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STRONGLY REGULAR CAYLEY GRAPHS FROM PARTITIONS OF
SUBDIFFERENCE SETS OF THE SINGER DIFFERENCE SETS

KOJI MOMIHARA∗, QING XIANG†

Abstract. In this paper, we give a new lifting construction of “hyperbolic” type of strongly regular
Cayley graphs. Also we give new constructions of strongly regular Cayley graphs over the additive
groups of finite fields based on partitions of subdifference sets of the Singer difference sets. Our results
unify some recent constructions of strongly regular Cayley graphs related to m-ovoids and i-tight sets
in finite geometry. Furthermore, some of the strongly regular Cayley graphs obtained in this paper
are new or nonisomorphic to known strongly regular graphs with the same parameters.

1. Introduction

We assume that the reader is familiar with the basic theory of strongly regular graphs and difference
sets. For strongly regular graphs (srgs), our main references are [3] and [9]. For difference sets, we
refer the reader to [10] and Chapter 6 of [2]. Strongly regular graphs are closely related to many other
combinatorial/geometric objects, such as two-weight codes, two-intersection sets, m-ovoids, i-tight
sets, and partial difference sets. For these connections, we refer the reader to [3, p. 132], [5, 12], and
some more recent papers [7, 6, 4] on Cameron-Liebler line classes and hemisystems.

Let Γ be a (simple, undirected) graph. The adjacency matrix of Γ is the (0, 1)-matrix A with both
rows and columns indexed by the vertex set of Γ, where Axy = 1 when there is an edge between x
and y in Γ and Axy = 0 otherwise. A useful way to check whether a graph is strongly regular is
by using the eigenvalues of its adjacency matrix. For convenience we call an eigenvalue restricted if
it has an eigenvector perpendicular to the all-ones vector 1. (For a k-regular connected graph, the
restricted eigenvalues are the eigenvalues different from k.)

Theorem 1.1. For a simple graph Γ of order v, not complete or edgeless, with adjacency matrix A,
the following are equivalent:

(i) Γ is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,
(ii) A2 = (λ− µ)A + (k − µ)I + µJ for certain real numbers k, λ, µ, where I, J are the identity

matrix and the all-ones matrix, respectively,
(iii) A has precisely two distinct restricted eigenvalues.

For a proof of Theorem 1.1, we refer the reader to [3]. An effective method to construct strongly
regular graphs is by using Cayley graphs. Let G be an additively written group of order v, and let
D be a subset of G such that 0 6∈ D and −D = D, where −D = {−d | d ∈ D}. The Cayley graph
over G with connection set D, denoted Cay(G,D), is the graph with the elements of G as vertices;
two vertices are adjacent if and only if their difference belongs to D. In the case when Cay(G,D) is
a strongly regular graph, the connection set D is called a (regular) partial difference set. Examples
of strongly regular Cayley graphs are the Paley graphs P(q), where q is a prime power congruent to
1 modulo 4, the Clebsch graph, and the affine orthogonal graphs ([3]). For Γ = Cay(G,D) with G
abelian, the eigenvalues of Γ are exactly χ(D) :=

∑
d∈D χ(d), where χ runs through the character

group of G. This fact reduces the problem of computing eigenvalues of abelian Cayley graphs to that
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of computing some character sums, and is the underlying reason why the Cayley graph construction
has been very effective for the purpose of constructing srgs. The survey of Ma [12] contains much of
what is known about partial difference sets and about connections with strongly regular graphs.

A (v, k, λ, µ) srg is said to be of Latin square type (respectively, negative Latin square type) if
(v, k, λ, µ) = (n2, r(n − ǫ), ǫn + r2 − 3ǫr, r2 − ǫr) and ǫ = 1 (respectively, ǫ = −1). When v (the
number of vertices) is a prime power, many constructions of srgs with Latin square or negative Latin
square type parameters are known. For example, the srgs arising from partial spreads of PG(2m−1, q)
have Latin square parameters, and the affine orthogonal graphs, VO−(2m, q), have negative Latin
square type parameters. Still the range of r in the parameters (n2, r(n−ǫ), ǫn+r2−3ǫr, r2−ǫr) of the
known srgs of Latin square or negative Latin square type can sometimes be limited; moreover Latin
square and negative Latin square type strongly regular Cayley graphs with certain extra properties1

have found many connections with finite geometric objects such as m-ovoids and i-tight sets (cf.
[7, 6, 4]). Therefore it is of interest to construct more strongly regular Cayley graphs of Latin square
or negative Latin square type. The purpose of the current paper is two fold. First, we give new
constructions of strongly regular Cayley graphs, and obtain some new srgs. Secondly, we unify and
give simpler proofs for some recent constructions of strongly regular Cayley graphs.

The paper is organized as follows. In Section 2, we review some basic properties of Gauss sums
which will be used in later sections. In Section 3, we give two constructions of strongly regular
Cayley graphs on the additive group of Fq2 by lifting a cyclotomic strongly regular graph on Fq. The
first lifting construction (Proposition 3.2) is of “elliptic” type, and it was already given in [15]. The
second lifting construction (Proposition 3.4) is of “hyperbolic” type, and this constrution is new. In
Section 4, we generalize and unify the constructions of strongly regular Cayley graphs corresponding
tom-ovoids and i-tight sets in [7, 4]. We give a general construction of strongly regular Cayley graphs
by using a certain partition of a subdifference set (and its complement) of the Singer difference set.
When the subdifference sets arise from subfields, we recover the results in [7, 4]. In Sections 5, 6, and
7, we apply the general construction in Section 4 to the three known cases of subdifference sets of the
Singer difference sets, namely, the semiprimitive case, the sporadic case, and the subfield case. We
either recover strongly regular Cayley graphs constructed in some of our recent papers [14, 7, 4], or
we produce new strongly regular Cayley graphs. In particular, Corollaries 7.7 and 7.9 give strongly
regular Cayley graphs with the same parameters as the affine polar graphs. By using a computer,
it is shown that the newly constructed graphs in Corollaries 7.7 and 7.9 are not isomorphic to the
affine polar graphs when the parameters are small.

2. Preliminaries

We will use Gauss sums and Gauss periods to compute character values of certain subsets of Fq,
the finite field of order q. So it is helpful to introduce characters of both kinds of finite fields, and
review basic properties of Gauss sums. Let p be a prime, f a positive integer, and q = pf . The
canonical additive character ψFq of Fq is defined by

ψFq : Fq → C
∗, ψFq(x) = ζ

Trq/p(x)
p ,

where ζp = exp(2πi
p
) is a complex primitive p-th root of unity and Trq/p is the trace function from

Fq to Fp defined by Trq/p(x) = x + xp + xp
2
+ · · ·+ xp

f−1
. All the additive characters of Fq can be

obtained from the canonical one. For a ∈ Fq, define

ψa(x) = ψFq(ax), ∀x ∈ Fq. (2.1)

1For example, the elements of the connection set must all lie on a quadratic surface.
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Then {ψa | a ∈ Fq} is the group of additive characters of Fq. For a multiplicative character χ and
the canonical additive character ψFq of Fq, define the Gauss sum by

Gq(χ) =
∑

x∈F∗

q

χ(x)ψFq(x).

Some basic properties of Gauss sums are listed below:

Proposition 2.1. ([11, Theorem 5.2]) Let χ be a multiplicative character of Fq. Then, the following
hold:

(i) Gq(χ)Gq(χ) = q if χ is nontrivial;
(ii) Gq(χ

p) = Gq(χ), where p is the characteristic of Fq;

(iii) Gq(χ
−1) = χ(−1)Gq(χ);

(iv) Gq(χ) = −1 if χ is trivial.

Let ω be a fixed primitive element of Fq and N a positive integer dividing q−1. For 0 ≤ i ≤ N −1

we set C
(N,q)
i = ωiC0, where C0 is the subgroup of index N of F∗

q. The Gauss periods associated with

these cosets are defined by ψFq(C
(N,q)
i ) :=

∑
x∈C

(N,q)
i

ψFq(x), 0 ≤ i ≤ N−1, where ψFq is the canonical

additive character of Fq. By orthogonality of characters, the Gauss periods can be expressed as a
linear combination of Gauss sums:

ψFq(C
(N,q)
i ) =

1

N

N−1∑

j=0

Gq(χ
j)χ−j(ωi), 0 ≤ i ≤ N − 1, (2.2)

where χ is any fixed multiplicative character of order N of Fq. For example, if N = 2, we have

ψFq(C
(2,q)
i ) =

−1 + (−1)iGq(η)

2
, 0 ≤ i ≤ 1, (2.3)

where η is the quadratic character of Fq.
The quadratic Gauss sum, Gq(η), can be evaluated explicitly.

Theorem 2.2. [11, Theorem 5.15] Let q = ps be a prime power with p a prime and η be the quadratic
character of Fq. Then,

Gq(η) =

{
(−1)s−1q1/2 if p ≡ 1 (mod 4),

(−1)s−1isq1/2 if p ≡ 3 (mod 4).
(2.4)

Also, in the semi-primitive case, the Gauss sum can be computed.

Theorem 2.3. ([1, Theorem 11.6.3]) Let p be a prime. Suppose that N > 2 and p is semi-primitive
modulo N , i.e., there exists a positive integer j such that pj ≡ −1 (mod N). Choose j minimal and
write f = 2js for any positive integer s. Let χ be a multiplicative character of order N of Fpf . Then,

p−f/2Gpf (χ) =

{
(−1)s−1, if p = 2,

(−1)s−1+(pj+1)s/N , if p > 2.

The following theorems are referred to as the Davenport-Hasse lifting formula and the Davenport-
Hasse product formula, respectively.

Theorem 2.4. ([11, Theorem 5.14]) Let m be a positive integer. Let χ be a nontrivial multiplicative
character of Fq and χ′ be the lift of χ to Fqm, i.e., χ

′(x) = χ(NormFqm/Fq(x)) for x ∈ Fqm, where
NormFqm/Fq is the norm from Fqm to Fq. Then,

Gqm(χ
′) = (−1)m−1Gq(χ)

m.
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Theorem 2.5. ([1, Theorem 11.3.5]) Let η be a multiplicative character of order ℓ > 1 of Fq. For
every nontrivial multiplicative character χ of Fq,

Gq(χ) =
Gq(χ

ℓ)

χℓ(ℓ)

ℓ−1∏

i=1

Gq(η
i)

Gq(χηi)
.

We will use the following formula later.

Theorem 2.6. ([11, Theorem 5.33]) Let ψFq be the canonical additive character of Fq with q odd,
and let f(x) = a2x

2 + a1x+ a0 ∈ Fq[x] with a2 6= 0. Then
∑

x∈Fq

ψFq(f(x)) = ψFq(a0 − a21(4a2)
−1)η(a2)Gq(η),

where η is the quadratic character of Fq.

3. Basic lifting constructions

3.1. Subdifference sets of the Singer difference sets. Let p be a prime, f ≥ 1, m ≥ 2 be
integers and q = pf . Let L be a complete system of coset representatives of F∗

q in F
∗
qm . We can, and

do, choose L in such a way that Trqm/q(x) = 0 or 1 for any x ∈ L. Let

L0 = {x ∈ L |Trqm/q(x) = 0} and L1 = {x ∈ L |Trqm/q(x) = 1}.
Then,

H0 = {x ∈ F
∗
qm/F

∗
q | x ∈ L0}

represents a hyperplane of the projective space PG(m− 1, q), and it is a so-called Singer difference
set in the cyclic group F∗

qm/F
∗
q. (Here x = xF∗

q represents the projective point corresponding to the
one-dimensional subspace over Fq spanned by x.)

Any nontrivial multiplicative character χ of exponent (qm − 1)/(q− 1) of F∗
qm induces a character

of the quotient group F∗
qm/F

∗
q , which will also denoted by χ. Moreover, every character of F∗

qm/F
∗
q

arises in this way. By a result given in [17], for any nontrivial multiplicative character χ of exponent
(qm − 1)/(q − 1) of F∗

qm , we have
χ(H0) = Gqm(χ)/q.

Assume that N | (qm − 1)/(q − 1). Then

C0 := C
(N,qm)
0 /F∗

q ≤ F
∗
qm/F

∗
q.

Let S be a complete system of coset representatives of C0 in F∗
qm/F

∗
q, and set G = {sC0 | s ∈ S} ≃

F
∗
qm/C

(N,qm)
0 . For convenience, we will use s̃ to denote sC0.

In the rest of this section, we will assume that Cay(Fqm , C
(N,qm)
0 ) is strongly regular, where N | (qm−

1)/(q−1). Such a strongly regular graph is called cyclotomic. The following three series of cyclotomic
strongly regular graphs were known [16]:

(1) (subfield case) C
(N,qm)
0 = F

∗
qd where d |m,

(2) (semi-primitive case) −1 ∈ 〈p〉 ≤ (Z/NZ)∗,

(3) (sporadic case) Cay(Fqm, C
(N,qm)
0 ) has one of the eleven sets of parameters given in Table 1.

Table 1. Eleven sporadic examples

N 11 19 35 37 43 67 107 133 163 323 499
qm 35 59 312 79 117 1733 353 518 4181 3144 5249

We mention in passing that Schmidt and White [16] conjectured that besides the above three cases,
there are no more cyclotomic strongly regular graphs.
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Conjecture 3.1. Let N | qm−1
q−1

with N > 1. If Cay(Fqm, C
(N,qm)
0 ) is strongly regular, then one of (1),

(2), or (3) above holds.

This conjecture remains open. Some partial results were obtained in [16].

Assume that Cay(Fqm, C
(N,qm)
0 ) is strongly regular, where N | qm−1

q−1
. Then |H0 ∩ sC0|, s ∈ S, take

exactly two values. It follows that |H0 ∩ sC0| − |H0 ∩C0| = 0 or δ, where δ is a nonzero integer. For
any nontrivial multiplicative character χ of Fqm of exponent N ,

χ(H0) =
∑

s∈S

|H0 ∩ sC0|χ(s̃)

=
∑

s∈S

(|H0 ∩ sC0| − |H0 ∩ C0|)χ(s̃)

= δ
∑

s∈S′

χ(s̃),

where
S ′ = {s ∈ S : |H0 ∩ sC0| − |H0 ∩ C0| = δ}. (3.1)

Thus ∑

s∈S′

χ(s̃) =
χ(H0)

δ
=
Gqm(χ)

δq
. (3.2)

It follows that δ is a power of p. Furthermore, noting that Gqm(χ)Gqm(χ) = qm, we see that the set
{s̃ | s ∈ S ′} ⊂ G forms a difference set, which is called a subdifference set of H0 [13]. Let ω be a
primitive element of Fqm . Then we could choose S = {1, ω, . . . , ωN−1}, where ω = ωF∗

q. In this way,
since S ′ is a subset of S, we define

I = {0 ≤ i ≤ N − 1 | ωi ∈ S ′}. (3.3)

In the rest of the paper, we will also call I a subdifferecne set in ZN of the Singer difference set.

3.2. Two lifting constructions. Let γ be a primitive element of Fq2m and set ω = γq
m+1. Then,

ω is a primitive element in Fqm . Let C
(N,q2m)
j = γj〈γN〉, 0 ≤ j ≤ N − 1. The following lifting

construction was already given in [15]. For completeness, we repeat the construction here.

Proposition 3.2. Assume that F∗
q ≤ C

(N,qm)
0 ≤ F∗

qm and Cay(Fqm , C
(N,qm)
0 ) is strongly regular. Let

I be the corresponding subdifferecne set defined in (3.3). Let

E =
⋃

i∈I

C
(N,q2m)
i . (3.4)

Then Cay(Fq2m , E) is a strongly regular graph with negative Latin square type parameters (n2, r(n+
1),−n+ r2 + 3r, r2 + r), where n = qm and r = (qm − 1)|I|/N .

Proof: Let ψFq2m
be the canonical additive character of Fq2m and let χ′

N be a multiplicative

character of order N of Fq2m . We will show that ψFq2m
(γaE), 0 ≤ a ≤ N − 1, take exactly two

distinct values. By the orthogonality of characters, we compute

Sa = N · ψFq2m
(γaE) + |I| =

N−1∑

j=1

Gq2m(χ
′−j
N )

∑

i∈I

χ′j
N (γ

a+i).

Since N | qm−1
q−1

, there is a multiplicative character χN of Fqm of order N such that χ′
N(γ) = χN (ω),

i.e., χ′
N is the lift of χN . By the Davenport-Hasse lifting formula, we have

Sa = −
N−1∑

j=1

χN
j(ωa)Gqm(χ

−j
N )Gqm(χ

−j
N )
∑

i∈I

χj
N (ω

i).
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On the other hand, from the definition of I, we have

∑

i∈I

χj
N(ω

i) =
∑

s∈S′

χj
N(s̃) =

Gqm(χ
j
N)

δq
. (3.5)

Hence,

Sa = − 1

δq

N−1∑

j=1

χj
N(ω

a)Gqm(χ
−j
N )Gqm(χ

−j
N )Gqm(χ

j
N)

= − qm−1

δ

N−1∑

j=1

χj
N(ω

a)Gqm(χ
−j
N )

= − qm
N−1∑

j=1

∑

i∈I

χ−j
N (ωi)χj

N(ω
a) = qm|I| −

{
qmN, if a ∈ I,

0, if a 6∈ I.

Thus, ψFq2m
(γaE) = Sa−|I|

N
, 0 ≤ a ≤ N−1, take exactly two distinct values (qm−1)|I|

N
and (qm−1)|I|

N
−qm.

Therefore Cay(Fq2m , E) is strongly regular. The parameters of Cay(Fq2m , E) can be computed in a
straightforward way. We omit the details. �

Remark 3.3. If Cay(Fqm, C
(N,qm)
0 ) is a cyclotomic strongly regular graph in the subfield case with

N = qm−1
q−1

, then C
(N,qm)
0 = F∗

q, S = F∗
qm/F

∗
q, and S

′ = H0. In this case, we find that

E = {x ∈ F
∗
q2m |Trqm/q(x

qm+1) = 0},
where Trqm/q(x

qm+1) is a nondegenerate Fq-valued elliptic quadratic form on Fq2m . Therefore it is
appropriate to call the lifting construction given in Proposition 3.2 an elliptic type lifting construction.

We give a new lifting construction, which is of “hyperbolic” type.

Proposition 3.4. Let ω be a primitive element of Fqm. Assume that F∗
q ≤ C

(N,qm)
0 ≤ F∗

qm and

Cay(Fqm , C
(N,qm)
0 ) is strongly regular. Let I be the corresponding subdifferecne set defined in (3.3).

Let

H = {(y, y−1xωℓ) | x ∈ C
(N,qm)
0 , y ∈ F

∗
qm , ℓ ∈ I} ⊆ Fqm × Fqm . (3.6)

Then Cay(Fqm × Fqm, H) is a strongly regular graph with Latin square type parameters (n2, r(n −
1), n+ r2 − 3r, r2 − r), where n = qm and r = (qm − 1)|I|/N .

Proof: Let ψFqm
be the canonical additive character of Fqm and let χqm−1 be a multiplicative

character of order qm − 1 of Fqm. Each additive character of Fqm × Fqm has the form

ψa,b((x, y)) = ψFqm
(ax+ by), (x, y) ∈ Fqm × Fqm, (3.7)

where (a, b) ∈ Fqm × Fqm . Then, by the definition of H , we need to compute the character values:

Sa,b :=
∑

y∈F∗

qm

∑

x∈C
(N,qm)
0

∑

ℓ∈I

ψFqm
(ay + bxy−1ωℓ), (0, 0) 6= (a, b) ∈ Fqm × Fqm.

In the case where either one of a or b is zero, it is clear that Sa,b = −(qm − 1)|I|/N .
Now, we assume that a 6= 0 and b 6= 0. By the orthogonality of characters, we have

Sa,b =
1

(qm − 1)2

qm−2∑

j,k=0

∑

y∈F∗

qm

∑

x∈C
(N,qm)
0

∑

ℓ∈I

Gqm(χ
−j
qm−1)Gqm(χ

−k
qm−1)χ

j
qm−1(a)χ

k
qm−1(bxω

ℓ)χj−k
qm−1(y).

(3.8)
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Since
∑

y∈F∗

qm
χj−k
qm−1(y) = qm − 1 or 0 according as j ≡ k (mod qm − 1) or j 6≡ k (mod qm − 1),

continuing from (3.8), we have

Sa,b =
1

qm − 1

qm−2∑

j=0

∑

x∈C
(N,qm)
0

∑

ℓ∈I

Gqm(χ
−j
qm−1)

2χj
qm−1(a)χ

j
qm−1(bxω

ℓ). (3.9)

Let χN := χ
qm−1

N
qm−1 . Since

∑
x∈C

(N,qm)
0

χj
qm−1(x) = (qm − 1)/N or 0 according as j ≡ 0 (mod qm−1

N
) or

j 6≡ 0 (mod qm−1
N

), continuing from (3.9), we have

Sa,b =
1

N

N−1∑

j=0

∑

ℓ∈I

Gqm(χ
−j
N )2χj

N(abω
ℓ).

On the other hand, by (3.5), we have
∑

i∈I χ
j
N (ω

i) =
Gqm (χj

N )

δq
. Hence, we have

Sa,b −
|I|
N

=
1

δqN

N−1∑

j=1

χj
N (ab)Gqm(χ

−j
N )Gqm(χ

−j
N )Gqm(χ

j
N)

=
qm−1

δN

N−1∑

j=1

χj
N(ω

a)Gqm(χ
−j
N )

=
qm

N

N−1∑

j=1

∑

ℓ∈I

χ−j
N (ωℓ)χj

N(ab) = −q
m|I|
N

+

{
qm, if logω(ab) ∈ I (mod N),

0, if logω(ab) 6∈ I (mod N).

Thus ψa,b(H) = Sa,b, (0, 0) 6= (a, b) ∈ Fqm × Fqm, take exactly two distinct values − (qm−1)|I|
N

and

− (qm−1)|I|
N

+ qm. Therefore Cay(Fqm × Fqm , H) is strongly regular. The parameters of Cay(Fqm ×
Fqm , H) can be computed in a straightforward way. We omit the details. �

Remark 3.5. Under the assumptions of Proposition 3.4, set

H ′ := H ∪ {(0, x) | x ∈ F
∗
qm} ∪ {(x, 0) | x ∈ F

∗
qm}.

Then, Cay(Fqm ×Fqm , H
′) is also strongly regular. Furthermore, if Cay(Fqm , C

(N,qm)
0 ) is a cyclotomic

strongly regular graph in the subfield case with N = qm−1
q−1

, we have

H ′ = {(0, 0) 6= (x, y) ∈ Fqm × Fqm |Trqm/q(xy) = 0},
where Trqm/q(xy) is a nondegenerate hyperbolic quadratic form from Fqm × Fqm to Fq. Hence, it is
appropriate to call the lifting construction in Proposition 3.4 a hyperbolic type lifting construction.

We now apply Propositions 3.2 and 3.4 to the known cyclotomic strongly regular graphs. We first
apply the two propositions to the semi-primitive examples. In this case, we have |I| = 1.

Corollary 3.6. Let p be a prime, N ≥ 2, qm = p2js, where s ≥ 2, N | (pj + 1), and j is the smallest
such positive integer. For ǫ ∈ {1,−1}, there exists an (n2, r(n − ǫ), ǫn + r2 − 3ǫr, r2 − ǫr) strongly
regular Cayley graph with n = qm and r = (qm − 1)/N .

Next we apply Propositions 3.2 and 3.4 to the subfield examples. In this case, we have N = qm−1
qd−1

and |I| = qm−d−1
qd−1

, where d |m.

Corollary 3.7. Let q be a prime power and m ≥ 3 a positive integer. For ǫ ∈ {1,−1}, there exists
an (n2, r(n− ǫ), ǫn+ r2 − 3ǫr, r2 − ǫr) strongly regular Cayley graph with n = qm and r = qm−d − 1.

When d = 1, the strongly regular graphs obtained in Corollary 3.7 were already known [12].
Finally, we apply Propositions 3.2 and 3.4 to the eleven sporadic examples of cyclotomic strongly

regular graphs. In this case, the values of k := |I| are given in [16, Table II].
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Corollary 3.8. For ǫ ∈ {1,−1}, there exists an (n2, r(n− ǫ), ǫn+ r2 − 3ǫr, r2 − ǫr) strongly regular
Cayley graph with n = qm and r = k(qm − 1)/N in each of the following cases:

(qm, N, k) = (35, 11, 5), (59, 19, 9), (312, 35, 17), (79, 37, 9), (117, 43, 21), (1733, 67, 33)

(353, 107, 53), (518, 133, 33), (4181, 163, 81), (3144, 323, 161), (5249, 499, 249).

4. Halving the connection sets E and H and their complements

In a couple of recent papers [7, 4], motivated by existence questions concerning finite geometric
objects such as m-ovoids and i-tight sets, we used a certain partition of the Singer difference set to
construct strongly regular Cayley graphs with special properties which give the desired m-ovoids and
i-tight sets. We now realize that the constructions can be done in a more general setting, namely, we
can do the construction by partitioning a subdifference set of the Singer difference set in a certain way.
In the case where the cyclotomic strongly regular graph comes from a subfield, the subdifference set
of the Singer difference set is actually a Singer difference set; so in this case, we recover the previous
constructions. We will also use a certain partition of the complement of a subdifference of the Singer
difference sets to construct more strongly regular Cayley graphs.

Assume that N ≥ 2 is odd, N | qm−1
q−1

, and Cay(Fqm, C
(N,qm)
0 ) is strongly regular. Let I be the

corresponding subdifference set in ZN defined in (3.3). Let S1, S2 be a partition of I and let S ′
i ≡

2−1Si (mod N) and S ′′
i ≡ 2−1S ′

i (mod N) for i = 1, 2. Define

X := 2S ′′
1 ∪ (2S ′′

2 +N) (mod 2N). (4.1)

Let J1 := {0, 3} and J2 := {1, 2}. Define

Y := {Ni+ 4j (mod 4N) : (i, j) ∈ (J1 × S ′′
1 ) ∪ (J2 × S ′′

2 )}. (4.2)

It is clear that X ≡ 2−1I (mod N) and Y ≡ I (mod N).
Similarly, let T1, T2 be a partition of ZN \ I and let T ′

i ≡ 2−1Ti (mod N) and T ′′
i ≡ 2−1T ′

i (mod N)
for i = 1, 2. Define

X̂ := 2T ′′
1 ∪ (2T ′′

2 +N) (mod 2N). (4.3)

Furthermore, define

Ŷ := {Ni+ 4j (mod 4N) : (i, j) ∈ (J1 × T ′′
1 ) ∪ (J2 × T ′′

2 )}, (4.4)

where J1 = {0, 3} and J2 = {1, 2}.

4.1. Decompositions of Cay(Fq2m , E) and its complement. In this subsection, we always assume
that qm ≡ 3 (mod 4). We will consider decompositions of Cay(Fq2m , E) and its complement, where
E is defined in (3.4). We define

E1 :=
⋃

i∈Y

C
(4N,q2m)
i , (4.5)

where C
(4N,q2m)
i := γi〈γ4N〉, γ is a primitive element of Fq2m , and Y is defined in (4.2). Since Y ≡ I

(mod N), we see that E1 is a subset of E, and |E1| = |E|/2. The (additive) character values of E1

are given by the following lemma.

Lemma 4.1. Let ψFq2m
and ψFqm

be the canonical additive characters of Fq2m and Fqm, respectively.

For a ∈ Z4N , define b ≡ 4−1a (mod N) and c ≡ 2b (mod 2N). Then,

ψFq2m
(γaE1) =

ρpδaq
m

2Gqm(η)

(
2ψFqm

(ωc
⋃

t∈X

C
(2N,qm)
t )− ψFqm

(ωc
⋃

t∈2−1I

C
(N,qm)
t )

)

+
(qm − 1)|I|

2N
−
{

qm

2
, if c ∈ 2−1I (mod N),

0, otherwise,
(4.6)
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where δa = 1 or −1 depending on whether a ≡ 0, N (mod 4) or a ≡ 2, 3N (mod 4), and ρp = 1 or −1
depending on whether p ≡ 7 (mod 8) or p ≡ 3 (mod 8). Furthermore, η is the quadratic character of
Fqm.

This lemma is a common generalization of the results in [4] and [14]. Its proof is the same as those
in [4] and [14]. We therefore omit the proof.

Next, we consider a decomposition of the complement of Cay(Fq2m , E). Let

E2 :=
⋃

i∈Ŷ

C
(4N,q2m)
i , (4.7)

where Ŷ is defined in (4.4). The (additive) character values of E2 are given by the following lemma.

Lemma 4.2. With the same notation as in Lemma 4.1,

ψFq2m
(γaE2) =

ρpδaq
m

2Gqm(η)


2ψFqm

(ωc
⋃

t∈X̂

C
(2N,qm)
t )− ψFqm

(ωc
⋃

t∈ZN \2−1I

C
(N,qm)
t )




+
(qm − 1)(N − |I|)

2
−
{

0, if c ∈ 2−1I (mod N),
qm

2
, otherwise.

(4.8)

Remark 4.3. (i) If X defined in (4.1) satisfies that

2ψFqm
(ωc

⋃

t∈X

C
(2N,qm)
t )− ψFqm

(ωc
⋃

t∈2−1I

C
(N,qm)
t ) =

{
±Gqm(η), if c ∈ 2−1I (mod N),
0, otherwise,

(4.9)

substituting (4.9) into (4.6), we find that the nontrivial additive character values of E1

take two distinct values (qm−1)|I|
2N

and (qm−1)|I|
2N

− qm, implying that Cay(Fq2m , E1) is strongly
regular.

(ii) If X̂ defined in (4.3) satisfies that

2ψFqm
(ωc

⋃

t∈X̂

C
(2N,qm)
t )− ψFqm

(ωc
⋃

t∈ZN \2−1I

C
(N,qm)
t ) =

{
0, if c ∈ 2−1I (mod N),
±Gqm(η), otherwise,

(4.10)

substituting (4.10) into (4.8), we find that the nontrivial additive character values of E2

take two distinct values (qm−1)(N−|I|)
2N

and (qm−1)(N−|I|)
2N

− qm, implying that Cay(Fq2m , E2) is
strongly regular.

4.2. Decompositions of Cay(Fqm ×Fqm , H) and its complement. In this subsection, we assume

that qm ≡ 1 (mod 4), N is an odd divisor of qm−1
q−1

, and gcd (N, q
m−1
N

) = 1. Define

H1 := {(xy, xy−1zωℓ) | x ∈ C
(N,qm)
0 , y ∈ C

( q
m

−1
N

,qm)

0 , z ∈ C
(4N,qm)
0 , ℓ ∈ Y } ⊆ Fqm × Fqm , (4.11)

where ω is a primitive element of Fqm defined in Subsection 3.2 and Y is defined in (4.2). In the

definition of H1, since x
2zωℓ ∈ ⋃ℓ∈I C

(N,qm)
ℓ , we see that H1 is a subset of H . Moreover, |H1| = |H|/2.

The (additive) character values of H1 are given in the following lemma.

Lemma 4.4. Let ψa,b be an additive character of Fqm×Fqm defined in (3.7) and ψFqm
be the canonical

additive character of Fqm. For (a, b) ∈ Fqm × Fqm \ {(0, 0)} with ab = 0, it holds that ψa,b(H1) =
−(qm − 1)|I|/2N . For (a, b) ∈ Fqm × Fqm \ {(0, 0)} with ab 6= 0, it holds that

ψa,b(H1) =
η(2ωc)Gqm(η)δa,b

2

(
2ψFqm

(ωc
⋃

t∈X

C
(2N,q3)
t )− ψFqm

(ωc
⋃

t∈2−1I

C
(N,qm)
t )

)

− (qm − 1)|I|
2N

+

{
qm

2
, if c ∈ 2−1I (mod N),

0, otherwise,
(4.12)
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where c is defined by ωc = (ab)
N+1

2 and δa,b = 1 or −1 depending on whether logω(a
−1b) ≡ 0, N (mod 4)

or logω(a
−1b) ≡ 2, 3N (mod 4). Furthermore, η is the quadratic character of Fqm.

This lemma is a generalization of [7, Theorem 4.1]. Since the proof is similar to that of [7,
Theorem 4.2], we omit the proof.

Next, we consider a decomposition of the complement of Cay(Fqm × Fqm , H). Define

H2 := {(xy, xy−1zωℓ) | x ∈ C
(N,qm)
0 , y ∈ C

( q
m

−1
N

,qm)

0 , z ∈ C
(4N,qm)
0 , ℓ ∈ Ŷ } ⊆ Fqm × Fqm , (4.13)

where Ŷ is defined in (4.4). The character values of H2 are given in the following lemma.

Lemma 4.5. For (a, b) ∈ Fqm × Fqm \ {(0, 0)} with ab = 0, it holds that ψa,b(H2) = −(qm − 1)(N −
|I|)/2N . For (a, b) ∈ Fqm × Fqm \ {(0, 0)} with ab 6= 0, it holds that

ψa,b(H2) =
η(2ωc)Gqm(η)δa,b

2


2ψFqm

(ωc
⋃

t∈X̂

C
(2N,q3)
t )− ψFqm

(ωc
⋃

t∈ZN\2−1I

C
(N,qm)
t )




− (qm − 1)(N − |I|)
2N

+

{
0, if c ∈ 2−1I (mod N),
qm

2
, otherwise,

(4.14)

where c is defined by ωc = (ab)
N+1

2 .

Remark 4.6. Similarly to Remark 4.3, if the set X defined in (4.1) satisfies (4.9), the nontrivial

additive character values of H1 take two distinct values − (qm−1)|I|
2N

and − (qm−1)|I|
2N

+ qm, implying

that Cay(Fqm × Fqm , H1) is strongly regular. Also, if X̂ defined in (4.3) satisfies (4.10), then the

nontrivial additive character values of H2 take two distinct values − (qm−1)(N−|I|)
2N

and − (qm−1)(N−|I|)
2N

+
qm, implying that Cay(Fqm × Fqm, H2) is strongly regular.

5. Partition of subdifference sets and their complements in semi-primitive case

In this section, we consider a partition of the subdifference sets I in semi-primitive case. We will
use the same notation as in Section 4. We assume that N is odd and qm = p2js, where p is a prime,

s ≥ 2, N | (pj + 1), and j is the smallest such positive integer. In this case, Cay(Fqm , C
(N,qm)
0 ) is

strongly regular and we have I = {0} [16]. Furthermore, by Theorem 2.3, the Gauss sums with
respect to multiplicative characters of exponent N of Fqm can be explicitly evaluated as

Gqm(χ
i
N) = (−1)s−1√qm, 1 ≤ i ≤ N − 1. (5.1)

Theorem 5.1. With the same notation as in Section 4, under the above assumptions, the partition
(S1, S2) = ({0}, ∅) of I satisfies the condition (4.9) of Remark 4.3 (i).

Proof: By the definition (4.1) of X , we have X = {0}. Write

Pc := 2ψFqm
(ωc

⋃

t∈X

C
(2N,qm)
t )− ψFqm

(ωc
⋃

t∈2−1I

C
(N,qm)
t ).

By (4.9), we need to prove that

Pc =

{
±Gqm(η), if c ≡ 0 (mod N),
0, otherwise,
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where η is the quadratic character of Fqm . Let χN be a multiplicative character of order N of Fqm .
By the orthogonality of characters, we have

Pc =
1

N

(
N−1∑

i=0

∑

j=0,1

∑

t∈X

Gqm(χ
i
Nη

j)χ−i
N η

j(ωc+t)−
N−1∑

i=0

∑

t∈2−1I

Gqm(χ
i
N)χ

−i
N (ωc+t)

)

=
1

N

N−1∑

i=0

∑

t∈X

Gqm(χ
i
Nη)χ

−i
N η(ω

c+t). (5.2)

By the Davenport-Hasse product formula and (5.1), we have

Gqm(χ
i
Nη) =

Gqm(χ
2i
N)Gqm(η)

Gqm(χi
N )

= Gqm(η).

On the other hand, by the definition of X , we have
∑

t∈X χ
−i
N η(ω

t) = 1. Continuing from (5.2), we
have

Pc =
η(ωc)Gqm(η)

N

N−1∑

i=0

χ−i
N (ωc) =

{
η(ωc)Gqm(η), if c ≡ 0 (mod N),
0, otherwise.

This completes the proof of the theorem. �

Similarly to the theorem above, we have the following.

Theorem 5.2. With the notations above, the partition (T1, T2) = (ZN \ {0}, ∅) of ZN \ I satisfies
the condition (4.10) of Remark 4.3 (ii).

Since qm = p2js, we have qm ≡ 1 (mod 4). We can only apply the lifting construction of hyperbolic
type. By Lemma 4.4, Remark 4.6 and Theorem 5.1, we obtain the following.

Corollary 5.3. Let N be odd and qm = p2js, where p is a prime, s ≥ 2, N | (pj + 1), and j is the
smallest such positive integer. Assume that gcd (N, q

m−1
N

) = 1. Then, there exists a (q2m, r(qm −
1), qm + r2 − 3r, r2 − r) strongly regular Cayley graph, where r = (qm − 1)/2N .

Similarly to the corollary above, by Lemma 4.5, Remark 4.6 and Theorem 5.2, we obtain the
following corollary.

Corollary 5.4. Let N be odd and qm = p2js, where p is a prime, s ≥ 2, N | (pj + 1), and j is the
smallest such positive integer. Assume that gcd (N, q

m−1
N

) = 1. Then, there exists a (q2m, r(qm −
1), qm + r2 − 3r, r2 − r) strongly regular Cayley graph, where r = (N − 1)(qm − 1)/2N .

6. Partition of subdifference sets and their complements in sporadic case

In this section, we consider partitions of the subdifference set I and its complement in the sporadic
case.

Theorem 6.1. Assume that N ≥ 2 is odd, N | qm−1
q−1

, Cay(Fqm, C
(N,qm)
0 ) is strongly regular and

−2 ∈ 〈p〉 (mod N), where p is the characteristic of Fqm. Let I be the corresponding subdifference set
defined in (3.3). Then, the partition (S1, S2) = (I, ∅) of I satisfies the condition (4.9) of Remark 4.3
(i).

Proof: Let I ′ ≡ 4−1I (mod N). By the definition (4.1) of X , we have X ≡ 2I ′ (mod 2N). Write

Pc := 2ψFqm
(ωc

⋃

t∈X

C
(2N,qm)
t )− ψFqm

(ωc
⋃

t∈2−1I

C
(N,qm)
t ).
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Let χN be a multiplicative character of Fqm of order N and η be the quadratic character of Fqm .
Similarly to the proof of Theorem 5.1, we have

Pc =
1

N

N−1∑

i=1

∑

t∈X

Gqm(χ
i
Nη)χ

−i
N η(ω

c+t) +
η(ωc)Gqm(η)|I|

N
. (6.1)

By the Davenport-Hasse product formula, we have

Gqm(χ
i
Nη) =

Gqm(χ
2i
N)Gqm(η)

Gqm(χ
i
N )

.

On the other hand, by (3.2), for i 6= 0

∑

t∈X

χ−i
N η(ω

t) =
∑

t∈2I′

χ−i
N (ωt) =

Gqm(χ
−2−1i
N )

δq
.

Substituting these into (6.1), we have

Pc =
η(ωc)Gqm(η)

δqN

N∑

i=1

Gqm(χ
2i
N)Gqm(χ

−2−1i
N )

Gqm(χi
N )

χ−i
N (ωc) +

η(ωc)Gqm(η)|I|
N

. (6.2)

By the assumption that −2 ∈ 〈p〉 (mod N), we have Gqm(χ
−2−1i
N ) = Gqm(χ

i
N). Therefore, continuing

from (6.2), we have

Pc =
η(ωc)Gqm(η)

δqN

N∑

i=1

Gqm(χ
2i
N)χ

−i
N (ωc) +

η(ωc)Gqm(η)|I|
N

=
η(ωc)Gqm(η)

N

(
N∑

i=1

∑

t∈I

χ2i
N (ω

t)χ−i
N (ωc) + |I|

)

=
η(ωc)Gqm(η)

N

N∑

i=0

∑

t∈I

χ2i
N(ω

t)χ−i
N (ωc) =

{
η(ωc)Gqm(η), if c ∈ 2I (mod N),
0, otherwise.

Since the subdifference set I is invariant under the multiplication by p modulo N , by the assumption
that −2−1 ∈ 〈p〉 (mod N), the condition c ∈ 2I (mod N) is equivalent to that c ∈ 2−1I (mod N).
This completes the proof of the theorem. �

Similarly to the theorem above, we have the following.

Theorem 6.2. Assume that N ≥ 2 is odd, N | qm−1
q−1

, Cay(Fqm, C
(N,qm)
0 ) is strongly regular and

−2 ∈ 〈p〉 (mod N). Then the partition (T1, T2) = (ZN \ I, ∅) of ZN \ I satisfies the condition (4.10)
of Remark 4.3 (ii).

There are ten sporadic examples of cyclotomic strongly regular graphs satisfying the condition
−2 ∈ 〈p〉 (mod N). In particular, when qm ≡ 3 (mod 4), we obtain the following result.

Corollary 6.3. There exists a (q2m, r(qm + 1),−qm + r2 + 3r, r2 + r) strongly regular Cayley graph
with r = k(qm − 1)/2N in each of the following cases:

(qm, N, k) = (35, 11, 5), (117, 43, 21), (353, 107, 53).

Proof: It is clear that −2 ∈ 〈p〉 (mod N) in these cases. Then, by applying Lemma 4.1, Re-
mark 4.3 (i) and Theorem 6.1 to these examples, the corollary now follows. �

Similarly to the corollary above, by applying Lemma 4.2, Remark 4.3 (ii) and Theorem 6.2 to the
three sporadic cyclotomic strongly regular graphs in Corollary 6.5, we obtain the following.
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Corollary 6.4. There exists a (q2m, r(qm + 1),−qm + r2 + 3r, r2 + r) strongly regular Cayley graph
with r = (N − k)(qm − 1)/2N in each of the following cases:

(qm, N, k) = (35, 11, 5), (117, 43, 21), (353, 107, 53).

In the case where (qm, N, k) = (79, 37, 9), the condition that −2 ∈ 〈p〉 (mod N) is not satisfied. We
checked by computer that there is no partition of the subdifference set I satisfying the condition (4.9).
On the other hand, we checked that there is a partition of Z37 \ I satisfying the condition (4.10):
T1 = 2I and T2 = Z37 \ (I ∪ 2I). Hence, we have the following corollary.

Corollary 6.5. There exists a (q2m, r(qm + 1),−qm + r2 + 3r, r2 + r) strongly regular Cayley graph
with r = (N − k)(qm − 1)/2N in the case where (qm, N, k) = (79, 37, 9).

Next, we consider the case where qm ≡ 1 (mod 4).

Corollary 6.6. There exists a (q2m, r(qm − 1), qm + r2 − 3r, r2 − r) strongly regular Cayley graph
with r = k(qm − 1)/2N in each of the following cases:

(qm, N, k) = (312, 35, 17), (59, 19, 9), (1733, 67, 33), (518, 133, 33),

(4181, 163, 81), (3144, 323, 161), (5249, 499, 249).

Proof: It is clear that gcd (N, q
m−1
N

) = 1 and −2 ∈ 〈p〉 (mod N) in these cases. Then, by applying
Lemma 4.4, Remark 4.6 and Theorem 6.1 to these examples, the corollary now follows. �

Similarly to the corollary above, by applying Lemma 4.5, Remark 4.6 and Theorem 6.2 to these
examples, we obtain the following corollary.

Corollary 6.7. There exists a (q2m, r(qm − 1), qm + r2 − 3r, r2 − r) strongly regular Cayley graph
with r = (N − k)(qm − 1)/2N in each of the following cases:

(qm, N, k) = (312, 35, 17), (59, 19, 9), (1733, 67, 33), (518, 133, 33),

(4181, 163, 81), (3144, 323, 161), (5249, 499, 249).

7. Partitions of subdifference sets and their complements in the subfield case

In this section, we consider partitions of the subdifference set I and its complement in subfield

case. We assume that m is odd and N = qm−1
q−1

. In this case, Cay(Fqm , C
(N,qm)
0 ) is strongly regular

and we have
I := {i (mod N) : Trqm/q(w

i) = 0}. (7.1)

7.1. A partition of the Singer difference set I defined in (7.1) when m = 3. In the case
where m = 3, a partition of the Singer difference set I satisfying the condition (4.9) of Remark 4.3 (i)
was found in [7, Theorem 3.7]. Regarding Fq3 as a 3-dimensional vector space over Fq, we use Fq3

as the underlying vector space of PG(2, q). The points of PG(2, q) are 〈ωi〉, 0 ≤ i ≤ N − 1, and the
lines of PG(2, q) are

Li := {〈x〉 : Trq3/q(ωix) = 0}, 0 ≤ i ≤ N − 1. (7.2)

The Singer difference set I corresponds to the typical line L0.
Consider a nondegenerate quadratic form f : Fq3 → Fq defined by f(x) = Trq3/q(x

2), which defines
a conic Q in PG(2, q) containing q + 1 points. Consequently, each line L of PG(2, q) meets Q in 0,
1 or 2 points. Consider the following subset of ZN :

IQ := {i (mod N) : f(ωi) = 0} = {d0, d1, . . . , dq}, (7.3)

where the elements are numbered in any unspecified order. Thus, Q = {〈ωdi〉 : 0 ≤ i ≤ q}.
Furthermore, by the definition of f and I, IQ ≡ 2−1I (mod N).

For d0 ∈ IQ, define
X := {ωdiTrq3/q(ω

d0+di) : 1 ≤ i ≤ q} ∪ {2ωd0}
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and
X := {logω(x) (mod 2N) : x ∈ X} ⊂ Z2N . (7.4)

Clearly, |X| = |IQ| and X ≡ IQ (mod N). If we use any other di instead of d0 in the definition of X ,
then the resulting set X ′ satisfies that X ′ ≡ X (mod 2N) or X ′ ≡ X +N (mod 2N) [7, Lemma 3.4].

The set X can be expressed as

X = 2S ′′
1 ∪ (2S ′′

2 +N) (mod 2N) (7.5)

for some S ′′
1 , S

′′
2 ⊆ ZN with |S ′′

1 | + |S ′′
2 | = q + 1. Define S ′

i ≡ 2S ′′
i (mod N) and Si ≡ 2S ′

i (mod N)
for i = 1, 2. Then, S ′

1 ∪ S ′
2 ≡ IQ (mod N) and S1 ∪ S2 ≡ I (mod N), i.e., X induces partitions of

IQ and I, respectively.

Theorem 7.1. [7, Theorem 3.7] The set X defined in (7.4) satisfies the condition (4.9) of Remark 4.3
(i).

As corollaries, we have the following.

Corollary 7.2. For a prime power q ≡ 3 (mod 4), there exists a (q6, r(q3 +1),−q3 + r2 +3r, r2 + r)
strongly regular Cayley graph, where r = (q2 − 1)/2.

Proof: By Lemma 4.1, Remark 4.3 (i) and Theorem 7.1, the corollary now follows. �

The connection set E1 ⊆ Fq6 of the strongly regular Cayley graph Cay(Fq6, E1) obtained in Corol-

lary 7.2 corresponds to a (q+1)
2

-ovoid in an elliptic quadric Q−(5, q). See [4].

Corollary 7.3. For a prime power q ≡ 5, 9 (mod 12), there exists a (q6, r(q3−1), q3+ r2−3r, r2−r)
strongly regular Cayley graph, where r = (q2 − 1)/2.

Proof: It is clear that gcd (N, q
3−1
N

) = 1 if N = q2 + q + 1 and q ≡ 5, 9 (mod 12). Then, by
Lemma 4.4, Remark 4.3 (ii) and Theorem 7.1, the corollary now follows. �

The connection set H1 ⊆ Fq3×Fq3 of the strongly regular Cayley graph Cay(Fq3×Fq3 , H1) obtained

in Corollary 7.3 corresponds to a (q2−1)
2

-tight set in a hyperbolic quadric Q+(5, q). See [6, 7].
It would be interesting to find a desired partition of I when m is odd and m > 3. We leave this

as an open problem.

7.2. A partition of the complement of the Singer difference set with odd m. In this section,
we consider a partition of the complement of the Singer difference set I (mod qm−1

q−1
), where m > 1

is an arbitrary odd integer. Note that the set 2−1I (mod qm−1
q−1

) corresponds to a nondegenerate

parabolic quadric Q(m− 1, q) of PG(m− 1, q).
Let N = qm−1

q−1
and ω be a primitive element of Fqm, where q is an odd prime power and m > 1 is

an odd integer. Define

A = {x ∈ F
∗
qm |Trqm/q(x

2) = 0},
A0 = {x ∈ F

∗
qm |Trqm/q(x

2) ∈ C
(2,q)
0 },

A1 = {x ∈ F
∗
qm |Trqm/q(x

2) ∈ C
(2,q)
1 }.

Let a1 ∈ A, and define H1 = {x ∈ F∗
qm | Trqm/q(a1x) = 0}. Note that A represents a nondegenerate

parabolic quadric of PG(m− 1, q) and H1 is a tangent hyperplane2 to A at point 〈a1〉. Thus A∩H1

is a cone of order one with vertex 〈a1〉, and |A ∩ H1| = qm−2 − 1. If m = 3, we stop this process.
Otherwise, we continue by choosing a2 ∈ A ∩ H1 such that a1, a2 are linearly independent over Fq,
and define H2 = {x ∈ F

∗
qm | Trqm/q(a2x) = 0}. Then H1 ∩ H2 is a hyperplane of H1. Note that

A∩H1 represents a degenerate quadric (a cone of order one) in H1, and H1 ∩H2 contains the vertex

2Strictly speaking, we should say that H1 ∪ {0} is a hyperplane.
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〈a1〉, we see that A ∩H1 ∩H2 is a cone of order two (cf. [8]), and |A ∩H1 ∩H2| = qm−3 − 1. More
generally, we define

Hℓ = {x ∈ F
∗
qm |Trqm/q(xaℓ) = 0}, aℓ ∈ A ∩H1 ∩ · · · ∩Hℓ−1,

Hℓ,0 = {x ∈ F
∗
qm |Trqm/q(xaℓ) ∈ C

(2,q)
0 }, aℓ ∈ A ∩H1 ∩ · · · ∩Hℓ−1,

Hℓ,1 = {x ∈ F
∗
qm |Trqm/q(xaℓ) ∈ C

(2,q)
1 }, aℓ ∈ A ∩H1 ∩ · · · ∩Hℓ−1,

where 2 ≤ ℓ ≤ m−1
2

. We can always choose a1, . . . , am−1
2

so that they are linearly independent over

Fq. The reason is as follows: assume that a1, . . . , aℓ−1 with 2 ≤ ℓ ≤ m−1
2

are independent; since
a1, . . . , aℓ−1 ∈ A ∩H1 ∩ · · · ∩Hℓ−1 and

|A ∩H1 ∩ · · · ∩Hℓ−1| = qm−ℓ − 1, (7.6)

there are at least m− ℓ independent elements in A∩H1∩· · ·∩Hℓ−1 including a1, . . . , aℓ−1; hence, we
can choose an element aℓ ∈ A∩H1 ∩ · · · ∩Hℓ−1 so that a1, . . . , aℓ are independent over Fq whenever
ℓ ≤ m−1

2
.

Let b be a fixed element of (H1 ∩ · · · ∩Hm−1
2
) \A. Since H1 ∩ · · · ∩Hm−1

2
and A∩H1 ∩ · · · ∩Hm−1

2

correspond to a (m−1)
2

-flat and a (m−3)
2

-flat, respectively, in PG(m−1, q), the set (H1∩· · ·∩Hm−1
2
)\A

can be represented as

(H1 ∩ · · · ∩Hm−1
2
) \ A = {a1x1 + · · ·+ am−1

2
xm−1

2
+ by | x1, . . . , xm−1

2
∈ Fq, y ∈ F

∗
q}.

Let T1 = (A0 ∩H1,0) ∪ (A1 ∩H1,1) and more generally

Tℓ := (A0 ∩H1 ∩ · · · ∩Hℓ−1 ∩Hℓ,0) ∪ (A1 ∩H1 ∩ · · · ∩Hℓ−1 ∩Hℓ,1), 2 ≤ ℓ ≤ m− 1

2
,

and
B := {a1x1 + · · ·+ am−1

2
xm−1

2
+ by | x1, . . . , xm−1

2
∈ Fq, y ∈ C

(2,q)
0 }.

Finally, define

D :=




(m−1)/2⋃

ℓ=1

Tℓ


 ∪ B.

It is clear that

ωNTℓ = (A0 ∩H1 ∩ · · · ∩Hℓ−1 ∩Hℓ,1) ∪ (A1 ∩H1 ∩ · · · ∩Hℓ−1 ∩Hℓ,0)

and
ωNB = {a1x1 + · · ·+ am−1

2
xm−1

2
+ by | x1, . . . , xm−1

2
∈ Fq, y ∈ C

(2,q)
1 }.

Hence, D ∩ ωND = ∅ and D ∪ ωND = F∗
qm \ A. Thus, there exists a subset X̂ ⊆ Z2N such that

D =
⋃

t∈X̂ C
(2N,qm)
t and X̂ ≡ ZN \ 2−1I (mod N). The set X̂ induces a partition of the complement

of 2−1I (mod N).

Theorem 7.4. The set X̂ defined above satisfies the condition (4.10) of Remark 4.3 (ii).

To prove this theorem, we need the following lemmas.

Lemma 7.5. It holds that

ψFqm
(ωaTℓ) =





(−1)i+ǫm−1
2 q

m−1
2 (−1+(−1)j+τGq(η′))

2
, if ωa ∈ Ai ∩H1 ∩ · · · ∩Hℓ−1 ∩Hℓ,j, i, j = 0, 1,

− qm−ℓ−1(q−1)
2

, if ωa ∈ 〈a1, . . . , aℓ〉 \ 〈a1, . . . , aℓ−1〉,
qm−ℓ−1(q−1)2

2
, if ωa ∈ 〈a1, . . . , aℓ−1〉,

0, otherwise,

where η′ is the quadratic character of Fq and ǫ = 0 or 1 according as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).

Furthermore, τ is defined by 2 ∈ C
(2,q)
τ .
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The proof of this lemma is complicated. Therefore, we postpone the proof to the Appendix.

Lemma 7.6. It holds that

ψFqm
(ωaB) =





q
m−1

2
(−1+Gq(η′))

2
, if Trqm/q(ω

ab) ∈ C
(2,q)
0 , ωa ∈ (H1 ∩ · · · ∩Hm−1

2
) \ A,

q
m−1

2
(−1−Gq(η′))

2
, if Trqm/q(ω

ab) ∈ C
(2,q)
1 , ωa ∈ (H1 ∩ · · · ∩Hm−1

2
) \ A,

q
m−1

2 (q−1)
2

, if ωa ∈ A ∩H1 ∩ · · · ∩Hm−1
2
,

0, otherwise.

Proof: We compute the character values of B:

ψFqm
(ωaB) =

∑

x1,...,xm−1
2

∈Fq

∑

y∈C
(2,q)
0

ψFqm
(ωaa1x1) · · ·ψFqm

(ωaam−1
2
xm−1

2
)ψFqm

(ωaby)

=




m−1
2∏

i=1

∑

xi∈Fq

ψFq(Trqm/q(ω
aai)xi)






∑

y∈C
(2,q)
0

ψFq(Trqm/q(ω
ab)y)


 .

If Trqm/q(ω
aai) 6= 0 for some i = 1, . . . , m−1

2
, then it is clear that ψFqm

(ωaB) = 0. Otherwise, we have

ψFqm
(ωaB) = q

m−1
2

∑

y∈C
(2,q)
0

ψFq(Trqm/q(ω
ab)y)

=





q
m−1

2 (−1+Gq(η′))
2

, if Trqm/q(ω
ab) ∈ C

(2,q)
0 ,

q
m−1

2 (−1−Gq(η′))

2
, if Trqm/q(ω

ab) ∈ C
(2,q)
1 ,

q
m−1

2 (q−1)
2

, if Trqm/q(ω
ab) = 0.

Since Trqm/q(ω
aa1) = · · · = Trqm/q(ω

aam−1
2
) = Trqm/q(ω

ab) = 0 if and only if ωa ∈ A∩H1∩· · ·∩Hm−1
2
,

the assertion of the lemma follows. �

We are now ready to prove Theorem 7.4.
Proof of Theorem 7.4: From Lemmas 7.5 and 7.6, we have

ψFqm
(ωa

⋃

t∈X̂

C
(2N,qm)
t ) =ψFqm

(ωaD) =

m−1
2∑

i=1

ψFqm
(ωaTℓ) + ψFqm

(ωaB)

=





(−1)i+ǫm−1
2 q

m−1
2 (−1+(−1)j+τGq(η′))

2
,, if ωa ∈ Ai ∩H1 ∩ · · · ∩Hℓ−1 ∩Hℓ,j

for ℓ = 1, . . . , m−1
2

, i, j = 0, 1,
q
m−1

2 (−1+(−1)iGq(η′))
2

, if ωa ∈ (H1 ∩ · · · ∩Hm−1
2
) \ A and

Trqm/q(ω
ab) ∈ C

(2,q)
i for i = 0, 1,

0, if ωa ∈ A.

On the other hand, since ψFqm
(ωa

⋃
t∈2−1I C

(N,qm)
t ) = ψFqm

(ωaD) + ψFqm
(ωa+ND), we have

ψFqm
(ωa

⋃

t∈2−1I

C
(N,qm)
t ) =





−(−1)i+ǫm−1
2 q

m−1
2 , if ωa ∈ Ai \ (H1 ∩ · · · ∩Hm−1

2
), i = 0, 1,

−qm−1
2 , if ωa ∈ (H1 ∩ · · · ∩Hm−1

2
) \ A.

0, if ωa ∈ A.

Hence, we have

2ψFqm
(ωa

⋃

t∈X̂

C
(2N,qm)
t )− ψFqm

(ωa
⋃

t∈2−1I

C
(N,qm)
t ) =

{
0, if a ∈ 2−1I (mod N),

±qm−1
2 Gq(η

′), otherwise.
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Thus, we conclude that X̂ satisfies the condition (4.10) in Remark 4.3 (ii). �

As corollaries, we obtain the following.

Corollary 7.7. For a prime power q ≡ 3 (mod 4) and an odd integer m > 1, there exists a
(q2m, r(qm + 1),−qm + r2 + 3r, r2 + r) strongly regular Cayley graph with r = qm−1(q − 1)/2.

Proof: By Lemma 4.1, Remark 4.3 (i) and Theorem 7.4, the corollary now follows. �

Remark 7.8. The strongly regular graph obtained in Corollary 7.7 has the same parameter as the
affine polar graph of elliptic type. Let Γ be the strongly regular graph of Corollary 7.7 with q = 3
and m = 3. We checked by using a computer that Γ is not isomorphic to the affine polar graph AP−

with the same parameters. In particular, the size of the full automorphism group of Γ (resp. AP−)
is 22 · 37 · 7 (resp. 210 · 312 · 5 · 7).

Corollary 7.9. For a prime power q ≡ 1 (mod 4) and an odd integerm > 1 such that gcd (q − 1, q
m−1
q−1

) =

1, there exists a (q2m, r(qm − 1), qm + r2 − 3r, r2 − r) strongly regular Cayley graph, where r =
qm−1(q − 1)/2.

Proof: By Lemma 4.4, Remark 4.3 (ii) and Theorem 7.4, the corollary now follows. �

Remark 7.10. The strongly regular graph obtained in Corollary 7.9 has the same parameters as
the affine polar graph of hyperbolic type. Let Γ be the strongly regular graph of Corollary 7.9 with
q = 5 and m = 3. We checked by using a computer that Γ is not isomorphic to the affine polar
graph AP+ with the same parameters. In particular, the size of the full automorphism group of Γ
(resp. AP+) is 23 · 56 · 31 (resp. 211 · 32 · 512 · 13 · 31).
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Appendix: Proof of Lemma 7.5

In this appendix, we give a proof of Lemma 7.5.
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Proof of Lemma 7.5. For j = 0 or 1, the characteristic function gA,j of {x ∈ Fqm |Trqm/q(x
2) ∈

C
(2,q)
j } is given by

gA,j(x) =
1

q

∑

d∈Fq

∑

s∈C
(2,q)
j

ψFqm
(dx2)ψFq(−ds). (7.7)

Similarly, the characteristic functions gaℓ and gaℓ,j of {x |Trqm/q(xaℓ) = 0} and {x |Trqm/q(xaℓ) ∈
C

(2,q)
j } are, respectively, given by

gaℓ(x) =
1

q

∑

d∈Fq

ψFqm
(dxaℓ) (7.8)

and

gaℓ,j(x) =
1

q

∑

d∈Fq

∑

s∈C
(2,q)
j

ψFqm
(dxaℓ)ψFq(−ds), j = 0, 1. (7.9)

We compute the character values ψFqm
(ωaTℓ). By the definition of Tℓ, we have

ψFqm
(ωaTℓ) =

∑

j=0,1

∑

x∈Fqm

gA,j(x)ga1(x) · · · gaℓ−1
(x)gaℓ,j(x)ψFqm

(ωax) (7.10)

By substituting (7.7), (7.8) and (7.9) into (7.10), we have

ψFqm
(ωaTℓ) =

1

qℓ+1

∑

x∈Fqm

∑

j=0,1

∑

d0,d1,...,dℓ∈Fq

ψFqm
(d0x

2 + (ωa +

ℓ∑

i=1

diai)x)ψFq(d0C
(2,q)
j )ψFq(dℓC

(2,q)
j ).

(7.11)
We compute the right hand side of (7.11) by dividing into the two partial sums: Σ1 and Σ2, where
Σ1 is the contribution of the summands with d0 = 0 and Σ2 is the contribution of the summands
with d0 6= 0. Thus, ψFqm

(ωaTℓ) = Σ1 + Σ2.
It is clear that

Σ1 =
q − 1

2qℓ+1

∑

x∈Fqm

∑

j=0,1

∑

d1,...,dℓ∈Fq

ψFqm
((ωa +

ℓ∑

i=1

diai)x)ψFq(dℓC
(2,q)
j )

=





−qm−ℓ−1(q−1)
2

, if ωa ∈ 〈a1, . . . , aℓ〉 \ 〈a1, . . . , aℓ−1〉,
qm−ℓ−1(q−1)2

2
, if ωa ∈ 〈a1, . . . , aℓ−1〉,

0, otherwise.

We next consider the partial sum Σ2. By Theorem 2.6,

Σ2 =
Gqm(η)

qℓ+1

∑

j=0,1

∑

d0∈F∗

q

∑

d1,...,dℓ∈Fq

ψFqm
(−4−1d−1

0 (ωa +

ℓ∑

i=1

diai)
2)η(d0)ψFq(d0C

(2,q)
j )ψFq(dℓC

(2,q)
j ),

(7.12)
where η is the quadratic character of Fqm. Since Trqm/q(aiaj) = 0 for i, j ∈ {1, . . . , ℓ}, we have

Trqm/q((ω
a +

ℓ∑

i=1

diai)
2) = Trqm/q(ω

2a + 2ωa

ℓ∑

i=1

diai).

Continuing from (7.12), we have

Σ2 =
Gqm(η)

qℓ+1

∑

j=0,1

∑

h=0,1

(−1)hψFq(C
(2,q)
j+h )

∑

d1,...,dℓ∈Fq

ψFq(−Trqm/q(ω
2a + 2ωa

ℓ∑

i=1

diai)C
(2,q)
h )ψFq(dℓC

(2,q)
j ).
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If Trqm/q(ω
aai) 6= 0 for some i = 1, 2, . . . , ℓ−1, it is clear that Σ2 = 0. Furthermore, if Trqm/q(ω

aaℓ) =
0, it also holds that Σ2 = 0. Thus, we assume that Trqm/q(ω

aai) = 0 for all i = 1, 2, . . . , ℓ − 1 and
Trqm/q(ω

aaℓ) 6= 0. In this case, we have

Σ2 =
Gqm(η)

q2

∑

j=0,1

∑

h=0,1

(−1)hψFq(C
(2,q)
j+h )

∑

dℓ∈Fq

ψFq(−Trqm/q(ω
2a + 2ωadℓaℓ)C

(2,q)
h )ψFq(dℓC

(2,q)
j ). (7.13)

We compute the right hand side of (7.13) by dividing into the two partial sums: Σ2.0 and Σ2,1, where
Σ2,0 is the contribution of the summands with dℓ = 0 and Σ2,1 is the contribution of the summands
with dℓ 6= 0. Thus, Σ2 = Σ2,0 + Σ2,1.

By (2.3), we have

Σ2,0 =
(q − 1)Gqm(η)

2q2

∑

j=0,1

∑

h=0,1

(−1)hψFq(C
(2,q)
j+h )ψFq(−Trqm/q(ω

2a)C
(2,q)
h )

= − (q − 1)Gqm(η)

2q2





Gq(η
′), if −Trqm/q(ω

2a) ∈ C
(2,q)
0 ,

−Gq(η
′), if −Trqm/q(ω

2a) ∈ C
(2,q)
1 ,

0, if Trqm/q(ω
2a) = 0,

where η′ is the quadratic character of Fq. On the other hand, by (2.3),

Σ2,1 =
Gqm(η)

q2

∑

j,h,k=0,1

(−1)hψFq(C
(2,q)
j+h )ψFq(−Trqm/q(ω

2a)C
(2,q)
h )ψFq(−2Trqm/q(ω

aaℓ)C
(2,q)
h+k )ψFq(C

(2,q)
j+k )

=
Gqm(η)

q2





Gq(η′)(−1+Gq(η′)3)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
0 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
0 ,

−Gq(η′)(1+Gq(η′)3)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
0 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
1 ,

−Gq(η′)(−1+Gq(η′)3)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
1 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
0 ,

Gq(η′)(1+Gq(η′)3)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
1 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
1 ,

0, if Trqm/q(ω
2a) = 0.

Noting that Gqm(η) = Gq(η
′)m and Gq(η

′)2 = (−1)ǫq, we have

Σ2 =Σ2,0 + Σ2,1

=(−1)ǫ
m+1

2 q
m−1

2





−1+(−1)ǫGq(η′)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
0 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
0 ,

−1−(−1)ǫGq(η′)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
0 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
1 ,

1−(−1)ǫGq(η′)

2
, if −Trqm/q(ω

2a) ∈ C
(2,q)
1 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
0 ,

1+(−1)ǫGq(η′)
2

, if −Trqm/q(ω
2a) ∈ C

(2,q)
1 , −2Trqm/q(ω

aaℓ) ∈ C
(2,q)
1 ,

0, if Trqm/q(ω
2a) = 0.

This completes the proof of the lemma. �
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