusion matrices An+1
r,s (q) have been investigated at least since

1960s. Most of the investigations were on the rank of An+1
r,s (q) over fields K of

various characteristics. When K = Q, Kantor in [15] showed that the matrix
An+1

r,s (q) has full rank under certain natural conditions. When char(K) = ℓ, where
ℓ does not divide q, the rank of An+1

r,s (q) over K was given by Frumkin and Yakir [9].
The most interesting case is when char(K) = p. In this case, the problem of finding
the rank of An+1

r,s over K is open in general (cf. [11]). However, in the special case
where s = 1, Hamada [13] gave a complete solution (known as Hamada’s formula)
to the problem of finding the p-rank of An+1

r,1 (q). We note that the incidence

structure behind An+1
r,1 (q) is a classical 2-design ([3, p. 13]). Motivated by the

desire to understand the algebraic structure behind Hamada’s formula, Bardoe
and Sin [2] gave a modern treatment of Hamada’s formula from representation-
theoretic point of view. Their work paved the way for further research in this
area. The Smith normal form of An+1

r,1 (q) (as a matrix over Z) was obtained only
recently in [5]. The result can be viewed as a partial q-analogue of Wilson’s work
on subset-inclusion matrices, and a full generalization of Hamada’s p-rank formula
to the integers.

More recently, we [6] extended Hamada’s work in another direction. Let V
be a vector space over Fq of dimension 2m > 4, where q = pt is a prime power.
We equip V with a nonsingular alternating bilinear form b(·, ·). Let Ir denote the
set of totally isotropic r-dimensional subspaces of V with respect to b(·, ·), where
1 6 r 6 m. Let B2m

r,1 (q) be the incidence matrix of the inclusion relation between
Ir and I1. We remark that in the case where m = 2 and r = 2, the incidence
structure behind B4

2,1(q) is a symplectic generalized quadrangle ([22],[18]). The
following problem arises naturally.

Problem 1.2. What is the rank of B2m
r,1 (q) over Fp? Moreover, what is the Smith

normal form of B2m
r,1 (q) as a matrix over Z?

For 1 6 s 6 r 6 m we can also define B2m
r,s (q) in the same fashion as above.

One could of course ask what the p-rank and the Smith normal form of B2m
r,s (q)

are when 1 < s < r. It seems that these questions are completely out of reach at
present since the corresponding questions on An+1

r,s (q) are not answered yet.
The first result on the p-rank of B2m

r,1 (q) was obtained in the case where
m = 2, r = 2 and q = 2t by Sastry and Sin [19]. These authors used very
detailed information about the extensions of simple modules for the symplectic
group Sp(4, q) to obtain the following result.

rank2(B
4
2,1(2

t)) = 1 +

(

9 +
√

17

2

)t

+

(

9 −
√

17

2

)t

(1.1)

In the case where q = p is an odd prime, de Caen and Moorhouse [4] determined
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the p-rank of B4
2,1(p), which was later generalized in [20], giving the p-ranks of

B2m
r,1 (p), where 1 6 r 6 m, p is an odd prime, and m is not necessarily 2. In [6],

we obtained an additive formula for the p-rank of B2m
r,1 (q), p odd, which can be

viewed as the symplectic analogue of Hamada’s formula for the p-rank of An+1
r,1 (q).

As a corollary, we obtain the following closed formula for the p-rank of B4
2,1(p

t), p
an odd prime.

Theorem 1.1. Let p be an odd prime and let t > 1 be an integer. Then the p-rank

of B4
2,1(p

t) is equal to

1 + αt
1 + αt

2,

where

α1, α2 =
p(p + 1)2

4
± p(p + 1)(p − 1)

12

√
17. (1.2)

We remark that in (1.2), if we simply set p = 2, then we actually obtain
(1.1). This circumstance is somewhat coincidental, however, since the examples in
[7] show that for m = r = 3, the ranks are not given by the same function of p and
t for the even characteristic and odd characteristic cases. The problem of finding
the 2-rank of B2m

r,1 (2t) is more difficult (see reasons in Section 3.2). Very recently,
we [7] gave a solution to this problem, which generalizes the 2-rank formula for
B4

2,1(2
t) in (1.1).

As for the second part of Problem 1.2, Lataille [17] found the Smith normal
form of B2m

r,1 (q) when q = p is a prime. The general case of the second part of
Problem 1.2 is still unsolved.

2 FL1
q as a GL(V )-module, Hamada’s formula

Let k = Fq, where q = pt is a prime power. Let V be an (n+1)-dimensional vector
space over k. For convenience we use P to denote L1, the set of 1-dimensional
subspaces of V , and use G to denote the general linear group GL(V ). We consider
k[V ] (the space of k-valued functions on V ) and k[P ] (the space of k-valued func-
tions on P) as kG-modules. Let r be an integer such that 1 < r 6 n. Then each
row of An+1

r,1 (q) is the characteristic vector in P of the corresponding r-dimensional

subspace. Let Cr be the k-span of the rows of An+1
r,1 (q). The group G acts natu-

rally on Lr. So Cr is a kG-submodule of k[P ]. In [2], among other results, Bardoe
and Sin described all kG-submodules of k[P ] by using a partially ordered set (see
below). Also for any f ∈ k[P ], they gave a way to identify the submodule kGf
generated by f . From these general results, Bardoe and Sin [2] could identify the
kG-submodule Cr and then deduce Hamada’s formula. To explain these results in
detail, we first need to give some necessary background information.

Let k[X0, X1, . . . , Xn] denote the polynomial ring over k, in n + 1 indeter-
minates. Since every function on V is given by a polynomial in the n + 1 co-
ordinates xi, the map Xi 7→ xi defines a surjective k-algebra homomorphism
k[X0, X1, . . . , Xn] → k[V ], with kernel generated by the elements Xq

i − Xi. Fur-
thermore, this map is simply the coordinate description of the following canonical
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map. The polynomial ring is isomorphic to the symmetric algebra S(V ∗) of the
dual space of V ; so we have a natural evaluation map S(V ∗) → k[V ]. This canon-
ical description makes it clear that the map is equivariant with respect to the
natural actions of G on these spaces. A basis of k[V ] is obtained by taking mono-
mials in n + 1 coordinates xi such that the degree in each variable is at most
q − 1. We will call these the basis monomials of k[V ]. Noting that the functions
on V \{0} which descend to P are precisely those which are invariant under scalar
multiplication by k∗, we obtain from the monomial basis of k[V ] a basis of k[P ],

M = {
n
∏

i=0

xbi

i | 0 6 bi 6 q − 1,
∑

i

bi ≡ 0 (mod q − 1),

(b0, . . . , bn) 6= (q − 1, . . . , q − 1)}.

The elements of M are called the basis monomials of k[P ].

2.1 Types and H-types

We now recall the definitions of two t-tuples associated with each basis monomial
of k[P ]. Let

f =
n
∏

i=0

xbi

i =
t−1
∏

j=0

n
∏

i=0

(x
aij

i )pj

,

be a basis monomial of k[P ], where bi =
∑t−1

j=0 aijp
j and 0 6 aij 6 p − 1. Let

λj =
∑n

i=0 aij . The t-tuple λλλ = (λ0, . . . , λt−1) is called the type of f . The set of
all types of basis monomials of k[P ] is denoted by Λ.

In [2], there is another t-tuple associated with each basis monomial of k[P ],
which we will call its H-type. This tuple will lie in the set H[0] = H∪{(0, 0, . . . 0)},
where

H = {s = (s0, s1, . . . , st−1) | ∀j, 1 6 sj 6 n, 0 6 psj+1 − sj 6 (n + 1)(p − 1)}.

The H-type s of f is uniquely determined by the type via the equations

λj = psj+1 − sj , 0 6 j 6 t − 1,

where the subscripts are taken modulo t. Moreover, these equations determine
a bijection between the set Λ of types of elements of M and the set H[0]. For
s = (s0, s1, . . . , st−1) ∈ H, s′ = (s′0, s

′
1, . . . , s

′
t−1) ∈ H we define s 6 s′ if si 6 s′i for

all i. This relation “6” defines a partial order on H.

2.2 Composition factors

The types, or equivalently the H-types parametrize the composition factors of k[P ]
in the following sense. The kG-module k[P ] is multiplicity-free. We can associate
to each H-type s ∈ H[0] a composition factor, which we shall denote by L(s), such
that these simple modules are all nonisomorphic. The simple modules L(s) occur
as subquotients of k[P ] in the following way. For each s ∈ H, we let Y (s) be the
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subspace spanned by monomials of H-types in Hs = {s′ ∈ H | s′ 6 s}. Then Y (s)
is a kG-submodule of k[P ] and Y (s′) ⊆ Y (s) if and only if s′ 6 s. The kG-module
Y (s) has a unique maximal submodule

∑

s
′�s

Y (s′), and

Y (s)/
∑

s
′�s

Y (s′) ∼= L(s).

The isomorphism type of the simple module L(s) is most easily described
in terms of the corresponding type (λ0, . . . , λt−1) ∈ Λ. Let Sλ be the degree λ
component in the truncated polynomial ring k[X0, X1, . . . , Xn]/(Xp

i ; 0 6 i 6 n).
Here λ ranges from 0 to n + 1. Note that the dimension of Sλ is

dλ =

⌊λ/p⌋
∑

j=0

(−1)j

(

n + 1

j

)(

n + λ − pj

n

)

.

The simple module L(s) is isomorphic to the twisted tensor product

Sλ0 ⊗ (Sλ1)(p) ⊗ · · · ⊗ (Sλt−1)(p
t−1).

2.3 Submodule structure

The reason for considering H-types is that they allow a simple description of
the submodule structure of the kG-module k[P ]. The space k[P ] has a kG-
decomposition

k[P ] = k1 ⊕ YP ,

where YP is the kernel of the map k[P ] → k, f 7→ |P|−1
∑

Q∈P f(Q). The kG-
module YP is an indecomposable module whose composition factors are parametrized
by H. Theorem A in [2] states that given any kG-submodule of YP , the set of
H-types of its composition factors is an ideal in the partially ordered set H and
that this correspondence is an order isomorphism from the submodule lattice of
YP to the lattice of ideals in H.

The submodules of YP can also be described in terms of basis monomials [2,
Theorem B]. Any submodule of of YP has a basis consisting of the basis monomials
which it contains. Moreover, the H-types of these basis monomials are precisely
the H-types of the composition factors of the submodule. Furthermore, in any
composition series, the images of the monomials of a fixed H-type form a basis
of the composition factor of that H-type. Theorem B in [2] gives us a way to
identify the submodule kGf generated by any function f ∈ k[P ]. For f ∈ k[P ],
let Hf ⊆ H[0] denote the set of H-types of the basis monomials appearing with
nonzero coefficients in the expression for f . Then

kGf =
∑

s∈Hf

Y (s).

Now Hamada’s result on the p-rank of An+1
r,1 (q) follows easily from the above

general results. Here is the proof given in [2]. Let Cr be the k-span of the rows of
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An+1
r,1 (q). Since G acts transitively on Lr, we see that Cr = kGχL, where L is the

r-dimensional subspace of V defined by the equations xi = 0, i = r, r + 1, . . . , n,
and χL is the characteristic function of L. Note that

χL = (1 − xq−1
r )(1 − xq−1

r+1) · · · (1 − xq−1
n )

= 1 + f,

where f =
∑

∅6=I⊆{r,r+1,...,n}(−1)|I|xq−1
I , and xI stands for

∏

i∈I xi. Therefore,
we have

Cr = k1 ⊕ kGf.

For any I ⊆ {r, r + 1, . . . , n}, 0 < |I| < n + 1 − r, the H-type of xq−1
I is

(|I|, |I|, . . . , |I|), which lies below the H-type (n + 1 − r, . . . , n + 1 − r) of the
monomial xq−1

r xq−1
r+1 · · ·xq−1

n in the poset H. Hence

kGf =

n+1−r
∑

i=1

Y ((i, i, . . . , i)) = Y ((n + 1 − r, . . . , n + 1 − r)).

It follows that

dimk(Cr) = 1 +
∑

s=(s0,s1,...,st−1)∈H

s6(n+1−r,...,n+1−r)

t−1
∏

j=0

dλj
,

where λj = psj+1 − sj and dλj
are defined in Section 2.2. The above formula is

usually referred to as Hamada’s formula. Note that the above proof not only gives

the dimension of Cr, but also shows that the monomials 1 and
∏n

j=0 x
bj

j ∈ k[P ] of
H-type less than or equal to (n + 1− r, . . . , n + 1− r) together form a basis of Cr.

3 p-rank of B2m
r,1 (q)

In this section, let V be a finite-dimensional vector space over k = Fq, q =
pt. We assume in addition that V has a nonsingular alternating form b(·, ·).
Then the dimension of V must be an even number, say 2m. We fix a basis
e1, e2, . . . , em, fm, . . . , f1 of V , with corresponding coordinates x1, x2, . . . , xm, ym, . . . , y1

so that b(ei, fj) = δij , b(ei, ej) = 0, and b(fi, fj) = 0. Now we have

k[V ] ∼= k[X1, . . . , Xm, Ym, . . . , Y1]/(Xq
i − Xi, Y

q
i − Yi)

m
i=1

and the monomial basis of k[P ] is

M = {
m
∏

i=1

xai

i ybi

i | 0 6 ai, bi 6 q − 1,
∑

i

(ai + bi) ≡ 0 (mod q − 1),

(a1, . . . , am, b1, . . . , bm) 6= (q − 1, . . . , q − 1)}.

We are interested in the p-rank of the inclusion matrix B2m
r,1 (q), 1 6 r 6 m, defined

in Section 1. It turns out that the case where p is odd and the case where p = 2
are very different. We consider the p odd case first.



354 Qing Xiang

3.1 The Odd Characteristic Case

Throughout this subsection we assume that p is an odd prime. As we saw before
the monomial basis M of k[P ] played a vital role in Section 2. Here we will need
a special basis B of k[P ] which was introduced in [6] and called the symplectic

basis. (We will not give the detailed definition of B here since it requires a lot of
preparation to give the precise definition. The interested reader should consult [6].)
The definition of B is motivated by considering how the simple k GL(V )-modules
Sλ behave upon restriction to Sp(V ).

It is known from [16], [21] that the simple k GL(V )-modules Sλ, 0 6 λ 6

2m(p − 1), all remain simple as k Sp(V )-modules except when λ = m(p − 1), in
which case we have

Sm(p−1) = S+ ⊕ S−.

Here, S+ and S− are simple k Sp(V )-modules, and

dimk(S+) = (d(p−1)m + pm)/2, dimk(S−) = (d(p−1)m − pm)/2.

The splitting of Sm(p−1) also motivated us to define the following new partially
ordered set. For (0, 0, . . . , 0) 6= λλλ ∈ Λ, let s be the corresponding H-type in
H. Set J(s) = {j | 0 6 j 6 t − 1, λj = m(p − 1)}. For any s, s′ ∈ H, define
Z(s, s′) = {j | s′j = sj , s′j+1 = sj+1, λj = m(p − 1)}. Let

S = {(s, ε) | s ∈ H, ε ⊆ J(s)}.

We define (s′, ε′) 6 (s, ε) if and only if s′ 6 s and ε ∩ Z(s′, s) = ε′ ∩ Z(s′, s). It is
not difficult to check that this relation indeed defines a partial order on S.

Since each GL(V )-composition factor of YP has the form

Sλ0 ⊗ (Sλ1)(p) ⊗ · · · ⊗ (Sλt−1)(p
t−1),

from the splitting of Sm(p−1) into simple Sp(V )-modules, it is clear that the
k Sp(V )-composition factors of YP are given by their types, together with the
additional choice of signs for each j with λj = m(p − 1). In terms of H-types,
we see that each H-type gives a k GL(V )-composition factor of YP and then the
choice of signs determines the simple k Sp(V )-composition factors of this simple
k GL(V )-module. In this way, the elements of S label the k Sp(V )-composition
factors of YP . It should be noted here that just as each basis monomial in M
has an H-type, each element of the symplectic basis B has a “signed” H-type
(s, ε) ∈ S. (This would be very clear if we had given the explicit definition of B
here.)

For (s, ε) ∈ S, let Y (s, ε) be the k-subspace spanned by all the elements of B
with signed H-types (s′, ε′) 6 (s, ε). We prove in [6] that
(i) Y (s, ε) is a k Sp(V )-submodule of YP ,
(ii) Y (s, ε) has a unique maximal submodule

∑

(s′,ε′)�(s,ε) Y (s′, ε′), and

(iii) Y (s, ε) = k Sp(V )f , where f is any element of Y (s, ε) not in the unique
maximal submodule of Y (s, ε).

For 1 6 r 6 m, we define Er to be the k-span of the rows of B2m
r,1 (q). Since

Sp(V ) acts transitively on the set of totally isotropic r-dimensional subspaces of



Ranks of inclusion matrices 355

V , we again have Er = k Sp(V )χL, where χL is the characteristic function of a
carefully chosen totally isotropic r-dimensional subspace of V . Using the above
general results on Y (s, ε), we [6] proved the following theorem.

Theorem 3.1. Let r be an integer such that 1 6 r 6 m. Assume that p is odd.

We have:
(i) If 1 6 r < m, then dimk(Er) = dimk(Cr).
(ii) If r = m, then

dimk(Er) = 1 +
∑

(s0,...,st−1)∈H

∀j,16sj6m

t−1
∏

j=0

d(sj ,sj+1),

where

d(sj ,sj+1) =

{

dimk(S+) = (dm(p−1) + pm)/2, if sj = sj+1 = m,
dλj

, where λj = psj+1 − sj , otherwise.

We view the above formula for dimk(Er) as the symplectic analogue of Hamada’s
formula. As a corollary, we have

Corollary 3.2. The p-rank of B2m
m,1(p

t), when p is an odd prime, is given by

rankp(B
2m
m,1(p

t)) = 1 + Trace(Dt) = 1 + αt
1 + · · · + αt

m,

where

D =











d(1,1) d(1,2) · · · d(1,m)

d(2,1) d(2,2) · · · d(2,m)

...
...

. . .
...

d(m,1) d(m,2) · · · d(m,m)











,

and α1, α2, . . . , αm are the eigenvalues of D.

Specializing the above corollary to the case where m = 2, we obtain Theorem
1.1.

3.2 The Even Characteristic Case

As we saw in Section 3.1, when p is odd, each Sλ is either simple or semisimple
as a k Sp(V )-module. In the p = 2 case, the k Sp(V )-submodule structure of Sλ

is much richer. The abundance of submodules of Sλ in this case causes some
difficulty in finding the 2-rank of B2m

r,1 (2t).
In characteristic 2 the truncated polynomial algebra

k[X1, . . . , Xm, Ym, . . . , Y1]/(X2
i , Y 2

i ; 1 6 i 6 m)

is an exterior algebra. The scalar extensions of the exterior powers to the algebraic
closure k are examples of tilting modules for the algebraic group Sp(V ⊗ k), as



356 Qing Xiang

described in [8]; these have filtrations by Weyl modules and their duals. (See [14]
for definitions.) For finite field k, we define in [7] a filtration

{0} ⊂ Sλ
0 ⊆ · · · ⊆ Sλ

⌊λ
2 ⌋ = Sλ.

of Sλ in an elementary way. Using this filtration, we similarly define a new basis
of k[P ], again called the symplectic basis in [7]. The symplectic basis allows us to
construct a basis of Er, the k-span of the rows of B2m

r,1 (2t); hence we obtain the
2-rank of B2m

r,1 (2t).

Theorem 3.3. Let r be an integer such that 1 6 r 6 m. Let E be the (2m− r)×
(2m − r)-matrix whose (i, j)-entry is

ei,j =

(

2m

2j − i

)

−
(

2m

2j + i + 4r − 6m − 2

)

.

Then

rank2(B
2m
r,1 (2t)) = 1 + Trace(Et).

When m = r = 2, the matrix E defined in Theorem 3.3 is

(

4 4
1 5

)

,

whose eigenvalues are 9±
√

17
2 . So from Theorem 3.2, we immediately obtain the

result (1.1) of Sastry and Sin [19].

When m = r = 3, the matrix E defined in Theorem 3.3 is





6 20 6
1 15 14
0 6 14



 ,

whose eigenvalues are α1 = 8, α2 = 27
2 +

√
473
2 , and α3 = 27

2 −
√

473
2 . So by

Theorem 3.2 the rank formula may be given as

rank2(B
6
3,1(2

t)) = 1 + Trace(Et) = 1 + αt
1 + αt

2 + αt
3.

Comparing the above formula with the one obtained from Corollary 3.2 by setting
m = r = 3, we find that the two formulae are not given by the same function of p
and t.
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