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Association schemes from ovoids in PG(3, q)

Qing Xiang

Abstract. We discuss three proofs of a conjecture of De Caen and Van Dam on the existence of some four-class
association scheme on the set of unordered pairs of distinct points of the projective line PG(1, 4f ), where f ≥ 2
is an integer. Our emphasis is on the proof using inversive planes and ovoids in PG(3, q).

1. Introduction

Let � be a finite set. A (symmetric) association scheme with s classes on � is a partition
of � × � into sets R0, R1, . . . , Rs (relations, or associate classes) such that

1. R0 = {(ω, ω) : ω ∈ �} (the diagonal relation);
2. Ri is symmetric for i = 1, 2, . . . , s;
3. for all i, j, k in {0, 1, 2, . . . , s} there is an integer pk

ij such that, for all (α, β) ∈ Rk ,

|{γ ∈ � : (α, γ ) ∈ Ri and (γ, β) ∈ Rj }| = pk
ij.

Elements α and β of � are called i-th associates if (α, β) ∈ Ri . The numbers pk
ij, 0 ≤

k, i, j ≤ s, are called the intersection parameters of the scheme. That p0
ii exists means that

there is a constant number of i-th associates of any element of �, which is usually denoted
by ni . We have

p0
ii = ni, and p0

ij = 0 if i �= j

and
n0 = 1, n0 + n1 + · · · + ns = |�|.

The numbers n0, n1, . . . , ns are called the valencies (or degrees) of the scheme. One of
the classical association schemes is the triangular association scheme. Let X be an n-set,
and let � be the set of all 2-subsets of X. We define the following relations on �.

R1 = {(α, β) ∈ � × � : |α ∩ β| = 1},
R2 = {(α, β) ∈ � × � : α ∩ β = ∅}.

Then it is easy to verify that R1, R2 together with the diagonal relation R0 form a two-class
association scheme on �. This scheme is called the triangular association scheme and is
usually denoted by T(n). We remark that T(n) is a special case of the Johnson schemes.
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De Caen and Van Dam [3] considered the following fission scheme of T(q + 1) where q is
a prime power. Let X = PG(1, q), and let � = (

X
2

)
, the set of 2-subsets of X. Since the

group PGL(2, q) acts (as Möbius transformations) on the projective line PG(1, q), there
is a natural induced action of PGL(2, q) on �. Since the action of PGL(2, q) on PG(1, q)

is sharply triply transitive, one can show that PGL(2, q) acts generously transitively on �

(cf. [3]), that is, the orbits of PGL(2, q) on �×� are symmetric, hence they may be taken
as the relations of an association scheme on �. This association scheme will be denoted
by FT(q + 1), and it is a fission scheme of T(q + 1). The relations of FT(q + 1) can be
described as follows.The cross-ratio

ρ(a, b; c, d) = (a − c)(b − d)

(a − d)(b − c)

is a complete invariant for ordered quadruples (a, b, c, d) of distinct points of PG(1, q),
that is, a quadruple can be mapped by an element of PGL(2, q) to another quadruple if
and only if they have the same cross-ratio. As a consequence, the scheme FT(q + 1) has
relations

1. R0 = {(ω, ω) : ω ∈ �} (the diagonal relation),
2. R1 = {({a, b}, {c, d}) : |{a, b} ∩ {c, d}| = 1}, and
3. Rs,s−1 = {({a, b}, {c, d}) : ρ(a, b; c, d) = s or s−1} for each pair {s, s−1} in Fq \

{0, 1}, where Fq is the finite field with q elements.

In the future, we will simply write Rs instead of Rs,s−1 to simplify notation. The scheme
FT(q + 1) has (q + 1)/2 classes if q is odd and has q/2 classes if q is even. Its intersection
parameters can be computed, see [3] for the computations in the case q is even. In [3], De
Caen and Van Dam proceeded to consider possible fusion schemes of FT(q + 1). Clearly
the original triangular scheme T(q + 1) is a 2-class fusion scheme of FT(q + 1). Also
since P�L(2, q) is an overgroup of PGL(2, q), the orbitals of the action P�L(2, q) on �

form a fusion scheme of FT(q + 1). Besides these fusion schemes, De Caen and Van Dam
[3] observed that when q is an even power of two, there seems exist an interesting fusion
scheme of FT(q + 1). Specifically, let f ≥ 2 be an integer, let

X = PG(1, 4f ), and � =
(

X

2

)
.

Define the following relations on �:

1. S0 = the diagonal relation,
2. S1 = {({a, b}, {c, d}) : |{a, b} ∩ {c, d}| = 1},
3. S2 = {({a, b}, {c, d}) : ρ(a, b; c, d) ∈ F2f \{0, 1}},
4. S3 = {({a, b}, {c, d}) : ρ(a, b; c, d) �= 1 and ρ(a, b; c, d)2f +1 = 1},
5. S4 = (� × �)\(S0 ∪ S1 ∪ S2 ∪ S3).
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CONJECTURE 1.1 (The De Caen-Van Dam Conjecture). The above relations Si , i = 0,

1, . . . , 4, form a four-class association scheme on �.

We will discuss three proofs of the above conjecture contained in [5], [11], [6]. Our
discussion of the proofs in [5] and [11] will be sketchy, much more discussion will be
devoted to the proof in [6], since the proof in [6] is related to finite geometry, and it actually
proves a generalization of the De Caen-Van Dam conjecture.

2. Sketches of the first two proofs

We first sketch the proof in [5]. Let f ≥ 2 be an integer. Let

B0 = F2f \{0, 1}, and B1 = {x ∈ F4f | x �= 1, x2f +1 = 1}.
Then S1 = R1 (of FT(4f + 1)), S2 and S3 are the union of all relations Rs with s ∈ B0 and
s ∈ B1 respectively, and S4 is the union of all remaining Rs . Recall that De Caen and Van
Dam [3] computed the intersection parameters pr

st of FT(4f + 1), so for example, in order
to show that the product of the adjacency matrices of S2 and S3 is a linear combination of
those of the Si , i = 0, 1, 2, . . . , 4, it suffices to show that

∑
s∈B0,t∈B1

pr
st does not depend

on r itself, only depends on whether r ∈ B0, r ∈ B1, or r �∈ B0 ∪ B1. In general, from
the computations of pr

st in [3], it was clear that in order to prove the De Caen-Van Dam
conjecture, it suffices to show that for all i, j ∈ {0, 1}, the numbers

πi,j (r) := 1

2

∑
s∈Bi,t∈Bj

|{x ∈ F4f | x2 + (r + s + t + rst)x + rs + rt + st = 0}|

are constant for r ∈ B0, r ∈ B1 and r ∈ F4f \({0, 1} ∪ B0 ∪ B1), respectively. This was
done in [5] by some elementary but tricky substitutions. We refer the reader to [5] for
details. Now let us turn to the proof in [11]. De Caen and Van Dam commented in [3] that
if one can compute explicitly the first eigenmatrix (the character table) of FT(q + 1), then
one can use the Bannai-Muzychuk criterion (cf. [1], [9, Lemma 1]) to check whether Si ,
i = 0, 1, . . . , 4, constitute an association scheme on �. Tanaka [11] did exactly this. He
first used a method of Kwok [8] to compute the character table of FT(q + 1), where q is
a power of 2, then based on the character table, he used the Bannai-Muzychuk criterion to
verify the De Caen-Van Dam conjecture. For detailed computations of the character table,
we refer the reader to [11].

3. Inversive planes, ovoids and association schemes

In this section, we discuss the proof in [6]. In this proof, we first give geometric interpre-
tations of the relations Si , i = 1, 2, 3, 4, by using the classical inversive plane. Then we
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realize that one can even define these relations in a more general setting (see details below),
and we prove that the relations so defined constitute an association scheme. Therefore the
De Caen-Van Dam conjecture follows as a corollary of our main theorem (Theorem 3.4).

Let n ≥ 2 be an integer. Any 3 − (n2 + 1, n + 1, 1) design is called an inversive plane of
order n, and the blocks of this design are often referred to as its circles. All known finite
inversive planes are “egglike” in the following sense. An ovoid O of PG(3, q), where q > 2
is a prime power, is a set of q2 + 1 points with no three collinear. The classical example of
an ovoid in PG(3, q) is an elliptic quadric. At each point P of O there is a unique tangent
plane. All other planes in PG(3, q) meet O in an oval; that is, all such planes meet O in a
set of q + 1 points, no three collinear. In the classical case where O is an elliptic quadric,
these ovals are conics. If one takes as varieties the points of an ovoid O, takes as blocks
the nontangent planar intersections of O, and defines incidence by inclusion, the resulting
structure I (O) is easily seen to be an inversive plane of order q. When O is an elliptic
quadric in PG(3, q), I (O) is the classical (or Miquelian) inversive plane M(q). When
q ≥ 8 is an odd power of 2 and O is the Tits ovoid of PG(3, q), I (O) is the Suzuki-Tits
inversive plane S(q). These are the only known finite inversive planes (see Chapter 6 of [4]
for a generaldiscussion of inversive planes).

It should be noted that there are many other models of the classical inversive plane M(q).
In particular, the points of the projective line PG(1, q2) together with its Baer sublines
(isomorphic copies of PG(1, q)) as “circles” form a model for M(q). Thus one frequently
identifies the points of M(q) with Fq2 ∪ {∞}, using parametric coordinates for PG(1, q2).
In this model one particular circle is represented by Fq ∪ {∞}, and all other circles are
obtained as images of this base circle under the linear fractional mappings x 	→ ax+b

cx+d
,

where a, b, c, d ∈ Fq2 with ad − bc �= 0, and the usual conventions on the symbol ∞
are adopted. Using this model we see that P�L(2, q2) acts on M(q) as an automorphism
group.

Given two distinct points P and Q of M(q), we use J (P, Q) to denote the bundle of q + 1
circles passing through P and Q. Next we define the notion of flock. In order to do this, we
need some preparation. For each circle C in M(q) there is a unique automorphism φC of
M(q) which has order 2 and whose fixed points are precisely the points of C (see [4]). This
involution is called the inversion with respect to C, and distinct points P and Q in M(q)

are called conjugate with respect to C if φC(P ) = Q. Given any two distinct points P and
Q of M(q), we use K(P, Q) to denote the (linear) flock of q − 1 circles with P and Q as
a conjugate pair. Thus the circles in K(P, Q) partition the q2 − 1 points of M(q)\{P, Q},
and through any point T ∈ M(q)\{P, Q} there passes a unique circle of J (P, Q).

Now we are in a position to give geometric interpretations for the relations Si , i = 2, 3, by
using M(q). We will identify X with the point set of M(q), q = 2f . Thus � is the set of
unordered pairs of distinct points of M(q). (We remind the reader that the definitions of X

and � are the same as that given in the De Caen-Van Dam conjecture.)
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PROPOSITION 3.1. Two unordered pairs {a, b} and {c, d} of distinct points of M(q) are
in relation S2 if and only if the four points a, b, c, d are distinct and concircular.

Proof. We will use the model for M(q) arising from PG(1, q2). In particular, we identify
the points of M(q) with Fq2 ∪ {∞}. Assume that {a, b} and {c, d} are in relation S2.
Then a, b, c, d are four distinct points of M(q). Since Aut(M(q)) ∼= P�L(2, q2) contains
PGL(2, q2), which is triply transitive on the points of M(q) and preserves cross-ratio, we
may assume a = 0, b = ∞, and c = 1. Thus ρ = ρ(a, b; c, d) = 1/d, which according
to relation S2 implies that d ∈ F

∗
q . However the unique circle in M(q) containing 0, 1 and

∞ is Fq ∪ {∞}, and thus a, b, c, d are four distinct concircular points.

Conversely, suppose a, b, c, d are four distinct concircular points of M(q). Again we may
assume without loss of generality that a = 0, b = ∞, and c = 1. Then as above,
necessarily, d ∈ F

∗
q and thus ρq−1 = 1. That is {a, b} and {c, d} are in relation S2. �

PROPOSITION 3.2. Two unordered pairs {a, b} and {c, d} of distinct points of M(q) are
in relation S3 if and only if K(a, b) ∩ J (c, d) �= ∅.

Proof. Assume first that {a, b} and {c, d} are in relation S3. Then, as in the proof of the
previous proposition, we may assume that a = 0, b = ∞, and c = 1. Hence ρ =
ρ(a, b; c, d) = 1/d ∈ Fq2 \{0, 1}, with dq+1 = 1. One easily checks that the mapping

φ : z 	→ 1
zq is an inversion interchanging a and b whose circle of fixed points contains c

and d .

Conversely, assume that C is some circle containing c and d such that φC(a) = b. In
particular, a, b, c and d are four distinct points. Without loss of generality, we may assume
a = 0, b = ∞, c = 1 and ρ = ρ(a, b; c, d) = 1/d ∈ Fq2 \{0, 1}. Using the transitive
action of PGL(2, q2) on the circles of M(q), we see that the unique circle through 1 whose
inversion interchanges 0 and ∞ is C = {x ∈ Fq2 : xq+1 = 1}. Since d ∈ C, this implies
that dq+1 = 1, and therefore{a, b} and {c, d} are in relation S3. �

REMARK. Since there is a circle containing {c, d} with {a, b} as a conjugate pair if and
only if there is a circle containing {a, b} with {c, d} as a conjugate pair, it is clear that S3 is
indeed a symmetric relation.

In the following we will define relations Si in a more general setting by using an arbitrary
ovoid in PG(3, q), q even. So we first gather a few well-known facts concerning ovoids in
PG(3, q). One of the fundamental results on ovoids in PG(3, q), q even, is the construction
of a symplectic polarity from an ovoid. A polarity of PG(3, q) is a map from the set of
subspaces of PG(3, q) onto itself that maps points to planes, lines to lines, planes to points,
preserves incidence and has order 2. A point, line or plane of PG(3, q) is absolute with
respect to a polarity if it is incident with its own image under the polarity. A symplectic
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(or null) polarity of PG(3, q) is a polarity with the property that every point (hence every
plane) is absolute. We now state a theorem of Segre.

THEOREM 3.3 (Segre [10]). Let O be an ovoid of PG(3, q) where q > 2 is even. Then
O determines a symplectic polarity of PG(3, q) which interchanges each tangent plane of
O with its point of tangency and interchange each secant plane π with the nucleus of the
oval π ∩ O.

We will use ⊥ to denote the symplectic polarity associated with O in the above theorem. Let
us elaborate on ⊥ a little bit. We will omit the proofs since they can be found in Chapters
15 and 16 of [7]. If a point P ∈ PG(3, q) is on O, then P ⊥ is the unique tangent plane
to O at P , and all q + 1 tangent lines to O through P lie in P ⊥. If P ∈ PG(3, q) is not
on O, then there are also q + 1 tangent lines to O through P . These q + 1 tangent lines
are coplanar if and only if q is even. That is, for even q, the plane through P containing
these q + 1 tangent lines meet O in an oval, and P is the nucleus of that oval. So P ⊥ is
exactly the plane containing the q + 1 tangent lines to O through P . Now let us look at the
effect of ⊥ on lines. All tangent lines to O are absolute with respect to ⊥. The secant and
exterior lines to O get interchanged by ⊥. Let 
 be a secant line to O with 
∩O = {P, Q}.
Then 
⊥ = P ⊥ ∩ Q⊥. Among the q + 1 planes through 
⊥, two are tangent to O, namely,
P ⊥ and Q⊥; each of the rest q − 1 planes meets O in an oval. This set of q − 1 ovals is a
(linear) flock. When O is an elliptic quadric, this flock is exactly K(P, Q).

We are now ready to define the relations Si in a more general setting. To motivate this,
we represent M(q) as the egglike inversive plane I (O), where O is an elliptic quadric
in PG(3, q). Thus the points on O are the points of the inversive plane M(q), and the
underlying set � on which the relations Si are defined is now identified with the set of
secant lines of O. Given two pairs {a, b} and {c, d} of distinct points of M(q), let 
(a, b)

and m(c, d) be the secant lines to O through a, b and c, d respectively. Then the four
distinct points a, b, c and d being concircular is equivalent to 
(a, b) meeting m(c, d) at a
point off O, and K(a, b) ∩ J (c, d) �= ∅ is equivalent to 
(a, b)⊥ ∩ m(c, d) �= ∅. We thus
reformulate the relations S0, S1, S2, S3 and S4 on � = {
 : |
 ∩ O| = 2} as follows.

1. S0 = {(
, 
) : 
 ∈ �},
2. S1 = {(
, m) : 
 �= m, 
 and m meet at a point on O},
3. S2 = {(
, m) : 
 �= m, 
 and m meet at a point off O},
4. S3 = {(
, m) : 
 �= m, 
⊥ ∩ m �= ∅}, and
5. S4 = (� × �)\(S0 ∪ S1 ∪ S2 ∪ S3).

Now we note that if we drop the condition that O is an elliptic quadric, but simply require
that O is an ovoid in PG(3, q), q even, these relations are still well-defined and symmetric.
Thus from now on we no longer assume that O is an elliptic quadric, but only assume that
O is an ovoid of PG(3, q), q even. If we can show that the above relations Si constitute an
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association scheme on the set of secant lines to an arbitrary ovoid in PG(3, q), then we not
only prove the De Caen-Van Dam conjecture, but also obtain another association scheme
(with the same parameters) from the Tits ovoid when q ≥ 8 is an odd power of 2.

In [6], using the above modified definitions of Si on �, where � is the set of secant lines to
an arbitrary ovoid O in PG(3, q), we showed the existence of the intersection parameters
pk

ij, i, j, k ∈ {0, 1, 2, 3, 4}, and computed them. Thus we obtained the following theorem.

THEOREM 3.4. The modified relations S0, S1, S2, S3, S4 define an association scheme on
the set of secant lines to any ovoid O in PG(3, q), where q = 2f with f ≥ 2. The first
eigenmatrix of this scheme is

P =




1 2(q2 − 1) (q/2 − 1)(q2 − 1) q(q2 − 1)/2 q(q/2 − 1)(q2 − 1)

1 q2 − 3 2 − q −q −q(q − 2)

1 −2 1 − q 0 q

1 −2 (q/2 − 1)(q − 1) q(q − 1)/2 −q(q − 2)

1 −2 q(q − 1)/2 + 1 −q(q + 1)/2 q




.

COROLLARY 3.5. The original relations S0, S1, S2, S3, S4 define an association scheme
on the set of 2-subsets of PG(1, q2), where q = 2f with f ≥ 2. The first eigenmatrix of
this scheme is the same as that given in Theorem 3.4.

REMARK. When f ≥ 3 is odd and O is the Tits ovoid, the association scheme obtained
from Theorem 3.4 is nonisomorphic to the one obtained in Corollary 3.5. To see that these
schemes are indeed nonisomorphic, note that the subgroup of the automorphism group of
the scheme fixing class S1 is essentially the stabilizer of O in P�L(4, q), which is not the
same for the Tits ovoid as for an elliptic quadric (the former is the Suzuki group Sz(q),
having size (q2 + 1)q2(q − 1), the latter is the orthogonal group PGO−(4, q), having size
2(q2 + 1)q2(q2 − 1)).

From the character table P of the four-class scheme in Theorem 3.4, using the Bannai-
Muzychuk criterion, we see that one gets a two-class association scheme by merging
S1, S2, S3, hence a strongly regular graph (srg). This srg will be denoted by G(O), and can
be defined as follows: The vertices of G(O) are the set of secant lines to O, two vertices
are joined by an edge of G(O) iff they are related by S1 or S2 or S3. The existence of such
an srg was pointed out in [3], modulo the De Caen-Van Dam conjecture. The parameters
of G(O) are

v = q2(q2 + 1)/2, k = (q + 1)(q2 − 1)

λ = (q − 1)(3q + 2), µ = 2q(q + 1)

where q = 2f , f ≥ 2.
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In [6], we proved that G(O) is isomorphic to the Brouwer-Wilbrink graph (see [2, Sect.
7B] for the definition of this graph) whenever q ≥ 4 is a power of 2, independent of the
ovoid O used in the construction of four-class association scheme in Theorem 3.4. The
proof uses the Klein correspondence between the lines of PG(3, q) and the points of the
hyperbolic quadric in PG(5, q). We refer the reader to [6] for details.
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