Brief Tutorial on QM and StatMech

Andrew V. Teplyakov

CHEM674

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation

$$
\begin{gathered}
\hat{\boldsymbol{H}} \boldsymbol{\Psi}=\underset{\substack{\text { Hamiltonian } \\
\text { Operator } \\
\text { (Energy operator) }}}{\boldsymbol{E}} \mathbf{\substack { \text { Energy } \\
\text { eigenvalue } }} \\
\frac{-\hbar^{2}}{2 m} \nabla^{2} \Psi(\mathrm{r})+V(r) \Psi(\mathrm{r})=E \Psi(\mathrm{r}) \\
\begin{array}{l}
\text { Kinetic } \\
\text { Energy }
\end{array}+\quad \text { Potential }=\begin{array}{l}
\text { Total } \\
\text { Energy }
\end{array}
\end{gathered}
$$

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation

Need to include all types of motion: translation (starting model particle in a box); vibration (start with harmonic oscillator and include nonharmonicity terms); rotation (start with rigid rotor, combine with radial distribution function to get hydrogen atom description), and include different electronic states

Translation:

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}\left(\text { here } \hbar=\frac{h}{2 \pi}\right)
$$

Vibration: $\quad \Psi_{v}(x)=A_{v} H_{v}(x / \alpha) \exp \left(-\frac{x^{2}}{2 \alpha^{2}}\right) \quad v=0,1,2,3, \ldots$

$$
E_{v}=\left(v+\frac{1}{2}\right) \hbar \omega_{0}=\left(v+\frac{1}{2}\right) h v_{0}
$$

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation

Need to include all types of motion: translation (starting model particle in a box); vibration (start with harmonic oscillator and include non-
harmonicity terms); rotation (start with rigid rotor, combine with radial distribution function to get hydrogen atom description), and include
different electronic states
Translation:

$$
\left.\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}} \text { (here } \hbar=\frac{h}{2 \pi}\right)
$$

Vibration: $\quad \Psi_{v}(x)=A_{v} H_{v}(x / \alpha) \exp \left(-\frac{x^{2}}{2 \alpha^{2}}\right) \quad v=0,1,2,3, \ldots$

$$
E_{v}=\left(v+\frac{1}{2}\right) \hbar \omega_{0}=\left(v+\frac{1}{2}\right) h v_{0}
$$

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation

Need to include all types of motion: translation (starting model particle in a box); vibration (start with harmonic oscillator and include nonharmonicity terms); rotation (start with rigid rotor, combine with radial distribution function to get hydrogen atom description), and include different electronic states

Translation:

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}\left(\text { here } \hbar=\frac{h}{2 \pi}\right)
$$

Vibration: $\quad \frac{d^{2} \Psi}{d y^{2}}-y^{2} \Psi+\varepsilon \Psi=0$

$$
y=\frac{x}{\alpha} \quad \alpha=\left(\frac{\hbar^{2}}{m k}\right)^{1 / 4} \quad \varepsilon=\frac{2}{\hbar \omega_{0}} E
$$

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation

Need to include all types of motion: translation (starting model particle in a box); vibration (start with harmonic oscillator and include nonharmonicity terms); rotation (start with rigid rotor, combine with radial distribution function to get hydrogen atom description), and include different electronic states

Translation:

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}\left(\text { here } \hbar=\frac{h}{2 \pi}\right)
$$

Vibration: $\quad \Psi_{v}(x)=A_{v} H_{v}(x / \alpha) \exp \left(-\frac{x^{2}}{2 \alpha^{2}}\right) \quad v=0,1,2,3, \ldots$

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation
Need to include all types of motion: translation (starting model particle in a box); vibration (start with harmonic oscillator and include nonharmonicity terms); rotation (start with rigid rotor, combine with radial distribution function to get hydrogen atom description), and include different electronic states

Rotation:

$$
\begin{gathered}
\Psi_{k m}(\theta, \phi)=\Theta_{k m}(\theta) \Phi_{m}(\phi) \\
\Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} \exp (i m \phi) \\
Y_{l m}(\theta, \phi)=A_{l m} P_{\ell}^{m \mid}(\cos \theta) \Phi_{m}(\phi)
\end{gathered}
$$

where

$$
k=\ell(\ell+1) \text { and } \ell=0,1,2, \ldots
$$

Quantum mechanics

Postulates of quantum mechanics
Eigen Functions and Eigen Equations: Shroedinger Equation
Need to include all types of motion: translation (starting model particle in a box); vibration (start with harmonic oscillator and include nonharmonicity terms); rotation (start with rigid rotor, combine with radial distribution function to get hydrogen atom description), and include different electronic states

$$
\begin{array}{ll}
& \hat{H} Y_{\ell m}(\theta, \phi)=E_{\ell m} Y_{\ell m}(\theta, \phi) \\
\text { Rotation: } & \frac{1}{2 m r_{0}^{2}} \hat{2}^{2} Y_{\ell m}(\theta, \phi)=\frac{1}{2 m r_{0}^{2}} \ell(\ell+1) \hbar^{2} Y_{\ell m}(\theta, \phi) \\
& E_{\ell m}=\frac{\hbar^{2}}{2 m r_{0}^{2}} \ell(\ell+1)
\end{array}
$$

Hydrogen Atom

Hydrogen atom in quantum mechanicselectron moving about a proton located at the origin of the coordinate system

Coulomb potential

$$
U=-\frac{e^{2}}{4 \pi \varepsilon_{0}|\mathbf{r}|}=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

Centrosymmetric potential, use spherical polar coordinates to formulate the Schrödinger equation:

$$
-\frac{h^{2}}{2 m_{e}}\left[\begin{array}{l}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi(r, \theta, \phi)}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi(r, \theta, \phi)}{\partial \theta}\right) \\
+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi(r, \theta, \phi)}{\partial \varphi^{2}}
\end{array}\right]-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

Hydrogen Atom: Solving the Schrödinger Equation

Separation of variables- since $U(r)$ does not depend on the angles:

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

Solution of the Schrödinger equation greatly simplified:

$$
-\frac{h^{2}}{2 m_{e}} \Theta(\theta) \Phi(\phi) \frac{d}{d r}\left[r^{2} \frac{d R(r)}{d r}\right]+\frac{1}{2 m_{e} r^{2}} R(r) \hat{l}^{2} \Theta(\theta) \Phi(\phi)-\Theta(\theta) \Phi(\phi)\left[\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] R(r)=E R(r) \Theta(\theta) \Phi(\phi)
$$

Know that $\hat{l}^{2} \Theta(\theta) \Phi(\phi)=\hbar^{2} l(l+1) \Theta(\theta) \Phi(\phi)$
can remove angular dependence
from the Schrödinger equation:

Hydrogen Atom: Eigenvalues and Eigenfunctions of Total Energy

Eigenfunctions:

$$
\psi_{n, l, m_{l}}(r, \theta, \phi)=\underbrace{R_{n l}(r)}_{\text {radial }} \underbrace{(\Theta(\theta) \Phi(\phi))_{n, l m_{1}}}_{\text {Spherical harmonics }}=R_{n l}(r) Y_{l}^{m_{l}}(\theta, \phi)
$$

Quantum numbers:

$$
\begin{aligned}
& n=1,2,3,4, \ldots \\
& l=0,1,2,3, \ldots, n-1 \\
& m_{l}=0, \pm 1, \pm 2, \pm 3, \ldots, \pm l
\end{aligned}
$$

Hydrogen Atom: Eigenvalues and Eigenfunctions of Total Energy

Energy- appears only in the radial equation (not angular);

$$
E_{n}=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2} n^{2}}, \quad n=1,2,3,4, \ldots
$$

Bohr radius:

$$
a_{0}=-\frac{\varepsilon_{0}^{2} h^{2}}{\pi m_{e} e^{2}}, a_{0}=0.529 \times 10^{-10} \mathrm{~m}
$$

Energy taking Bohr radius into account:

$$
E_{n}=-\frac{e^{4}}{8 \pi \varepsilon_{0} a_{0} n^{2}}=-\frac{2.179 \times 10^{-18} J}{n^{2}}=-\frac{13.60 e \mathrm{~V}}{n^{2}}, n=1,2,3,4, \ldots
$$

Vibrations and Rotations: Diatomic Molecules
vibrational levels
vibrational levels
$E_{v}=(v+1 / 2) h \omega_{0}$
rovibrational levels
$E_{r}=B \cdot J(J+1)$

- $+J+$

Vibrations and Rotations: Diatomic Molecules

vibrational levels
$\mathrm{E}_{\mathrm{v}}=(\mathrm{v}+1 / 2) h \omega_{0}$
rovibrational levels
$E_{r}=B \cdot J(J+1)$

Selectrion rules:

1) The molecule must have a permanent dipole moment;
2) $\Delta \mathrm{n}= \pm 1 ; \pm 2, \pm 3$...
3) $\Delta J= \pm 1$

Vibrations and Rotations: Diatomic Molecules

http://www.pci.tu-bs.de/aggericke/PC4e/Kap_III/Rot-Vib-Spektren.htm

Electronic Spectroscopy for Diatomic Molecules

Selection rules for electronic spectroscopy:

1) $\Delta \Lambda=0, \pm 1$;
2) $\Delta \mathrm{S}=0$ (no singlet-triplet transitions allowed)
3) $g \leftrightarrow u$ (the inversion symmetry must change)

4) $\Sigma^{+} \leftrightarrow \Sigma^{-}$Is not allowed

Electronic Spectroscopy for Diatomic Molecules

- Energy change in a transition is a sum of changes
- Electronic
- Vibrational
- Rotational
- Franck-Condon principle
- During an electronic transition, the nuclear centers remain fixed.
- Estimate intensities by overlap of wave functions
$\Delta E=\Delta E_{\text {elect }}+\Delta E_{v i b}+\Delta E_{\text {rot }}$

Statistical Thermodynamics

